Signal Processing Blockset ${ }^{\text {TM }} 6$ Reference

How to Contact The MathWorks

www.mathworks.com
comp.soft-sys.matlab
Web
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com
Product enhancement suggestions
bugs@mathworks.com
Bug reports
doc@mathworks.com
service@mathworks.com
info@mathworks.com
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information
508-647-7000 (Phone)

508-647-7001 (Fax)
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Signal Processing Blockset ${ }^{\text {TM }}$ Reference

© COPYRIGHT 1995-2009 The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

April 1995	First printing May 1997	New for Version 1.0 Revised for Version 2.0
January 1998	Third printing	Revised for Version 2.2 (Release 10) January 1999
Fourth printing	Revised for Version 3.0 (Release 11)	
November 2000	Fifth printing	Revised for Version 4.0 (Release 12) Revised for Version 4.1 (Release 12.1)
June 2001	Online only	Revised for Version 5.0 (Release 13) July 2002
Sixth printing	Rpril 2003	Seventh printing
Revised for Version 5.1 (Release 13SP1)		
June 2004	Online only	Revised for Version 6.0 (Release 14) (Renamed from DSP Blockset User's Guide)
October 2004	Online only	Revised for Version 6.0.1 (Release 14SP1)
March 2005	Online only	Revised for Version 6.1 (Release 14SP2)
September 2005	Online only	Revised for Version 6.2 (Release 14SP3)
March 2006	Online only	Revised for Version 6.3 (Release 2006a) September 2006
Online only	Revised for Version 6.4 (Release 2006b)	
March 2007	Online only	Revised for Version 6.5 (Release 2007a)
September 20077	Online only	Revised for Version 6.6 (Release 2007b)
March 2008	Online only	Revised for Version 6.7 (Release 2008a)
October 2008	Online only	Revised for Version 6.8 (Release 2008b)
March 2009	Online only	Revised for Version 6.9 (Release 2009a)
September 2009	Online only	Revised for Version 6.10 (Release 2009b)

Block Reference

1

Estimation 1-2
Linear Prediction 1-2
Parametric Estimation 1-3
Power Spectrum Estimation 1-3
Filtering 1-4
Adaptive Filters 1-4
Filter Design Toolbox 1-4
Filter Designs 1-5
Multirate Filters 1-6
Math Functions 1-6
Math Operations 1-7
Matrices and Linear Algebra 1-7
Polynomial Functions 1-10
Quantizers 1-11
Signal Management 1-11
Buffers 1-12
Indexing 1-12
Signal Attributes 1-13
Switches and Counters 1-13
Signal Operations 1-14
Signal Processing Sinks 1-15
Signal Processing Sources 1-16
Statistics 1-17

Transforms

Blocks - Alphabetical List

2

Function Reference
3

Glossary

Index

Block Reference

Estimation (p. 1-2)

Filtering (p. 1-4)
Math Functions (p. 1-6)

Quantizers (p. 1-11)
Signal Management (p. 1-11)

Signal Operations (p. 1-14)

Signal Processing Sinks (p. 1-15)
Signal Processing Sources (p. 1-16)
Statistics (p. 1-17)

Transforms (p. 1-17)

Perform spectrum estimates and autoregressive modeling
Design, create, and work with filters
Perform linear algebra and basic math calculations

Design and implement quantization schemes
Perform basic signal processing operations
Control signal attributes, buffer signals, and index signals
View or log signals
Generate discrete-time signals
Perform statistical computations on signals

Compute transforms

Estimation

Linear Prediction (p. 1-2)	Compute or work with linear predictive representations
Parametric Estimation (p. 1-3)	Compute estimates of autoregressive model parameters
Power Spectrum Estimation (p. 1-3)	Compute parametric and nonparametric spectral estimates

Linear Prediction

Autocorrelation LPC	Determine coefficients of Nth-order forward linear predictors
Levinson-Durbin	Solve linear system of equations using Levinson-Durbin recursion
LPC to LSF/LSP Conversion	Convert linear prediction coefficients to line spectral pairs or line spectral frequencies
LPC to/from Cepstral Coefficients	Convert linear prediction coefficients to cepstral coefficients or cepstral coefficients to linear prediction coefficients
LPC to/from RC	Convert linear prediction coefficients to reflection coefficients or reflection coefficients to linear prediction coefficients
LPC/RC to Autocorrelation	Convert linear prediction coefficients or reflection coefficients to
autocorrelation coefficients	

Parametric Estimation

\(\left.$$
\begin{array}{ll}\text { Burg AR Estimator } & \begin{array}{l}\text { Compute estimate of autoregressive } \\
\text { (AR) model parameters using Burg } \\
\text { method }\end{array} \\
\text { Covariance AR Estimator } & \begin{array}{l}\text { Compute estimate of autoregressive } \\
\text { (AR) model parameters using } \\
\text { covariance method }\end{array} \\
\text { Modified Covariance AR Estimator } & \begin{array}{l}\text { Compute estimate of autoregressive } \\
\text { (AR) model parameters using }\end{array}
$$

modified covariance method\end{array}\right\}\)| Compute estimate of autoregressive |
| :--- |
| Yule-Walker AR Estimator |
| |
| (AR) model parameters using |
| Yule-Walker method |

Power Spectrum Estimation

Burg Method
Covariance Method
Magnitude FFT
Modified Covariance Method
Periodogram

Yule-Walker Method

Power spectral density estimate using Burg method
Power spectral density estimate using covariance method
Compute nonparametric estimate of spectrum using periodogram method
Power spectral density estimate using modified covariance method

Power spectral density or mean-square spectrum estimate using periodogram method
Power spectral density estimate using Yule-Walker method

Filtering

Adaptive Filters (p. 1-4)
Filter Design Toolbox (p. 1-4)

Filter Designs (p. 1-5)
Multirate Filters (p. 1-6)

Adaptive Filters

Block LMS Filter

Fast Block LMS Filter

Kalman Filter

LMS Filter

RLS Filter

Use adaptive filter algorithms
Design and implement single- and multirate FIR and IIR filters

Design and implement filters
Implement multirate filters

Compute output, error, and weights using LMS adaptive algorithm

Compute output, error, and weights using LMS adaptive algorithm
Predict or estimate states of dynamic systems
Compute output, error, and weights using LMS adaptive algorithm
Compute filtered output, filter error, and filter weights for given input and desired signal using RLS adaptive filter algorithm

Filter Design Toolbox

Arbitrary Response Filter
Bandpass Filter
Bandstop Filter
CIC Compensator
CIC Filter

Design arbitrary response filter
Design bandpass filter
Design bandstop filter
Design CIC compensator
Design Cascaded Integrator-Comb (CIC) Filter

Differentiator Filter
Halfband Filter
Highpass Filter
Hilbert Filter
Inverse Sinc Filter
Lowpass Filter
Nyquist Filter
Octave Filter
Parametric Equalizer
Peak-Notch Filter
Pulse Shaping Filter

Filter Designs

Analog Filter Design
Biquad Filter
Digital Filter

Digital Filter Design

Filter Realization Wizard

Overlap-Add FFT Filter

Overlap-Save FFT Filter

Design differentiator filter
Design halfband filter
Design highpass filter
Design Hilbert filter
Design inverse sinc filter
Design lowpass Filter
Design Nyquist filter
Design octave filter
Design parametric equalizer
Design peak or notch filter
Design pulse shaping filter

Design and implement analog filters Model biquadratic IIR (SOS) filters

Filter each channel of input over time using static or time-varying digital filter implementations
Design and implement digital FIR and IIR filters
Construct filter realizations using Digital Filter block or Sum, Gain, and Delay blocks
Implement overlap-add method of frequency-domain filtering
Implement overlap-save method of frequency-domain filtering

Multirate Filters

CIC Decimation	Decimate signal using Cascaded Integrator-Comb filter
CIC Interpolation	Interpolate signal using Cascaded Integrator-Comb filter
Dyadic Analysis Filter Bank	Decompose signals into subbands with smaller bandwidths and slower sample rates
Dyadic Synthesis Filter Bank	Reconstruct signals from subbands with smaller bandwidths and slower sample rates
FIR Decimation	Filter and downsample input signals
FIR Interpolation	Upsample and filter input signals Upsample, filter, and downsample input signals
FIR Rate Conversion	Decompose signal into high-frequency subband and low-frequency subband
Filter Channel Analysis Subband	Reconstruct signal from high-frequency subband and low-frequency subband
Two-Channel Synthesis Subband	

Math Functions

Math Operations (p. 1-7)	Use specialized math operations for signal processing applications
Matrices and Linear Algebra (p. 1-7)	Work with matrices
Polynomial Functions (p. 1-10)	Work with polynomials

Math Operations

\(\left.$$
\begin{array}{ll}\text { Complex Exponential } & \begin{array}{l}\text { Compute complex exponential } \\
\text { function }\end{array} \\
\text { Cumulative Product } & \begin{array}{l}\text { Compute cumulative product of } \\
\text { channel, column, or row elements }\end{array} \\
\text { Cumulative Sum } & \begin{array}{l}\text { Compute cumulative sum of channel, } \\
\text { column, or row elements }\end{array} \\
\text { dB Conversion } & \begin{array}{l}\text { Convert magnitude data to decibels } \\
\text { (dB or dBm) }\end{array} \\
\text { dB Gain } & \begin{array}{l}\text { Apply decibel gain } \\
\text { Difference }\end{array}
$$

Nompute element-to-element

difference along specified dimension

of input\end{array}\right\}\)| Perform vector normalization |
| :--- |
| along rows, columns, or specified |
| dimension |

Matrices and Linear Algebra

Linear System Solvers (p. 1-7)
Matrix Factorizations (p. 1-8)
Matrix Inverses (p. 1-9)
Matrix Operations (p. 1-9)

Linear System Solvers

Cholesky Solver

Solve matrix equation $\mathrm{AX}=\mathrm{B}$ for X Factor matrices

Invert matrices
Perform basic matrix operations

Solve $U X=B$ for X when U is upper triangular matrix

Solve $S \mathrm{X}=B$ for X when S is square Hermitian positive definite matrix

Forward Substitution	Solve $L X=B$ for X when L is lower triangular matrix
LDL Solver	Solve $S X=B$ for X when S is square Hermitian positive definite matrix
Levinson-Durbin	Solve linear system of equations using Levinson-Durbin recursion Solve $A X=B$ for X when A is square matrix
LU Solver	Find minimum-norm-residual solution to AX=B
QR Solver	Solve $A X=B$ using singular value decomposition
SVD Solver	Factor square Hermitian positive definite matrix into triangular components
Cholesky Factorization	Factor square Hermitian positive definite matrices into lower, upper, and diagonal components
LDL Factorization	Factor square matrix into lower and upper triangular components
LU Factorization Factorization	Factor arbitrary matrix into unitary and upper triangular components
Singular Value Decomposition	Factor matrix using singular value decomposition

Matrix Inverses

Cholesky Inverse

LDL Inverse

LU Inverse

Pseudoinverse

Compute inverse of Hermitian positive definite matrix using Cholesky factorization

Compute inverse of Hermitian positive definite matrix using LDL factorization

Compute inverse of square matrix using LU factorization

Compute Moore-Penrose pseudoinverse of matrix

Add vector to array along specified dimension

Divide array by vector along specified dimension

Multiply array by vector along specified dimension

Subtract vector from array along specified dimension
Generate square, diagonal matrix
Create square diagonal matrix from diagonal elements
Extract main diagonal of input matrix

Extract lower or upper triangle from input matrices

Generate matrix with ones on main diagonal and zeros elsewhere

Compute 1-norm of matrix

Matrix Concatenate	Concatenate input signals of same data type to create contiguous output signal
Matrix Exponential	Compute matrix exponential
Matrix Multiply	Multiply or divide inputs
Matrix Product	Multiply matrix elements along rows, columns, or entire input
Matrix Square	Compute square of input matrix
Matrix Sum	Sum matrix elements along rows, columns, or entire input
Matrix Sum (Obsolete)	Sum matrix elements along rows, columns, or entire input
Overwrite Values	Overwrite submatrix or subdiagonal of input
Permute Matrix	Reorder matrix rows or columns Reciprocal Condition
Submatrix	Compute reciprocal condition of square matrix in 1-norm
Toeplitz	Select subset of elements (submatrix) from matrix input
Transpose	Generate matrix with Toeplitz
symmetry	

Quantizers

G711 Codec	Quantize narrowband speech input signals
Quantizer	Discretize input at specified interval
Scalar Quantizer Decoder	Convert each index value into quantized output value
Scalar Quantizer Design	Start Scalar Quantizer Design Tool (SQDTool) to design scalar quantizer using Lloyd algorithm
Scalar Quantizer Encoder	Encode each input value by associating it with index value of quantization region
Uniform Decoder	Decode integer input into floating-point output
Uniform Encoder	Quantize and encode floating-point input into integer output
Vector Quantizer Decoder	Find vector quantizer codeword that corresponds to given, zero-based index value
Vector Quantizer Design	Design vector quantizer using Vector Quantizer Design Tool (VQDTool)
Vector Quantizer Encoder	For given input, find index of nearest codeword based on Euclidean or weighted Euclidean distance measure

Signal Management

Buffers (p. 1-12)

Indexing (p. 1-12)

Change sample rate or frame rate of signals by buffering or unbuffering

Manipulate ordering of signals

Signal Attributes (p. 1-13)
Switches and Counters (p. 1-13)

Inspect or modify signal attributes
Perform actions when events occur

Buffers

Buffer

Delay Line

Queue
Stack
Unbuffer

Indexing

Flip
Multiport Selector

Overwrite Values

Selector

Submatrix

Variable Selector

Buffer input sequence to smaller or larger frame size

Rebuffer sequence of inputs with one-sample shift

Store inputs in FIFO register
Store inputs into LIFO register
Unbuffer input frame into sequence of scalar outputs

Flip input vertically or horizontally
Distribute arbitrary subsets of input rows or columns to multiple output ports
Overwrite submatrix or subdiagonal of input
Select input elements from vector, matrix, or multidimensional signal
Select subset of elements (submatrix) from matrix input

Select subset of rows or columns from input

Signal Attributes

Check Signal Attributes

Convert 1-D to 2-D

Convert 2-D to 1-D

Data Type Conversion

Frame Conversion

Inherit Complexity

Error when input signal does or does not match selected attributes exactly
Reshape 1-D or 2-D input to 2-D matrix with specified dimensions

Convert 2-D matrix input to 1-D vector

Convert input signal to specified data type

Specify sampling mode of output signal

Change complexity of input to match reference signal

Count up or down through specified range of numbers
Detect transition from zero to nonzero value
Detect threshold crossing of accumulated nonzero inputs

Generate multiple binary clock signals

Output ones or zeros for specified number of sample times

Switch between two inputs after specified number of sample periods

Signal Operations

Constant Ramp	Generate ramp signal with length based on input dimensions
Convolution	Compute convolution of two inputs Delay discrete-time input by specified number of samples or frames
Downsample	Resample input at lower rate by deleting samples
Interpolation	Interpolate values of real input samples
NCO	Generate real or complex sinusoidal signals
Offset	Truncate vectors by removing or keeping beginning or ending values
Pad	Pad or truncate specified dimension(s)
Peak Finder	Determine whether each value of input signal is local minimum or maximum
Repeat	Resample input at higher rate by
repeating values	

Variable Integer Delay
Window Function
Zero Crossing

Signal Processing Sinks

Display	Show value of input
Matrix Viewer	Display matrices as color images
Signal To Workspace	Write simulation data to array in MATLAB workspace
Spectrum Scope	Compute and display periodogram of each input signal Display signals generated during simulation
Time Scope	Write audio data to computer's audio device
To Audio Device	Write video frames and/or audio samples to multimedia file
To Multimedia File	Write audio data to file in Microsoft ${ }^{\text {® }}$
To Wave File	Wave (.wav) format Write input sample to MATLAB
Triggered To Workspace	workspace when triggered
Vector Scope	Display vector or matrix of time-domain, frequency-domain, or user-defined data
Waterfall	View vectors of data over time

Signal Processing Sources

Chirp	Generate swept-frequency cosine (chirp) signal
Constant	Generate constant value
Constant Diagonal Matrix	Generate square, diagonal matrix
Discrete Impulse	Generate discrete impulse Generate discrete- or continuous-time constant signal
DSP Constant (Obsolete)	Read audio data from computer's audio device
From Audio Device	Read multimedia file
From Multimedia File	Read audio data from Microsoft Wave (.wav) file
From Wave File	Generate matrix with ones on main diagonal and zeros elsewhere
Identity Matrix	Generate multiple binary clock signals
Multiphase Clock	Output ones or zeros for specified number of sample times
N-Sample Enable	Generate randomly distributed
Random Source	values Import signal from MATLAB workspace
Signal From Workspace	Generate continuous or discrete sine wave
Sine Wave	

Statistics

Autocorrelation	Compute autocorrelation of vector or matrix input Compute cross-correlation of two inputs
Correlation	Remove linear trend from vectors Generate histogram of input or sequence of inputs
Detrend	Find maximum values in input or sequence of inputs
Maximum	Find mean value of input or sequence of inputs
Mean	Find median value of input
Median	Find minimum values in input or sequence of inputs
Minimum	Compute root-mean-square value of input or sequence of inputs
RMS	Sort input elements by value
Sort	Find standard deviation of input or sequence of inputs
Standard Deviation	Compute variance of input or sequence of inputs
Variance	

Transforms

Analytic Signal
Complex Cepstrum
DCT

Compute analytic signals of discrete-time inputs

Compute complex cepstrum of input
Compute discrete cosine transform (DCT) of input

DWT	Discrete wavelet transform (DWT) of input
FFT	Compute fast Fourier transform (FFT) of input Compute inverse discrete cosine transform (IDCT) of input
IDCT	Inverse discrete wavelet transform (IDWT) of input
IDWT	Compute inverse fast Fourier transform (IFFT) of input
IFFT	Recover time-domain signals by performing inverse short-time, fast
Inverse Short-Time FFT	Fourier transform (FFT) Compute nonparametric estimate of spectrum using periodogram method
Real Cepstrum	Compute real cepstrum of input
Short-Time FFT	Compute nonparametric estimate of spectrum using short-time, fast
	Fourier transform (FFT) method

Blocks - Alphabetical List

Analog Filter Design

Purpose	Design and implement analog filters
Library	Filtering / Filter Designs
	dsparch4

Description

The Analog Filter Design block designs and implements a Butterworth, Chebyshev type I, Chebyshev type II, or elliptic filter in a highpass, lowpass, bandpass, or bandstop configuration.

The input must be a sample-based, continuous-time, real-valued, scalar signal.

The design and band configuration of the filter are selected from the Design method and Filter type pop-up menus in the dialog box. For each combination of design method and band configuration, an appropriate set of secondary parameters is displayed.

Filter Design	Description
Butterworth	The magnitude response of a Butterworth filter is maximally flat in the passband and monotonic overall.
Chebyshev type I	The magnitude response of a Chebyshev type I filter is equiripple in the passband and monotonic in the stopband.
Chebyshev type I I	The magnitude response of a Chebyshev type II filter is monotonic in the passband and equiripple in the stopband.
Elliptic	The magnitude response of an elliptic filter is equiripple in both the passband and the stopband.

The following table lists the available parameters for each design/band combination. For lowpass and highpass band configurations, these parameters include the passband edge frequency Ω_{p}, the stopband edge frequency Ω_{s}, the passband ripple R_{p}, and the stopband attenuation R_{s}. For bandpass and bandstop configurations, the parameters include the

Analog Filter Design

lower and upper passband edge frequencies, $\Omega_{\mathrm{p} 1}$ and $\Omega_{\mathrm{p} 2}$, the lower and upper stopband edge frequencies, $\Omega_{\mathrm{s} 1}$ and $\Omega_{\mathrm{s} 2}$, the passband ripple R_{p}, and the stopband attenuation R_{s}. Frequency values are in $\mathrm{rad} / \mathrm{s}$, and ripple and attenuation values are in $d B$.

	Lowpass	Highpass	Bandpass	Bandstop
Butterworth	Order, Ω_{p}	Order, Ω_{p}	Order, $\Omega_{\mathrm{p} 1}, \Omega_{\mathrm{p} 2}$	Order, $\Omega_{\mathrm{p} 1}, \Omega_{\mathrm{p} 2}$
Chebyshev Type I	Order, $\Omega_{\mathrm{p}}, R_{\mathrm{p}}$	Order, $\Omega_{\mathrm{p}}, R_{\mathrm{p}}$	Order, $\Omega_{\mathrm{p} 1}, \Omega_{\mathrm{p} 2}$, R_{p}	Order, $\Omega_{\mathrm{p} 1}, \Omega_{\mathrm{p} 2}$, R_{p}
Chebyshev Type II	Order, $\Omega_{\mathrm{s}}, R_{s}$	Order, $\Omega_{\mathrm{s}}, R_{s}$	Order, $\Omega_{\mathrm{s} 1}, \Omega_{\mathrm{s} 2}$, R_{s}	Order, $\Omega_{\mathrm{s} 1}, \Omega_{\mathrm{s} 2}$, R_{s}
Elliptic	Order, $, \Omega_{\mathrm{p}}, R_{p}$, R_{s}	Order, $\Omega_{\mathrm{p}}, R_{p}$, R_{s}	Order, $\Omega_{\mathrm{p} 1}, \Omega_{\mathrm{p} 2}$, R_{p}, R_{s}	Order, $\Omega_{\mathrm{p} 1}, \Omega_{\mathrm{p} 2}$, $R_{\mathrm{p}}, R_{\mathrm{s}}$

The analog filters are designed using the filter design commands in Signal Processing Toolbox ${ }^{\text {TM }}$ software's buttap, cheb1ap, cheb2ap, and ellipap functions, and are implemented in state-space form. Filters of order 8 or less are implemented in controller canonical form for improved efficiency.

Analog Filter Design

Dialog
 Box

The parameters displayed in the dialog box vary for different design/band combinations. Only some of the parameters listed below are visible in the dialog box at any one time.

Design method

The filter design method: Butterworth, Chebyshev type I, Chebyshev type II, or Elliptic. Tunable.

Filter type

The type of filter to design: Lowpass, Highpass, Bandpass, or Bandstop. Tunable.

Filter order

The order of the filter, for lowpass and highpass configurations. For bandpass and bandstop configurations, the order of the final filter is twice this value.

Passband edge frequency

The passband edge frequency, in rad/s, for the highpass and lowpass configurations of the Butterworth, Chebyshev type I, and elliptic designs. Tunable.

Lower passband edge frequency

The lower passband frequency, in rad/s, for the bandpass and bandstop configurations of the Butterworth, Chebyshev type I, and elliptic designs. Tunable.

Upper passband edge frequency

The upper passband frequency, in rad/s, for the bandpass and bandstop configurations of the Butterworth, Chebyshev type I, or elliptic designs. Tunable.

Stopband edge frequency

The stopband edge frequency, in rad/s, for the highpass and lowpass band configurations of the Chebyshev type II design. Tunable.

Lower stopband edge frequency

The lower stopband edge frequency, in rad/s, for the bandpass and bandstop configurations of the Chebyshev type II design. Tunable.

Upper stopband edge frequency

The upper stopband edge frequency, in rad/s, for the bandpass and bandstop filter configurations of the Chebyshev type II design. Tunable.

Passband ripple in dB

The passband ripple, in dB, for the Chebyshev Type I and elliptic designs. Tunable.

Stopband attenuation in dB

The stopband attenuation, in dB , for the Chebyshev Type II and elliptic designs. Tunable.

References Antoniou, A. Digital Filters: Analysis, Design, and Applications. 2nd ed. New York, NY: McGraw-Hill, 1993.

Analog Filter Design

Supporfed • Double-precision floating point
Data
Types

See Also
Digital Filter Design Signal Processing Blockset
buttap Signal Processing Toolbox
cheb1ap Signal Processing Toolbox
cheb2ap Signal Processing Toolbox
ellipap Signal Processing Toolbox
See the following sections for related information:

- "Filters"
- "Analog Filter Design Block"

Analytic Signal

Purpose
 Library
 Description

Compute analytic signals of discrete-time inputs
Transforms
dspxfrm3

The Analytic Signal block computes the complex analytic signal corresponding to each channel of the real M-by- N input, u

$$
y=u+j H\{u\}
$$

where $j=\sqrt{-1}$ and $H\}$ denotes the Hilbert transform. The real part of the output in each channel is a replica of the real input in that channel; the imaginary part is the Hilbert transform of the input. In the frequency domain, the analytic signal retains the positive frequency content of the original signal while zeroing-out negative frequencies and doubling the DC component.

The block computes the Hilbert transform using an equiripple FIR filter with the order specified by the Filter order parameter, n. The linear phase filter is designed using the Remez exchange algorithm, and imposes a delay of $n / 2$ on the input samples.
The output has the same dimension and frame status as the input.

Sample-Based Operation

When the input is sample based, each of the $M^{*} N$ matrix elements represents an independent channel. Thus, the block computes the analytic signal for each channel (matrix element) over time.

Frame-Based Operation

When the input is frame based, each of the N columns in the matrix contains M sequential time samples from an independent channel, and the block computes the analytic signal for each channel over time.

Analytic Signal

Dialog
Box

Filter order

The length of the FIR filter used to compute the Hilbert transform.

Supported
Data
Types

- Double-precision floating point
- Single-precision floating point

Arbitrary Response Filter

Purpose	Design arbitrary response filter
Library	Filtering / Filter Design Toolbox dspfdesign

Description This block brings the functionality of the Filter Design Toolbox ${ }^{\text {TM }}$
 filterbuilder function to the Simulink ${ }^{\circledR}$ environment. You must have a Filter Design Toolbox product license to design filters with this block. However, you can run models containing this block without a license. This allows you to run a model sent to you by a colleague who has designed a filter using this block, even if you do not have the Filter Design Toolbox product.

Dialog Box

See "Arbitrary Response Design Dialog Box - Main Pane" in the Filter Design Toolbox documentation for more information about the parameters of this block. The Data Types pane is not available for Filter Design Toolbox blocks in the Signal Processing Blockset ${ }^{\mathrm{TM}}$ product.

Parameters of this block that do not change filter order or structure are tunable. Tunable parameters are enabled during simulation; nontunable parameters are not.

Supported Data Types

Port	Supported Data Types
Input	• Double-precision floating point
	• Single-precision floating point
	• Fixed point
	• $8-, 16$-, and 32 -bit signed integers
	• $8-, 16-$-, and 32 -bit unsigned integers
Output	• Double-precision floating point
	• Single-precision floating point

Arbitrary Response Filter

Port \quad Supported Data Types

$+$

- Fixed point
- 8 -, 16 -, and 32 -bit signed integers
- 8-, 16-, and 32 -bit unsigned integers

Array-Vector Add

Purpose

Add vector to array along specified dimension

Library

Description
Math Functions / Matrices and Linear Algebra / Matrix Operations dspmtrx3

The Array-Vector Add block adds the values in the specified dimension
of the N -dimensional input array A to the values in the input vector V.
The length of the input V must be the same as the length of the specified dimension of A. The Array-Vector Add block adds each element of V to the corresponding element along that dimension of A.

Consider a 3 -dimensional M-by- N-by- P input array $A(i, j, k)$ and a P-by- 1 input vector V. When the Add along dimension parameter is set to 2, the output of the block $Y(i, j, k)$ is

$$
Y(i, j, k)=A(i, j, k)+V(j)
$$

where

$$
\begin{aligned}
& 1 \leq i \leq M \\
& 1 \leq j \leq N \\
& 1 \leq k \leq P
\end{aligned}
$$

The output of the Array-Vector Add block is the same size as the input array, A. When both inputs are sample based, the output is sample based; otherwise, the output is frame based. This block accepts real and complex floating-point and fixed-point inputs.

Fixed-Point Data Types

The following diagram shows the data types used within the Array-Vector Add block for fixed-point signals.

Array-Vector Add

When you specify the vector V on the Main pane of the block mask, you must specify the data type and scaling properties of its elements in the Vector (V) parameter on the Data type attributes tab. When the vector comes in through the block port, its elements inherit their data type and scaling from the driving block.

You can set the vector, accumulator, and output data types in the block dialog as discussed below.

Dialog Box

The Main pane of the Array-Vector Add block dialog appears as follows.

Array-Vector Add

Function Block Parameters: Array-Vector Add
Array-Vector Add
Add the input array A to the elements of vector V along the specified dimension. Note that unoriented input signals are treated as oriented column vectors. The output of this block is always oriented.

When you specify the vector V on the block dialog and the fixed-point data type mode is set to "Specify word length," the fixed-point scaling is automatically set for you. In these cases, the scaling is set to the best possible precision given the real-world values and word length of V. This is equivalent to the "Best Precision: Matrix-wise" scaling option used in some fixed-point Simulink blocks.

Main \mid Data type attributes
-Parameters

Add along dimension:
Vector (V) source: Input port

Add along dimension

Specify the dimension along which to add the input array A to the elements of vector V.

Array-Vector Add

Vector (V) source

Specify the source of the vector, V. The vector can come from the Input port or from a Dialog parameter.

Vector (V)

Specify the vector, V. This parameter is visible only when you select Dialog parameter for the Vector (V) source parameter.

The Data type attributes pane of the Array-Vector Add block dialog appears as follows.

Array-Vector Add

Function Block Parameters: Array-Vector Add
Array-Vector Add
Add the input array A to the elements of vector V along the specified dimension. Note that unoriented input signals are treated as oriented column vectors. The output of this block is always oriented.

When you specify the vector V on the block dialog and the fixed-point data type mode is set to "Specify word length," the fixed-point scaling is automatically set for you. In these cases, the scaling is set to the best possible precision given the real-world values and word length of V. This is equivalent to the "Best Precision: Matrix-wise" scaling option used in some fixed-point Simulink blocks.

Main Data type attributes
Fixed-point operational parameters
Rounding mode: Floor Overflow mode: Wrap

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the block input is floating point, all block data types match the input. In addition, fixed-point accumulator attributes only apply when fixed-point block inputs are complex.

	Data Type	Assistant	Minimum	Maximum
Accumulator:	Inherit: Inherit via internal rule	>>		
Output:	Inherit: Same as accumulator	>>	\square	[

T Lock scaling against changes by the autoscaling tool

Note Floating-point inheritance takes precedence over the data type settings defined on this pane. When inputs are floating point, the block ignores these settings, and all internal data types are floating point.

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Vector (V)

Use this parameter to specify the word and fraction lengths for the elements of the vector, V. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Same word length as input
- An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button $\quad \ggg$ to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Note The Vector (V) parameter on the Data type attributes pane is only visible when you select Dialog parameter for the Vector (V) source parameter on the Main pane of the block mask. When the vector comes in through the block's input port, the data type and scaling of its elements are inherited from the driving block.

Accumulator data type

Specify the accumulator data type. See "Fixed-Point Data Types" on page 2-11 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule

Array-Vector Add

- An expression that evaluates to a valid data type, for example, fixdt(1, 16, 0)

Click the Show data type assistant button $\quad \gg \quad$ to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Output data type

Specify the output data type. See "Fixed-Point Data Types" on page 2-11 for illustrations depicting the use of the output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as accumulator
- An expression that evaluates to a valid data type, for example, fixdt(1, 16, 0)

Click the Show data type assistant button $\quad \gg \quad$ to display the Data Type Assistant, which helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in Simulink User's Guide for more information.

Minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to - Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Array-Vector Add

Maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

Supported Data Types

Port	Supported Data Types
A	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16-, and 32 -bit signed integers
V	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16-, and 32 -bit signed integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16 -, and 32 -bit signed integers

Array-Vector Divide Signal Processing Blockset
Array-Vector
Multiply
Array-Vector
Subtract
Signal Processing Blockset

Array-Vector Divide

Description

Array-Vector Divide

Purpose Divide array by vector along specified dimension
 Library
 Math Functions / Matrices and Linear Algebra / Matrix Operations dspmtrx3

The Array-Vector Divide block divides the values in the specified dimension of the N -dimensional input array A by the values in the input vector V.

The length of the input V must be the same as the length of the specified dimension of A. The Array-Vector Divide block divides each element of V by the corresponding element along that dimension of A.

Consider a 3 -dimensional M-by- N-by- P input array $A(i, j, k)$ and a P-by- 1 input vector V. When the Divide along dimension parameter is set to 2 , the output of the block $Y(i, j, k)$ is

$$
Y(i, j, k)=\frac{A(i, j, k)}{V(j)}
$$

where

$$
\begin{aligned}
& 1 \leq i \leq M \\
& 1 \leq j \leq N \\
& 1 \leq k \leq P
\end{aligned}
$$

The output of the Array-Vector Divide block is the same size as the input array, A. When both inputs are sample based, the output is sample based; otherwise, the output is frame based. This block accepts real and complex floating-point and fixed-point input arrays, and real floating-point and fixed-point input vectors.

Fixed-Point Data Types

The following diagram shows the data types used within the Array-Vector Divide block for fixed-point signals.

Array-Vector Divide

When you specify the vector V on the Main pane of the block mask, you must specify the data type and scaling properties of its elements in the Vector (V) parameter on the Data type attributes tab. When the vector comes in through the block port, its elements inherit their data type and scaling from the driving block.

You can set the vector and output data types in the block dialog as discussed below.

Dialog Box

The Main pane of the Array-Vector Divide block dialog appears as follows.

Array-Vector Divide

Function Block Parameters: Array-Vector Divide
Array-Vector Divide
Divide the input array A by the elements of vector V along the specified dimension. In the two-dimensional case, this is equivalent to dividing a full matrix (A) by a diagonal (\mathbb{V}). Note that unoriented input signals are treated as oriented column vectors. The output of this block is always oriented.

When you specify the vector V on the block dialog and the fixed-point data type mode is set to "Specify word length," the fixed-point scaling is automatically set for you. In these cases, the scaling is set to the best possible precision given the real-world values and word length of V . This is equivalent to the "Best Precision: Matrix-wise" scaling option used in some fixed-point Simulink blocks.

Main Data type attributes
Parameters
Divide along dimension: 1
Vector (V) source: Input port

Divide along dimension

Specify the dimension along which to divide the input array A by the elements of vector V.

Vector (V) source

Specify the source of the vector, V. The vector can come from the Input port or from a Dialog parameter.

Array-Vector Divide

Vector (V)

Specify the vector, V. This parameter is visible only when you select Dialog parameter for the Vector (V) source parameter.

The Data type attributes pane of the Array-Vector Divide block dialog appears as follows.

I Function Block Parameters: Array-Vector Divide
-Array-Vector Divide
Divide the input array A by the elements of vector V along the specified dimension. In the two-dimensional case, this is equivalent to dividing a full matrix (A) by a diagonal (V). Note that unoriented input signals are treated as oriented column vectors. The output of this block is always oriented.

When you specify the vector V on the block dialog and the fixed-point data type mode is set to "Specify word length," the fixed-point scaling is automatically set for you. In these cases, the scaling is set to the best possible precision given the real-world values and word length of V. This is equivalent to the "Best Precision: Matrix-wise" scaling option used in some fixed-point Simulink blocks.

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the block input is floating point, all block data types match the input. In addition, fixed-point accumulator attributes only apply when fixed-point block inputs are complex.

Lock scaling against changes by the autoscaling tool

Note Floating-point inheritance takes precedence over the data type settings defined on this pane. When inputs are floating point, the block ignores these settings, and all internal data types are floating point.

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Vector (V)

Use this parameter to specify the word and fraction lengths for the elements of the vector, V. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Same word length as input
- An expression that evaluates to a valid data type, for example, fixdt(1, 16,0)

Click the Show data type assistant button $\quad \ggg$ to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Note The Vector (V) parameter on the Data type attributes pane is only visible when you select Dialog parameter for the Vector (V) source parameter on the Main pane of the block mask. When the vector comes in through the block's input port, the data type and scaling of its elements are inherited from the driving block.

Array-Vector Divide

Output data type

Specify the output data type. See "Fixed-Point Data Types" on page 2-20 for illustrations depicting the use of the output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as first input
- An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button $\quad \gg$ to display the Data Type Assistant, which helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in Simulink User's Guide for more information.

Minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

Array-Vector Divide

Supported Data Types

Port	Supported Data Types
A	• Double-precision floating point
	• Single-precision floating point
	• Fixed point (signed only)
	• 8-, 16-, and 32-bit signed integers
V	• Double-precision floating point
	• Single-precision floating point
	• Fixed point (signed only)
	• 8-, 16-, and 32-bit signed integers
Output	• Double-precision floating point
	• Single-precision floating point
	• Fixed point (signed only)
	• 8-, 16-, and 32-bit signed integers

See Also

Array-Vector Add	Signal Processing Blockset
Array-Vector	Signal Processing Blockset
Multiply	
Array-Vector Signal Processing Blockset Subtract	

Purpose

Multiply array by vector along specified dimension

Library

Description

${ }^{\text {A Array-Vector }}$
Multiply
Math Functions / Matrices and Linear Algebra / Matrix Operations dspmtrx3

The Array-Vector Multiply block multiplies the values in the specified dimension of the N -dimensional input array A by the values in the input vector V.

The length of the input V must be the same as the length of the specified
dimension of A. The Array-Vector Multiply block multiplies each element of V by the corresponding element along that dimension of A.

Consider a 3 -dimensional M-by- N-by- P input array $A(i, j, k)$ and a P-by- 1 input vector V. When the Multiply along dimension parameter is set to 2 , the output of the block $Y(i, j, k)$ is

$$
Y(i, j, k)=A(i, j, k) * V(j)
$$

where

$$
1 \leq i \leq M
$$

$$
1 \leq j \leq N
$$

$$
1 \leq k \leq P
$$

The output of the Array-Vector Multiply block is the same size as the input array, A. When both inputs are sample based, the output is sample based; otherwise, the output is frame based. This block accepts real and complex floating-point and fixed-point inputs.

Fixed-Point Data Types

The following diagram shows the data types used within the Array-Vector Multiply block for fixed-point signals.

Array-Vector Multiply

When you specify the vector V on the Main pane of the block mask, you must specify the data type and scaling properties of its elements in the Vector (V) parameter on the Data type attributes tab. When the vector comes in through the block port, its elements inherit their data type and scaling from the driving block.

The output of the multiplier is in the product output data type when at least one of the inputs to the multiplier is real. When both of the inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, see "Multiplication Data Types".
You can set the vector, accumulator, product output, and output data types in the block dialog as discussed below.

The Main pane of the Array-Vector Multiply block dialog appears as follows.

Array-Vector Multiply

Function Block Parameters: Array-Vector Multiply
Array-Vector Multiply
Multiply the input array A by the elements of vector V along the specified dimension. In the two-dimensional case, this is equivalent to multiplying a full matrix (A) by a diagonal $(\mathrm{V}$). Note that unoriented input signals are treated as oriented column vectors. The output of this block is always oriented.

When you specify the vector V on the block dialog and the fixed-point data type mode is set to "Specify word length," the fixed-point scaling is automatically set for you. In these cases, the scaling is set to the best possible precision given the real-world values and word length of V. This is equivalent to the "Best Precision: Matrix-wise" scaling option used in some fixed-point Simulink blocks.

Main Data type attributes
Parameters
Multiply along dimension: 2
Vector (V) source: Input port

Multiply along dimension

Specify the dimension along which to multiply the input array A by the elements of vector V.

Array-Vector Multiply

Vector (V) source

Specify the source of the vector, V. The vector can come from the Input port or from a Dialog parameter.

Vector (V)

Specify the vector, V. This parameter is visible only when you select Dialog parameter for the Vector (V) source parameter.

The Data type attributes pane of the Array-Vector Multiply block dialog appears as follows.

Array-Vector Multiply

Function Block Parameters: Array-Vector Multiply
Array-Vector Multiply
Multiply the input array A by the elements of vector V along the specified dimension. In the two-dimensional case, this is equivalent to multiplying a full matrix (A) by a diagonal $(\mathrm{V}$). Note that unoriented input signals are treated as oriented column vectors. The output of this block is always oriented.

When you specify the vector V on the block dialog and the fixed-point data type mode is set to "Specify word length," the fixed-point scaling is automatically set for you. In these cases, the scaling is set to the best possible precision given the real-world values and word length of V. This is equivalent to the "Best Precision: Matrix-wise" scaling option used in some fixed-point Simulink blocks.

Main Data type attributes

Fixed-point operational parameters
Rounding mode: Floor
Overflow mode: Wrap

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the block input is floating point, all block data types match the input. In addition, fixed-point accumulator attributes only apply when fixed-point block inputs are complex.

	Data Type	Assistant	Minimum	Maximum
Product output:	Inherit: Inherit via internal rule	>>		
Accumulator:	Inherit: Inherit via internal rule	>>		
Output:	Inherit: Same as product output	>>	[[

T Lock scaling against changes by the autoscaling tool

| OK Apply |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Array-Vector Multiply

Note Floating-point inheritance takes precedence over the data type settings defined on this pane. When inputs are floating point, the block ignores these settings, and all internal data types are floating point.

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Vector (V)

Use this parameter to specify the word and fraction lengths for the elements of the vector, V. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Same word length as input
- An expression that evaluates to a valid data type, for example, fixdt(1, 16,0)

Click the Show data type assistant button $\quad \gg$ to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Note The Vector (V) parameter on the Data type attributes pane is only visible when you select Dialog parameter for the Vector (V) source parameter on the Main pane of the block mask. When the vector comes in through the block's input port, the data type and scaling of its elements are inherited from the driving block.

Array-Vector Multiply

Product output data type

Specify the product output data type. See "Fixed-Point Data Types" on page 2-27 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt(1, 16,0)

Click the Show data type assistant button $\quad \gg \quad$ to display the Data Type Assistant, which helps you set the Product output data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Accumulator data type

Specify the accumulator data type. See "Fixed-Point Data Types" on page 2-27 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt(1, 16, 0)

Click the Show data type assistant button $\quad \gg \quad$ to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Array-Vector Multiply

Output data type

Specify the output data type. See "Fixed-Point Data Types" on page 2-27 for illustrations depicting the use of the output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as product output
- An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button $\quad \ggg$ to display the Data Type Assistant, which helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in Simulink User's Guide for more information.

Minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to - Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

Array-Vector Multiply

Supported Data Types

Port	Supported Data Types
A	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16-, and 32 -bit signed integers
V	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16-, and 32 -bit signed integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16-, and 32 -bit signed integers

See Also

Array-Vector Add Signal Processing Blockset
Array-Vector Divide
Array-Vector
Subtract
Signal Processing Blockset
Signal Processing Blockset

Array-Vector Subtract

Purpose

Library

Description

A Array-Vector Subtract

Subtract vector from array along specified dimension

Math Functions / Matrices and Linear Algebra / Matrix Operations dspmtrx3

The Array-Vector Subtract block subtracts the values in the input vector V from the values in the specified dimension of the N -dimensional input array A.

The length of the input V must be the same as the length of the specified dimension of A. The Array-Vector Subtract block subtracts each element of V from the corresponding element along that dimension of A.

Consider a 3 -dimensional M-by- N-by- P input array $A(i, j, k)$ and a P-by- 1 input vector V. When the Subtract along dimension parameter is set to 2 , the output of the block $Y(i, j, k)$ is

$$
Y(i, j, k)=A(i, j, k)-V(j)
$$

where

$$
\begin{aligned}
& 1 \leq i \leq M \\
& 1 \leq j \leq N \\
& 1 \leq k \leq P
\end{aligned}
$$

The output of the Array-Vector Subtract block is the same size as the input array, A. When both inputs are sample based, the output is sample based; otherwise, the output is frame based. This block accepts real and complex floating-point and fixed-point inputs.

Fixed-Point Data Types

The following diagram shows the data types used within the Array-Vector Subtract block for fixed-point signals.

When you specify the vector V on the Main pane of the block mask, you must specify the data type and scaling properties of its elements in the Vector (V) parameter on the Data type attributes tab. When the vector comes in through the block port, its elements inherit their data type and scaling from the driving block.

The output of the subtractor is in the accumulator data type.
You can set the vector, accumulator, and output data types in the block dialog as discussed below.

The Main pane of the Array-Vector Subtract block dialog appears as follows.

Array-Vector Subtract

Function Block Parameters: Array-Vector Subtract
Array-Vector Subtract
Subtract the elements of vector V from input array A along the specified dimension. Note that unoriented input signals are treated as oriented column vectors. The output of this block is always oriented.

When you specify the vector V on the block dialog and the fixed-point data type mode is set to "Specify word length," the fixed-point scaling is automatically set for you. In these cases, the scaling is set to the best possible precision given the real-world values and word length of V . This is equivalent to the "Best Precision: Matrix-wise" scaling option used in some fixed-point Simulink blocks.

Main | Data type attributes
Parameters
Subtract along dimension: 1
Vector (V) source: Input port

Subtract along dimension

Specify the dimension along which to subtract the elements of vector V from the input array A.

Vector (V) source
Specify the source of the vector, V. The vector can come from the Input port or from a Dialog parameter.

Vector (V)

Specify the vector, V. This parameter is visible only when you select Dialog parameter for the Vector (V) source parameter.

The Data type attributes pane of the Array-Vector Subtract block dialog appears as follows.

Array-Vector Subtract

Function Block Parameters: Array-Vector Subtract
Array-Vector Subtract
Subtract the elements of vector V from input array A along the specified dimension. Note that unoriented input signals are treated as oriented column vectors. The output of this block is always oriented.

When you specify the vector V on the block dialog and the fixed-point data type mode is set to "Specify word length," the fixed-point scaling is automatically set for you. In these cases, the scaling is set to the best possible precision given the real-world values and word length of V . This is equivalent to the "Best Precision: Matrix-wise" scaling option used in some fixed-point Simulink blocks.

Main Data type attributes
Fixed-point operational parameters
Rounding mode: Floor Overflow mode: Wrap

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the block input is floating point, all block data types match the input. In addition, fixed-point accumulator attributes only apply when fixed-point block inputs are complex.

| OK Cancel |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Note Floating-point inheritance takes precedence over the data type settings defined on this pane. When inputs are floating point, the block ignores these settings, and all internal data types are floating point.

Array-Vector Subtract

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Vector (V)

Use this parameter to specify the word and fraction lengths for the elements of the vector, V. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Same word length as input
- An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button $\quad \gg$ to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Note The Vector (V) parameter on the Data type attributes pane is only visible when you select Dialog parameter for the Vector (V) source parameter on the Main pane of the block mask. When the vector comes in through the block's input port, the data type and scaling of its elements are inherited from the driving block.

Accumulator data type

Specify the accumulator data type. See "Fixed-Point Data Types" on page 2-36 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button $\quad \gg$ to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Output data type

Specify the output data type. See "Fixed-Point Data Types" on page 2-36 for illustrations depicting the use of the output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as accumulator
- An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button \ggg to display the Data Type Assistant, which helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in Simulink User's Guide for more information.

Minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to - Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Array-Vector Subtract

Maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

Supported Data Types

Port	Supported Data Types
A	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8-, 16-, and 32 -bit signed integers
V	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16-, and 32 -bit signed integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16 -, and 32 -bit signed integers

Array-Vector Subtract

See Also

Array-Vector Add Signal Processing Blockset
Array-Vector Divide Signal Processing Blockset
Array-Vector Signal Processing Blockset
Multiply

Autocorrelation

Purpose
 Library
 Description

Compute autocorrelation of vector or matrix input

Statistics
dspstat3

The Autocorrelation block computes the autocorrelation along each column of a frame-based input, and computes along the first dimension of an N-D sample-based input. The output of the block is always sample-based.

The Autocorrelation block accepts real and complex floating-point and fixed-point inputs except for complex unsigned fixed-point inputs. Fixed-point signals are not supported for the frequency domain.

Autocorrelation of Frame-Based Inputs

When the input to the Autocorrelation block is a frame-based M-by- N matrix u, the output, y, is a sample-based ($l+1$)-by- N matrix whose j th column has elements

$$
y_{i, j}=\sum_{k=0}^{M-1} u_{k, j}^{*} u_{(k+i), j} \quad 0 \leq i \leq l
$$

where * denotes the complex conjugate, and l represents the maximum lag. $y_{0, j}$ is the zero-lag element in the j th column. When you select Compute all non-negative lags, $l=M-1$. Otherwise, l is specified as a nonnegative integer by the Maximum non-negative lag (less than input length) parameter.

Input u is zero when indexed outside of its valid range. When the input is real, the output is real; otherwise, the output is complex.

Autocorrelation of Sample-Based Inputs

When the input is a sample-based N-D array, the block computes the autocorrelation along the first dimension of the input. The output is a sample based N-D array, where the size of the first dimension is $l+1$, and the sizes of all other dimensions match those of the input array. For

Autocorrelation

example, when the input is an M-by- N-by- P array, the Autocorrelation block outputs an $(l+1)$-by- N-by- P sample-based array.

When you select Compute all non-negative lags, $l=M-1$. Otherwise, l is specified as a nonnegative integer by the Maximum non-negative lag (less than input length) parameter.

Input u is zero when indexed outside of its valid range. When the input is real, the output is real; otherwise, the output is complex.

Fixed-Point Data Types

The following diagrams show the data types used within the Autocorrelation block for fixed-point signals (time domain only).

Signal flow when Scaling is "None"

Autocorrelation

Signal flow when Scaling is other than "None"

You can set the product output, accumulator, and output data types on the Data type attributes pane of the block dialog as discussed in the next section.

The output of the multiplier is in the product output data type when the input is real. When the input is complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, see "Multiplication Data Types".

Dialog

 BoxThe Main pane of the Autocorrelation block dialog appears as follows.

Autocorrelation

Compute all non-negative lags

Select to compute the autocorrelation over all nonnegative lags in the range [0, length(input)-1].

Autocorrelation

Maximum non-negative lag (less than input length)

Specify the maximum positive lag, l, for the autocorrelation. This parameter is enabled when you do not select the Compute all non-negative lags check box.

Scaling

This parameter controls the scaling that is applied to the output. The following options are available:

- None - Generates the raw autocorrelation $y_{i, j}$ without normalization.
- Biased - Generates the biased estimate of the autocorrelation.

$$
y_{i, j}^{b i a s e d}=\frac{y_{i, j}}{M}
$$

- Unbiased - Generates the unbiased estimate of the autocorrelation.

$$
y_{i, j}^{u n b i a s e d}=\frac{y_{i, j}}{M-i}
$$

- Unity at zero-lag - Normalizes the estimate of the autocorrelation for each channel so that the zero-lag sum is identically 1.

$$
y_{0, j}=1
$$

This parameter is tunable, except in the Simulink external mode.

Computation domain

This parameter sets the domain in which the block computes convolutions to one of the following settings:

- Time - Computes in the time domain, which minimizes memory use

Autocorrelation

- Frequency - Computes in the frequency domain, which might require fewer computations than computing in the time domain, depending on the input length

Note This parameter must be set to Time for fixed-point signals.

The Data type attributes pane of the Autocorrelation block dialog appears as follows.

Autocorrelation

Function Block Parameters: Autocorrelation
Autocorrelation
Compute the autocorrelation along the first dimension of an N-D sample-based input or along each column of a framebased input.

When "Compute all non-negative lags" is selected, it computes using lags in the range [0, size(input, 1)-1]. Otherwise, it computes using lags in the range [0 , maxLag], where you specify the value of maxLag in the "Maximum non-negative lag" parameter.

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the block input is floating point, all block data types match the input.

Note Fixed-point signals are only supported for the time domain. To use the parameters on this pane, make sure Time is selected for the Computation domain parameter on the Main pane.

Autocorrelation

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Product output data type

Specify the product output data type. See "Fixed-Point Data Types" on page 2-46 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button $\quad \ggg$ to display the Data Type Assistant, which helps you set the Product output data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Accumulator data type

Specify the accumulator data type. See "Fixed-Point Data Types" on page 2-46 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button $\quad \gg$ to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Output data type

Specify the output data type. See "Fixed-Point Data Types" on page 2-46 for illustrations depicting the use of the output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as accumulator
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button \ggg to
display the Data Type Assistant, which helps you set the
Output data type parameter.
See "Specifying Block Output Data Types" in Simulink User's Guide for more information.

Minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to - Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Autocorrelation

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

Supported Data Types

Port	Supported Data Types
Input	• Double-precision floating point
	• Single-precision floating point
	• Fixed point (signed and unsigned)
	• 8-, 16-, and 32 -bit signed integers
	• 8-, 16-, and 32-bit unsigned integers
Output	• Double-precision floating point
	• Single-precision floating point
	- Fixed point (signed and unsigned)
	• 8-, 16-, and 32 -bit signed integers
	• 8-, 16-, and 32 -bit unsigned integers

See Also

Correlation	Signal Processing Blockset
xcorr	Signal Processing Toolbox

Determine coefficients of Nth-order forward linear predictors

Estimation / Linear Prediction

dsplp

The Autocorrelation LPC block determines the coefficients of an N-step forward linear predictor for the time-series in each length- M input channel, u, by minimizing the prediction error in the least squares sense. A linear predictor is an FIR filter that predicts the next value in a sequence from the present and past inputs. This technique has applications in filter design, speech coding, spectral analysis, and system identification.
The Autocorrelation LPC block can output the prediction error for each channel as polynomial coefficients, reflection coefficients, or both. It can also output the prediction error power for each channel. The input u can be a scalar, 1-D vector, frame- or sample-based column vector, a sample-based row vector, or a channel-based matrix. Frame-based row vectors are not valid inputs. Frame-based matrices of size M-by- N are treated as N channels of length M.
When you select Inherit prediction order from input dimensions, the prediction order, N, is inherited from the input dimensions. Otherwise, you can use the Prediction order parameter to specify the value of N. Note that N must be a scalar with a value less than the length of the input channels or the block produces an error.

When Output(s) is set to A, port A is enabled. For each channel, port A outputs an (N+1)-by-1 column vector, $a=\left[\begin{array}{llll}1 & a_{2} & a_{3} & \ldots \\ a_{N+1}\end{array}\right]^{\mathrm{T}}$, containing the coefficients of an Nth-order moving average (MA) linear process that predicts the next value, \hat{u}_{M+1}, in the input time-series.

$$
\hat{u}_{M+1}=-\left(a_{2} u_{M}\right)-\left(a_{3} u_{M-1}\right)-\ldots-\left(a_{N+1} u_{M-N+1}\right)
$$

When Output(s) is set to K, port K is enabled. For each channel, port K outputs a length- N column vector whose elements are the prediction error reflection coefficients. When Output(s) is set to A and K, both

Autocorrelation LPC

port A and K are enabled, and each port outputs its respective set of prediction coefficients for each channel.
When you select Output prediction error power (P), port P is enabled. The prediction error power is output at port P as a vector whose length is the number of input channels.

Algorithm

The Autocorrelation LPC block computes the least squares solution to

$$
\min _{i \in \mathfrak{R}^{n}}\|U \tilde{a}-b\|
$$

where $|||\mid$ indicates the 2 -norm and

$$
U=\left[\begin{array}{cccc}
u_{1} & 0 & \cdots & 0 \\
u_{2} & u_{1} & \ddots & \vdots \\
\vdots & u_{2} & \ddots & 0 \\
\vdots & \vdots & \ddots & u_{1} \\
\vdots & \vdots & \vdots & u_{2} \\
\vdots & \vdots & \vdots & \vdots \\
u_{M} & \vdots & \vdots & \vdots \\
0 & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & u_{M}
\end{array}\right], \tilde{a}=\left[\begin{array}{c}
a_{2} \\
\vdots \\
a_{n}+1
\end{array}\right], b=\left[\begin{array}{c}
u_{2} \\
u_{3} \\
\vdots \\
u_{M} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Solving the least squares problem via the normal equations

$$
U^{*} U \tilde{a}=U^{*} b
$$

leads to the system of equations

Autocorrelation LPC

$$
\left[\begin{array}{cccc}
r_{1} & r_{2}^{*} & \cdots & r_{n}^{*} \\
r_{2} & r_{1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & r_{2}^{*} \\
r_{n} & \cdots & r_{2} & r_{1}
\end{array}\right]\left[\begin{array}{c}
a_{2} \\
a_{3} \\
\vdots \\
a_{n+1}
\end{array}\right]=\left[\begin{array}{c}
-r_{2} \\
-r_{3} \\
\vdots \\
-r_{n+1}
\end{array}\right]
$$

where $r=\left[\begin{array}{llll}r_{1} & r_{2} & r_{3} & \ldots\end{array} r_{n+1}\right]^{T}$ is an autocorrelation estimate for u computed using the Autocorrelation block, and * indicates the complex conjugate transpose. The normal equations are solved in $O\left(n^{2}\right)$ operations by the Levinson-Durbin block.

Note that the solution to the LPC problem is very closely related to the Yule-Walker AR method of spectral estimation. In that context, the normal equations above are referred to as the Yule-Walker AR equations.

Dialog Box

Block Parameters: Autocorrelation LPC			区
Autocorrelation LPC (mask) (link)			
Output the coefficients of an Nth order forward linear predictor such that the sum of the squares of the errors is minimized (using the autocorrelation LPC method). The prediction coefficients are given in A [polynomial coefficients) and/or K (reflection coefficients). The prediction error power is given in the optional P output.			
-Parameters			
Output(s): A			
\square Output prediction error power (P)			
\square Inherit prediction order from input dimensions			
Prediction order (N):			
1			
OK Cancel	Help	Apply	

Autocorrelation LPC

Output(s)

The type of prediction coefficients output by the block. The block can output polynomial coefficients (A), reflection coefficients (K), or both (A and K).

Output prediction error power (P)

When selected, enables port P, which outputs the output prediction error power.

Inherit prediction order from input dimensions
When selected, the block inherits the prediction order from the input dimensions.

Prediction order (N)

Specify the prediction order, N, which must be a scalar. This parameter is disabled when you select the Inherit prediction order from input dimensions parameter.

References	Haykin, S. Adaptive Filter Theory. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.
	Ljung, L. System Identification: Theory for the User. Englewood Cliffs,
	NJ: Prentice Hall, 1987. Pgs. 278-280.
	Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.
Supported Data	- Double-precision floating point
Types	- Single-precision floating point
See Also	
	Autocorrelation

Backward Substitution

Purpose
 Library
 Description

Solve $U X=B$ for X when U is upper triangular matrix

Math Functions / Matrices and Linear Algebra / Linear System Solvers dspsolvers

The Backward Substitution block solves the linear system $U X=B$ by simple backward substitution of variables, where:

- U is the upper triangular M-by- M matrix input to the U port.
- B is the M-by- N matrix input to the B port.

The sample-based output is the M-by- N matrix X that is the solution of the equations. The block does not check the rank of the inputs.

The block uses only the elements in the upper triangle of input U and ignores the lower elements. When you select the Input U is unit-upper triangular check box, the block replaces the elements on the diagonal of U with 1 s . This is useful when matrix U is the result of another operation, such as an LDL decomposition, that uses the diagonal elements to represent the D matrix.

The block treats a length- M vector input at port B as an M-by- 1 matrix.

Fixed-Point Data Types

The following diagram shows the data types used within the Backward Substitution block for fixed-point signals.

Backward Substitution

When input \mathbf{U} is not unit-upper triangular:

Backward Substitution

When input \mathbf{U} is unit-upper triangular:

You can set the product output, accumulator, and output data types in the block dialog as discussed in the following section.

The output of the multiplier is in the product output data type when the input is real. When the input is complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, see "Multiplication Data Types".

Dialog Box

The Main pane of the Backward Substitution block dialog box appears as follows.

Backward Substitution

Input U is unit-upper triangular
Select to replace the elements on the diagonal of U with 1 s .
Diagonal of complex input U is real
Select to optimize simulation speed when the diagonal elements of complex input U are real. This parameter is only visible when Input \mathbf{U} is unit-upper triangular is not selected.

Backward Substitution

> Note When U is a complex fixed-point signal, you must select either Input U is unit-upper triangular or Diagonal of complex input \mathbf{U} is real. In such a case, any imaginary part of the diagonal of U is ignored.

The Data type attributes pane of the Backward Substitution block dialog appears as follows.

Backward Substitution

Note Floating-point inheritance takes precedence over the data type settings defined on this pane. When inputs are floating point, the block ignores these settings, and all internal data types are floating point.

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Product output data type

Specify the product output data type. See "Fixed-Point Data Types" on page 2-59 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button $\quad \gg$ to display the Data Type Assistant, which helps you set the Product output data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Accumulator data type

Specify the accumulator data type. See "Fixed-Point Data Types" on page 2-59 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule

Backward Substitution

- An expression that evaluates to a valid data type, for example, fixdt(1, 16, 0)

Click the Show data type assistant button $\quad \gg \quad$ to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Output data type

Specify the output data type. See "Fixed-Point Data Types" on page 2-59 for illustrations depicting the use of the output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as first input
- An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button $\quad \gg \quad$ to display the Data Type Assistant, which helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in Simulink User's Guide for more information.

Minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to - Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Backward Substitution

Maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

Supported Data Types

Port	Supported Data Types
U	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16-, and 32 -bit signed integers
B	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16 -, and 32 -bit signed integers
X	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16 -, and 32 -bit signed integers

See Also

$\begin{array}{ll}\text { Cholesky Solver } & \text { Signal Processing Blockset } \\ \text { Forward Substitution } & \text { Signal Processing Blockset }\end{array}$

LDL Solver	Signal Processing Blockset
Levinson-Durbin	Signal Processing Blockset
LU Solver	Signal Processing Blockset
QR Solver	Signal Processing Blockset

See "Linear System Solvers" for related information.

Bandpass Filter

Purpose	Design bandpass filter
Library	Filtering / Filter Design Toolbox
	dspfdesign

Description

This block brings the functionality of the Filter Design Toolbox filterbuilder function to the Simulink environment. You must have a Filter Design Toolbox product license to design filters with this block. However, you can run models containing this block without a license. This allows you to run a model sent to you by a colleague who has designed a filter using this block, even if you do not have the Filter Design Toolbox product.

Dialog Box

See "Bandpass Filter Design Dialog Box - Main Pane" in the Filter Design Toolbox documentation for more information about the parameters of this block. The Data Types pane is not available for Filter Design Toolbox blocks in the Signal Processing Blockset product.

Parameters of this block that do not change filter order or structure are tunable. Tunable parameters are enabled during simulation; nontunable parameters are not.

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point - 8 -, 16-, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point

Bandpass Filter

Port	Supported Data Types
	 $\bullet 8-, 16$-, and 32 -bit signed integers $\bullet 8-, 16$-, and 32 -bit unsigned integers

Bandstop Filter

Purpose	Design bandstop filter
Library	Filtering / Filter Design Toolbox
	dspfdesign

Description This block brings the functionality of the Filter Design Toolbox filterbuilder function to the Simulink environment. You must have a Filter Design Toolbox product license to design filters with this block. However, you can run models containing this block without a license. This allows you to run a model sent to you by a colleague who has designed a filter using this block, even if you do not have the Filter Design Toolbox product.

Dialog Box

See "Bandstop Filter Design Dialog Box - Main Pane" in the Filter Design Toolbox documentation for more information about the parameters of this block. The Data Types pane is not available for Filter Design Toolbox blocks in the Signal Processing Blockset product.

Parameters of this block that do not change filter order or structure are tunable. Tunable parameters are enabled during simulation; nontunable parameters are not.

Supported Data Types

Port	Supported Data Types
Input	• Double-precision floating point
	- Single-precision floating point
	• Fixed point
	• 8-, 16-, and 32-bit signed integers
	• 8-, 16-, and 32-bit unsigned integers
Output	• Double-precision floating point
	• Single-precision floating point
	• Fixed point

Bandstop Filter

Port Supported Data Types

- 8 -, 16 -, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

Biquad Filter

Purpose Model biquadratic IIR (SOS) filters
Library Filtering / Filter Designs
dsparch4

Description The Biquad Filter block independently filters each channel of the input

 signal with the specified biquadratic IIR filter. The block implements static filters with fixed coefficients that you can tune during simulation.This block filters each channel of the input signal independently over time, treating each element of the input as an individual channel. The output dimensions always equal those of the input signal. The outputs of this block numerically match the outputs of the Signal Processing Toolbox dfilt function.

The Biquad Filter block supports the Simulink state logging feature. See "States" in the Simulink User's Guide for more information. The Digital Filter block also has direct feedthrough. Therefore, if you connect the output of this block back to its input, you get an algebraic loop. For more information on direct feedthrough and algebraic loops, see "Algebraic Loops" in the Simulink documentation.

Coefficient Source and Filter Structures

The Biquad Filter block can operate in three different modes. Select the mode in the Coefficient source group box.

- If you select Dialog parameters, you enter information about the filter such as structure and coefficients in the block mask. In this mode, you can choose the following filter structures in the Filter structure parameter:
- Direct form I
- Direct form I transposed
- Direct form II
- Direct form II transposed
- If you select Input port(s), you enter information about the filter structure in the block mask using the Filter structure parameter, but the filter coefficients come into the block via input ports. The following additional ports appear on the block icon:
- Num - numerator coefficients
- Den - denominator coefficients
- g - scale values
- If you select Discrete-time filter object (DFILT), you specify the filter using a dfilt object from the Signal Processing Toolbox product or the Filter Design Toolbox product. This block supports the following dfilt structures:
- dfilt.df1sos
- dfilt.df1tsos
- dfilt.df2sos
- dfilt.df2tsos

Specifying the SOS Matrix and Scale Values

The SOS matrix (Mx6) is an M-by- 6 matrix, where M is the number of sections in the second-order section filter. Each row of the SOS matrix contains the numerator and denominator coefficients ($b_{i k}$ and $a_{i k}$) of the corresponding section in the filter.

$$
\left[\begin{array}{cccccc}
b_{01} & b_{11} & b_{21} & a_{01} & a_{11} & a_{21} \\
b_{02} & b_{12} & b_{22} & a_{02} & a_{12} & a_{22} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
b_{0 M} & b_{1 M} & b_{2 M} & a_{0 M} & a_{1 M} & a_{2 M}
\end{array}\right]
$$

You can use the ss2sos and tf2sos functions from Signal Processing Toolbox software to convert a state-space or transfer function description of your filter into the second-order section description used by this block.

Biquad Filter

The Scale values parameter specifies the scalar or vector of $M+1$ scale values to be used between SOS sections.

- If you enter a scalar, the value specifies the gain value before the first section of the second-order filter. The rest of the gain values default to 1 .
- If you enter a vector of $M+1$ values, each value specifies a separate section of the filter. For example, the first element is the first gain value, the second element is the second gain value, and so on.

Select the Optimize unity scale values check box to optimize your simulation when one or more scale values equal 1 . Selecting this option removes the unity gains so that the values are treated like Simulink lines or wires. In some fixed-point cases when there are unity scale values, selecting this parameter also omits certain casts. Refer to "Filter Structure Diagrams" on page 2-92 for more information.

Specifying Initial Conditions

The Biquad Filter block initializes the internal filter states to zero by default. You can optionally use the Initial conditions or Initial conditions on zeros side and Initial conditions on poles side parameters to specify nonzero initial states for the filter delays.
To determine the number of initial conditions you must specify and how to specify them, see the following table on valid initial conditions.

Valid Initial Conditions

Initial Condition	Description
Scalar	The block initializes all delay elements in the filter to the scalar value.
Vector or matrix (for applying different delay elements to each channel)	Each vector or matrix element specifies a unique initial condition for a corresponding delay element in a corresponding channel. Where M is the number of sections and N is the number of input channels:
	- The vector length must equal the number of delay elements in the filter, max (\#_of_zeros, \#_of_poles) -1, or $M^{*} 2$.
- The matrix must have the same number of rows as the	
number of delay elements in the filter, max (\#_of_zeros,	
\#_of_poles) -1, or $\left(M^{*} 2\right)^{*} N$. The matrix must also have one	
column for each channel of the input signal.	

Fixed-Point Data Types

See "Filter Structure Diagrams" on page 2-92. The following constraints apply when you process a fixed-point signal with any of the filter structures supported by this block:

- Inputs and coefficients can be real or complex.
- Numerator and denominator coefficients can be real or complex.
- Specify the coefficients by a M-by- 6 matrix in the block mask.
- States are complex when either the inputs or the coefficients are complex.
- Scale values must be real.
- The scale value parameter must be a scalar or a vector of length $M+1$, where M is the number of sections.
- The Section input and Section output parameters determine the data type for the section input and output data types.

Biquad Filter

Examples Open an example model by typing doc_biquad_filter_ref at the MATLAB command line.

Dialog

Box

Coefficient Source

The Biquad Filter block can operate in three different modes. Select the mode in the Coefficient source group box.

- If you select Dialog parameters, you enter information about the filter such as structure and coefficients in the block mask. In this mode, you can choose the following filter structures in the Filter structure parameter:
- Direct form I
- Direct form I transposed
- Direct form II
- Direct form II transposed
- If you select Input port(s), you enter information about the filter structure in the block mask using the Filter structure parameter, but the filter coefficients come into the block via input ports. The following additional ports appear on the block icon:
- Num - numerator coefficients
- Den - denominator coefficients
- g - scale values
- If you select Discrete-time filter object (DFILT), you specify the filter using a dfilt object from the Signal Processing Toolbox product or the Filter Design Toolbox product. This block supports the following dfilt structures:
- dfilt.df1sos
- dfilt.df1tsos
- dfilt.df2sos
- dfilt.df2tsos

Biquad Filter

Specify Filter Characteristics in Dialog

The Main pane of the Biquad Filter block dialog appears as follows when Dialog parameters is selected in the Coefficient source group box.

Biquad Filter

Function Block Parameters: Biquad Filter
Biquad Filter
Implement a general IIR filter using biquad structures. Biquad implementations of general IIR filters are often preferred due to their desirable numeric properties.

You can specify filter coefficients using mask dialog parameters or discrete-time filter objects (dfilts) from the Signal Processing Toolbox.

> Coefficient source
> C Dialog parameters
> C Input port(s)
> C Discrete-time filter object (DFILT)

Main \mid Fixed-point
Parameters
Filter structure: Direct form II transposed
SOS Matrix (Mx6): [10.30.410.10.2]
Scale values: 1
Initial conditions: 0
Action when the a0 values of the SOS matrix are not one:
Warning
Optimize unity scale values

Filter structure

Select the filter structure.
This parameter is only visible when Dialog parameters or Input port(s) is selected.

SOS Matrix

Specify an M-by- 6 matrix, where M is the number of sections in the second-order section filter. Each row of the SOS matrix contains the numerator and denominator coefficients ($b_{i k}$ and $a_{i k}$) of the corresponding section in the filter.

$$
\left[\begin{array}{cccccc}
b_{01} & b_{11} & b_{21} & a_{01} & a_{11} & a_{21} \\
b_{02} & b_{12} & b_{22} & a_{02} & a_{12} & a_{22} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
b_{0 M} & b_{1 M} & b_{2 M} & a_{0 M} & a_{1 M} & a_{2 M}
\end{array}\right]
$$

You can use the ss2sos and tf2sos functions from Signal Processing Toolbox software to check whether your SOS matrix is valid.

This parameter is only visible when Dialog parameters is selected.

Scale values

The Scale values parameter specifies the scalar or vector of $M+1$ scale values to be used between SOS sections.

- When you enter a scalar, the value specifies the gain value before the first section of the second-order filter. The rest of the gain values default to 1 .
- When you enter a vector of $M+1$ values, each value specifies a separate section of the filter. For example, the first element is the first gain value, the second element is the second gain value, and so on.

Biquad Filter

This parameter is only visible when Dialog parameters is selected.

Initial conditions

Specify the initial conditions of the filter states. To learn how to specify initial conditions, see "Specifying Initial Conditions" on page 2-74.

This parameter is only visible when Dialog parameters or Input port(s) is selected and the filter structure is Direct form II or Direct form II transposed.

Initial conditions on zeros side

Specify the initial conditions for the filter states on the side of the filter structure with the zeros ($\left.b_{0}, b_{1}, b_{2}, \ldots\right)$; see the next diagram.

This parameter is only visible when Dialog parameters or Input port(s) is selected and the filter structure is Direct form I or Direct form I transposed. To learn how to specify initial conditions, see"Specifying Initial Conditions" on page 2-74.

Initial conditions on poles side

Specify the initial conditions for the filter states on the side of the filter structure with the poles ($a_{0}, a_{1}, a_{2}, \ldots$); see the next diagram.

This parameter is only visible when Dialog parameters or Input port(s) is selected and the filter structure is Direct form I or Direct form I transposed. To learn how to specify initial conditions, see "Specifying Initial Conditions" on page 2-74.

Action when the a 0 values of the SOS matrix are not one
Specify the action the block should perform when the SOS matrix $a_{0 j}$ values do not equal one; None, Error, or Warn.

This parameter is only visible when Dialog parameters is selected.

Optimize unity scale values

Select this check box to optimize your simulation when one or more scale values equal 1 . Selecting this option removes the unity gains so that the values are treated like Simulink lines or wires. In some fixed-point cases when there are unity scale values, selecting this parameter also omits certain casts. Refer to "Filter Structure Diagrams" on page 2-92 for more information.

This parameter is only visible when Dialog parameters is selected.

Specify Filter Characteristics via Input Port

The Main pane of the Biquad Filter block dialog appears as follows when Input port(s) is selected in the Coefficient source group box.

Biquad Filter

Function Block Parameters: Biquad Filter
Biquad Filter
Implement a general IIR filter using biquad structures. Biquad implementations of general IIR filters are often preferred due to their desirable numeric properties.

You can specify filter coefficients using mask dialog parameters or discrete-time filter objects (dfilts) from the Signal Processing Toolbox.

-Coefficient source

Dialog parameters

- Input port(s)

Discrete-time filter object (DFILT)

Main \mid Fixed-point
Parameters
Filter structure: Direct form II transposed
Initial conditions: 0
Scale values mode: Specify via input port (g)

Filter structure

Select the filter structure.
This parameter is only visible when Dialog parameters or Input port(s) is selected.

Initial conditions

Specify the initial conditions of the filter states. To learn how to specify initial conditions, see "Specifying Initial Conditions" on page 2-74.

This parameter is only visible when Dialog parameters or Input port(s) is selected and the filter structure is Direct form II or Direct form II transposed.

Initial conditions on zeros side

Specify the initial conditions for the filter states on the side of the filter structure with the zeros ($\left.b_{0}, b_{1}, b_{2}, \ldots\right)$; see the next diagram.

This parameter is only visible when Dialog parameters or Input port(s) is selected and the filter structure is Direct form I or Direct form I transposed. To learn how to specify initial conditions, see "Specifying Initial Conditions" on page 2-74.

Initial conditions on poles side

Specify the initial conditions for the filter states on the side of the filter structure with the poles ($a_{0}, a_{1}, a_{2}, \ldots$); see the next diagram.

This parameter is only visible when Dialog parameters or Input port(s) is selected and the filter structure is Direct form I or Direct form I transposed. To learn how to specify initial conditions, see "Specifying Initial Conditions" on page 2-74.

Biquad Filter

Scale values mode

Choose how to specify the scale values to use between filter sections. When you select Specify via input port (g), you enter the scale values as a 2 -D vector at port g . When you select Assume all are unity and optimize, all scale values are removed and treated like Simulink lines or wires.

This parameter is only visible when Input port(s) is selected.

Specify Discrete-Time Filter Object

The Main pane of the Biquad Filter block dialog appears as follows when Discrete-time filter object (DFILT) is selected in the Coefficient source group box.
-Biquad Filter
Implement a general IIR filter using biquad structures. Biquad implementations of general IIR filters are often preferred due to their desirable numeric properties.

You can specify filter coefficients using mask dialog parameters or discrete-time filter objects (dfilts) from the Signal Processing Toolbox.

Coefficient source
Dialog parameters
Input port(s)

- Discrete-time filter object (DFILT)

Main

Parameters
Filter: dfilt.df2tsos([10.3 0.4],[10.10.2])

```
View Filter Response
```


Filter

Specify the discrete-time filter object (dfilt) that you would like the block to implement. You can do so in one of three ways:

- You can fully specify the dfilt object in the block mask.
- You can enter the variable name of a dfilt object that is defined in any workspace.
- You can enter a variable name for a dfilt object that is not yet defined.

Biquad Filter

For more information on creating dfilt objects, see the dfilt function reference page in the Signal Processing Toolbox documentation.

View filter response

This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox product and displays the filter response of the dfilt object specified in the Discrete-time filter object (DFILT) parameter. For more information on FVTool, see the Signal Processing Toolbox documentation.

Note This button is only available when the Filter Design Toolbox and Fixed-Point Toolbox ${ }^{\text {TM }}$ products are installed. If you specify a filter in the Discrete-time filter object (DFILT) parameter, you must apply the filter by clicking the Apply button before using the View filter response button.

Specify Fixed-Point Parameters

The Fixed-point pane of the Biquad Filter block dialog appears as follows. This pane only appears when Dialog parameters or Input port(s) is selected in the Coefficient source group box.

Biquad Filter

Biquad Filter
Implement a general IIR filter using biquad structures. Biquad implementations of general IIR filters are often preferred due to their desirable numeric properties.

You can specify filter coefficients using mask dialog parameters or discrete-time filter objects (dfilts) from the Signal Processing Toolbox.
-Coefficient source
(c) Dialog parameters
C Input port(s)
C Discrete-time filter object (DFILT)

Main Fixed-point

Settings on this pane only apply when block inputs are fixed-point signals.
-Fixed-point operational parameters
Rounding mode: Floor Overflow mode: Wrap $\quad \rightarrow$
-Fixed-point data types

				Mode
	Same as input			
Section input				
Section output	Same as section input			
Coefficients	Same word length as input			
Product output	Same as input			
Accumulator	Same as product output			
State	Same as accumulator			
Output	Same as accumulator			

I Lock scaling against changes by the autoscaling tool

Biquad Filter

Rounding mode

Select the rounding mode for fixed-point operations. The filter coefficients do not obey this parameter; instead, they always round to Nearest.

Overflow mode

Select the overflow mode for fixed-point operations. The filter coefficients do not obey this parameter; instead, they are always saturated.

Section input

Choose how you specify the word length and the fraction length of the fixed-point data type going into each section of a biquadratic filter. See "Fixed-Point Data Types" on page 2-75 for illustrations depicting the use of the section input data type in this block.

- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word and fraction lengths of the section input and output, in bits.
- When you select Slope and bias scaling, you can enter the word lengths, in bits, and the slopes of the section input and output. This block requires power-of-two slope and a bias of zero.

Section output

Choose how you specify the word length and the fraction length of the fixed-point data type coming out of each section of a biquadratic filter. See "Fixed-Point Data Types" on page 2-75 for illustrations depicting the use of the section input data type in this block.

- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word and fraction lengths of the section input and output, in bits.
- When you select Slope and bias scaling, you can enter the word lengths, in bits, and the slopes of the section input and output. This block requires power-of-two slope and a bias of zero.

Coefficients

Choose how you specify the word length and the fraction length of the filter coefficients (numerator, denominator, and scale value) when Dialog parameters is selected in the Coefficient source group box. See "Fixed-Point Data Types" on page 2-75 for illustrations depicting the use of the coefficient data types in this block:

- When you select Same word length as input, the word length of the filter coefficients match that of the input to the block. In this mode, the block automatically sets the fraction length of the coefficients to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Specify word length, you can enter the word length of the coefficients, in bits. In this mode, the block automatically sets the fraction length of the coefficients to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Binary point scaling, you can enter the word length and the fraction length of the coefficients, in bits. If applicable, you can enter separate fraction lengths for the numerator and denominator coefficients.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the coefficients. If applicable, you can enter separate slopes for the numerator and denominator coefficients. This block requires power-of-two slope and a bias of zero.

Biquad Filter

- The filter coefficients do not obey the Rounding mode and the Overflow mode parameters; instead, they are always saturated and rounded to Nearest.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. See "Fixed-Point Data Types" on page 2-75 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block:

- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to specify how you would like to designate the accumulator word and fraction lengths. See "Fixed-Point Data Types" on page 2-75 and "Multiplication Data Types" for illustrations depicting the use of the accumulator data type in this block:

- When you select Same as input, these characteristics match those of the input to the block.
- When you select Same as product output, these characteristics match those of the product output.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

State

Use this parameter to specify how you would like to designate the state word and fraction lengths when Dialog parameters is selected in the Coefficient source group box. See "Fixed-Point Data Types" on page 2-75 for illustrations depicting the use of the state data type in this block.

This parameter is not visible for Direct form I and Direct form I transposed filter structures.

- When you select Same as input, these characteristics match those of the input to the block.
- When you select Same as accumulator, these characteristics match those of the accumulator.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you specify the output word length and fraction length. See "Fixed-Point Data Types" on page 2-75 for illustrations depicting the use of the output data type in this block.

- When you select Same as input, these characteristics match those of the input to the block.
- When you select Same as accumulator, these characteristics match those of the accumulator.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Biquad Filter

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

Filter
Structure Diagrams

The diagrams in the following sections show the filter structures supported by the Biquad Filter block. They also show the data types used in the filter structures for fixed-point signals. You can set the data types shown in these diagrams in the block dialog box. This is discussed in "Dialog Box" on page 2-76.

- "Direct Form I" on page 2-92
- "Direct Form I Transposed" on page 2-94
- "Direct Form II" on page 2-97
- "Direct Form II Transposed" on page 2-100

Direct Form I

The following diagram shows the data types for one section of the filter for fixed-point signals.

The following diagrams show the fixed-point data types between filter sections.

When the data is not optimized:

When you select Optimize unity scale values and scale values equal 1 :

Direct Form I Transposed

The following diagram shows the data types for one section of the filter for fixed-point signals.

The dashed casts are omitted when Optimize unity scale values is selected and scale values equal one.

Biquad Filter

The following diagrams show the fixed-point data types between filter sections.

When the data is not optimized:

When you select Optimize unity scale values and scale values equal 1 :

Direct Form II

Biquad Filter

The following diagram shows the data types for one section of the filter for fixed-point signals.

The dashed casts are omitted when Optimize unity scale values is selected and scale values equal one.

The following diagrams show the fixed-point data types between filter sections.

When the data is not optimized:

When you select Optimize unity scale values and scale values equal 1 :

Direct Form II Transposed

The following diagram shows the data types for one section of the filter for fixed-point signals.

Biquad Filter

The following diagrams show the fixed-point data types between filter sections.

When the data is not optimized:

When you select Optimize unity scale values and scale values equal 1 :

Supported Data Types

Port	Supported Data Types
Input	• Double-precision floating point
	- Single-precision floating point
	• Fixed point (signed only)
	• 8-, 16-, and 32-bit signed integers
Output	• Double-precision floating point
	• Single-precision floating point
	• Fixed point (signed only)
	• 8-, 16-, and 32-bit signed integers

See Also

```
dfilt.df1sos
dfilt.df1tsos
```

Filter Design Toolbox
Filter Design Toolbox

Biquad Filter

dfilt.df2sos	Filter Design Toolbox
dfilt.df2tsos	Filter Design Toolbox

Block LMS Filter

Purpose

Library

Description

Block LMS Filter

Compute output, error, and weights using LMS adaptive algorithm
Filtering / Adaptive Filters
dspadpt3
The Block LMS Filter block implements an adaptive least mean-square (LMS) filter, where the adaptation of filter weights occurs once for every block of samples. The block estimates the filter weights, or coefficients, needed to minimize the error, $e(n)$, between the output signal, $y(n)$, and the desired signal, $d(n)$. Connect the signal you want to filter to the Input port. This input signal can be a sample-based scalar or a single-channel frame-based signal. Connect the signal you want to model to the Desired port. The desired signal must have the same data type, frame status, complexity, and dimensions as the input signal. The Output port outputs the filtered input signal, which can be sample or frame based. The Error port outputs the result of subtracting the output signal from the desired signal.

The block calculates the filter weights using the Block LMS adaptive filter algorithm. This algorithm is defined by the following equations.

$$
\begin{gathered}
n=k N+i \\
y(n)=\mathbf{w}^{T}(k-1) \mathbf{u}(n) \\
e(n)=d(n)-y(n) \\
\mathbf{w}(k)=\mathbf{w}(k-1)+f(\mathbf{u}(n), e(n), \mu)
\end{gathered}
$$

The weight update function for the Block LMS adaptive filter algorithm is defined as

$$
f(\mathbf{u}(n), e(n), \mu)=\mu \sum_{i=0}^{N-1} \mathbf{u}^{*}(k N+i) e(k N+i)
$$

The variables are as follows.

Block LMS Filter

Variable	Description
n	The current time index
i	The iteration variable in each block, $0 \leq i \leq N-1$
k	The block number
N	The block size
$\mathbf{u}(n)$	The vector of buffered input samples at step n
$\mathbf{w}(n)$	The vector of filter-tap estimates at step n
$y(n)$	The filtered output at step n
$e(n)$	The estimation error at time n
$d(n)$	The desired response at time n
μ	The adaptation step size

Use the Filter length parameter to specify the length of the filter weights vector.
The Block size parameter determines how many samples of the input signal are acquired before the filter weights are updated. The input frame length must be a multiple of the Block size parameter.

The adaptation Step-size (mu) parameter corresponds to μ in the equations. You can either specify a step-size using the input port, Step-size, or enter a value in the Block Parameters: Block LMS Filter dialog box.

Use the Leakage factor (0 to 1) parameter to specify the leakage factor, $0<1-\mu \alpha \leq 1$, in the leaky LMS algorithm shown below.

$$
\mathbf{w}(k)=(1-\mu \alpha) \mathbf{w}(k-1)+f(\mathbf{u}(n), e(n), \mu)
$$

Enter the initial filter weights as a vector or a scalar in the Initial value of filter weights text box. When you enter a scalar, the block uses the scalar value to create a vector of filter weights. This vector

Block LMS Filter

has length equal to the filter length and all of its values are equal to the scalar value

When you select the Adapt port check box, an Adapt port appears on the block. When the input to this port is greater than zero, the block continuously updates the filter weights. When the input to this port is zero, the filter weights remain at their current values.

When you want to reset the value of the filter weights to their initial values, use the Reset input parameter. The block resets the filter weights whenever a reset event is detected at the Reset port. The reset signal rate must be the same rate as the data signal input.

From the Reset input list, select None to disable the Reset port. To enable the Reset port, select one of the following from the Reset input list:

- Rising edge - Triggers a reset operation when the Reset input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure).

Block LMS Filter

- Falling edge - Triggers a reset operation when the Reset input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Reset input is a Rising edge or Falling edge (as described above)
- Non-zero sample - Triggers a reset operation at each sample time that the Reset input is not zero

Note When running simulations in the Simulink MultiTasking mode, sample-based reset signals have a one-sample latency, and frame-based reset signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a reset event, and when it applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop ${ }^{\circledR}$ User's Guide.

Block LMS Filter

Select the Output filter weights check box to create a Wts port on the block. For each iteration, the block outputs the current updated filter weights from this port.
Block LMS Filter (mask) (link)
Computes filter weights based on the Block LMS algorithm for filtering of the input signal. The filter weights are updated once for every block of data that is processed.
Select the Adapt port check box to create an Adapt port on the block. When the input to this port is nonzero, the block continuously updates the filter weights. When the input to this port is zero, the filter weights remain constant.
If the Reset port is enabled and a reset event occurs, the block resets the filter weights to their initial values.

Parameters	
Filter length:	
32	
Block size:	
32	
Specify step size via: Dialog	\square
Step size (mu):	
0.1	
Leakage factor (0 to 1):	
1.0	
Initial value of filter weights:	
0	
Γ Adapt port	
Reset port: None	\checkmark
V Output filter weights	

QK	Cancel	Help	Apply

Filter length

Enter the length of the FIR filter weights vector.

Block size

Enter the number of samples to acquire before the filter weights are updated. The input frame length must be an integer multiple of the block size.

Specify step-size via

Select Dialog to enter a value for mu in the Block parameters: LMS Filter dialog box. Select Input port to specify mu using the Step-size input port.

Step-size (mu)

Enter the step-size. Tunable.

Leakage factor (0 to 1)

Enter the leakage factor, $0<1-\mu \alpha \leq 1$. Tunable.

Initial value of filter weights

Specify the initial values of the FIR filter weights.

Adapt port

Select this check box to enable the Adapt input port.

Reset port

Select this check box to enable the Reset input port.

Output filter weights

Select this check box to export the filter weights from the Wts port.

References
 Hayes, M. H. Statistical Digital Signal Processing and Modeling. New York: John Wiley \& Sons, 1996.

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating point
	- Single-precision floating point
	- Fixed point

Block LMS Filter

Port	Supported Data Types
Desired	- Must be the same as Input for floating-point signals - Must be any fixed-point data type when Input is fixed point
Step-size	- Must be the same as Input for floating-point signals - Must be any fixed-point data type when Input is fixed point
Adapt	- Double-precision floating point - Single-precision floating point - Boolean - 8-, 16-, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers
Reset	- Double-precision floating point - Single-precision floating point - Boolean - 8-, 16-, and 32 -bit signed integers - 8-, 16-, and 32 -bit unsigned integers
Output	- Must be the same as Input for floating-point signals - Must be the same as Desired for fixed-point signals

Port	Supported Data Types
Error	- Must be the same as Input for floating-point signals - Must be the same as Desired for fixed-point signals
Wts	- Must be the same as Input for floating-point signals - Obeys the Weights parameter for fixed-point signals

See Also

Fast Block LMS Filter	Signal Processing Blockset
Kalman Adaptive Filter (Obsolete)	Signal Processing Blockset
LMS Filter	Signal Processing Blockset
RLS Filter	Signal Processing Blockset

See "Adaptive Filters" for related information.

Purpose
Library
Signal Management / Buffers
dspbuff3
dspufa

Buffer input sequence to smaller or larger frame size

Description

The Buffer block redistributes the input samples to a new frame size. Buffering to a larger frame size yields an output with a slower frame rate than the input, as illustrated below for scalar input.

Buffering to a smaller frame size yields an output with a faster frame rate than the input, as illustrated below for scalar output.

> "slow-time" input (frome size $=3$, frome period $=3 * T_{\text {si }}$)
"fost-time" output (frome size $=1$, somple period $=T_{\text {si }}$)

The block coordinates the output frame size and frame rate of nonoverlapping buffers such that the sample period of the signal is the same at both the input and output: $T_{s o}=T_{s i}$.
This block supports triggered subsystems when the block's input and output rates are the same.

Sample-based full-dimension matrix inputs are not accepted.

Sample-Based Operation

Sample-based inputs are interpreted by the Buffer block as independent channels of data. Therefore, a sample-based length $-N$ vector input is interpreted as N independent samples.

In sample-based operation, the Buffer block creates frame-based outputs from sample-based inputs. A sequence of sample-based length- N vector inputs is buffered into an M_{o}-by- N matrix, where M_{o} is specified by the Output buffer size parameter ($M_{o}>1$). That is, each input vector becomes a row in the N-channel frame-based output matrix. When $M_{o}=1$, the input is simply passed through to the output, and retains the same dimension.

The Buffer overlap parameter, L, specifies the number of samples (rows) from the current output to repeat in the next output,
where $L<M_{o}$. For $0 \leq L<M_{o}$, the number of new input samples that the block acquires before propagating the buffered data to the output is the difference between the Output buffer size and Buffer overlap, or $M_{o}-L$.

The output frame period is $\left(M_{o}-L\right) T_{s i}$, which is equal to the input sequence sample period, $T_{s i}$, when the Buffer overlap is $M_{o}-1$. For $L<0$, the block simply discards L input samples after the buffer fills, and outputs the buffer with period $\left(M_{o}-L\right) T_{s i}$, which is longer than the zero-overlap case.

In the model below, the block buffers a four-channel sample-based input using a Output buffer size of three and a Buffer overlap of one.

Notice that the input vectors do not begin appearing at the output until the second row of the second matrix. This is due to the block's latency. The first output matrix (all zeros in this example) reflects the block's Initial conditions setting, while the first row of zeros in the second output is a result of the one-sample overlap between consecutive output frames.

You can use the rebuffer_delay function with a frame size of 1 to precisely compute the delay (in samples) for sample-based signals. For the previous example,

```
d = rebuffer_delay(1,3,1)
d =
```

4

This agrees with the four samples of delay (zeros) per channel shown in the previous figure.

Frame-Based Operation

In frame-based operation, the Buffer block redistributes the samples in the input frame to an output frame with a new size and rate. A sequence of M_{i}-by- N matrix inputs is buffered into a sequence of M_{o}-by- N frame-based matrix outputs, where M_{o} is the output frame size specified by the Output buffer size parameter. The output buffer size is the number of consecutive samples from the input frame that are buffered into the output frame. M_{o} can be greater or less than the input frame size, M_{i}. Each of the N input channels is buffered independently.

The Buffer overlap parameter, L, specifies the number of samples (rows) from the current output to repeat in the next output, where
$L<M_{o}$. For $0 \leq L<M_{o}$, the number of new input samples the block acquires before propagating the buffered data to the output is the difference between the Output buffer size and Buffer overlap,
$M_{o}-L$.
The input frame period is $M_{i} T_{s i}$, where $T_{s i}$ is the sample period. The output frame period is $\left(M_{o}-L\right) T_{s i}$, which is equal to the sequence sample period when the Buffer overlap is $M_{o}-1$. The output sample period is therefore related to the input sample period by

$$
T_{s o}=\frac{\left(M_{o}-L\right) T_{s i}}{M_{i}}
$$

Negative Buffer overlap values are not permitted.
In the model below, the block buffers a two-channel frame-based input using a Output buffer size of three and a Buffer overlap of one.

Notice that the sequence is delayed by eight samples, which is the latency of the block in the Simulink multitasking mode for the parameter settings of this example. The first eight output samples therefore adopt the value specified for the Initial conditions, which is assumed here to be zero. Use the rebuffer_delay function to determine the block's latency for any combination of frame size and overlap.

Latency

Zero-tasking latency means that the first input sample, received at $t=$ 0 , appears as the first output sample. In the Simulink single-tasking mode, the Buffer block has zero-tasking latency for the following special cases:

- Scalar input and output ($M_{o}=M_{i}=1$) with zero or negative Buffer overlap ($L \leq 0$)
- Input frame size is an integer multiple of the output frame size

$$
M_{i}=k M_{o}
$$

where k is an integer with zero Buffer overlap ($L=0$); notable cases of this include

- Any input frame size M_{i} with scalar output ($M_{o}=1$) and zero Buffer overlap ($L=0$)
- Equal input and output frame sizes ($M_{o}=M_{i}$) with zero Buffer overlap ($L=0$)

For all cases of sample-based single-tasking operation other than those listed above, the Buffer block's buffer is initialized to the value(s) specified by the Initial conditions parameter, and the block reads from this buffer to generate the first D output samples, where

$$
D=\left\{\begin{array}{cc}
M_{o}+L & (L \geq 0) \\
M_{o} & (L<0)
\end{array}\right.
$$

The dimensions of the Initial conditions parameter depend on the Buffer overlap, L, and whether the input is single-channel or multichannel:

- When $L \neq 0$, the Initial conditions parameter must be a scalar.
- When $L=0$, the Initial conditions parameter can be a scalar, or it can be a vector with the following constraints:
- For single-channel inputs, the Initial conditions parameter can be a vector of length M_{o} if M_{i} is 1 , or a vector of length M_{i} if M_{o} is 1 .
- For multichannel inputs, the Initial conditions parameter can be a vector of length $M_{o}{ }^{*} N$ if M_{i} is 1 , or a vector of length $M_{i}{ }^{*} N$ if M_{o} is 1 .

For frame-based single-tasking operation and all multitasking operation, use the rebuffer_delay function to compute the exact delay, in samples, that the Buffer block introduces for a given combination of buffer size and buffer overlap.
For general buffering between arbitrary frame sizes, the Initial conditions parameter must be a scalar value, which is then repeated
across all elements of the initial output(s). However, in the special case where the input is 1-by- N, and the block's output is therefore an M_{o}-by- N matrix, Initial conditions can be

- An M_{o}-by- N matrix
- A length $-M_{o}$ vector to be repeated across all columns of the initial output(s)
- A scalar to be repeated across all elements of the initial output(s)

In the special case where the output is 1-by- N, which is the result of unbuffering an M_{i}-by- N frame-based matrix, Initial conditions can be

- A vector containing M_{i} samples to output sequentially for each channel during the first M_{i} sample times
- A scalar to be repeated across all elements of the initial output(s)

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

Behavior in Enabled Subsystems

The Buffer block cannot be used in an enabled subsystem under the following conditions:

- In a multirate multitasking environment
- When the Buffer overlap parameter is set to a negative value

The Buffer block has an internal reservoir that temporarily stores data. When the Buffer block is used in an enabled subsystem, there is the possibility that the reservoir can overrun or underrun. The block implements safeguards against these occurrences.

Overrun occurs when more data enters into the buffer than it can hold. For example, consider buffering a sample-based input to a frame of size three with a buffer that accepts input every second and outputs every three seconds. If you place this buffer inside an enabled subsystem that is disabled every three seconds at $t=3 \mathrm{~s}, t=6 \mathrm{~s}$, and so on, the buffer accumulates data in its internal reservoir without being able to empty it. This condition results in overrun.

Underrun occurs when the buffer runs out of data to output. For example, again consider buffering a sample-based input to a frame size of three with a buffer that accepts input every second and outputs every three seconds. If you place this buffer inside an enabled subsystem that is disabled at $t=10 \mathrm{~s}, t=11 \mathrm{~s}, t=13 \mathrm{~s}, t=14 \mathrm{~s}, t=16 \mathrm{~s}$, and $t=17 \mathrm{~s}$, its internal reservoir becomes drained, and there is no data to output at $t=$ 18 s . This condition results in underrun.

To protect from overrun and underrun, the Buffer block keeps a record of the amount of data in its internal reservoir. When the Buffer block reads data, the amount of data in its reservoir goes up. When data is output from the Buffer block, the amount of data in its reservoir goes down. To protect from overrun, the oldest samples in the reservoir are discarded whenever amount of data in the reservoir is larger than the actual buffer size. To protect from underrun, the most recent samples are repeated whenever an output is due and there is no data in the reservoir.

Examples See "Frame Rebuffering Blocks" and "Converting Frame Status" in the Signal Processing Blockset User's Guide.

Dialog
 Box

Output buffer size

Specify the number of consecutive samples, M_{o}, from each channel to buffer into the output frame.

Buffer overlap

Specify the number of samples, L, by which consecutive output frames overlap.

Initial conditions

Specify the value of the block's initial output for cases of nonzero latency; a scalar, vector, or matrix.

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating point
	- Single-precision floating point
	- Fixed point
	- Boolean
	- 8-, 16-, and 32 -bit signed integers
	- 8-, 16-, and 32-bit unsigned integers
Output	- Double-precision floating point
	- Single-precision floating point
	- Fixed point
	- Boolean
	- 8-, 16-, and 32 -bit signed integers
	- 8-, 16-, and 32-bit unsigned integers

See Also

Delay Line	Signal Processing Blockset
Unbuffer	Signal Processing Blockset
rebuffer_delay	Signal Processing Blockset

See "Converting Sample and Frame Rates" and "Converting Frame Status" for more information.

Burg AR Estimator

Purpose

Library Estimation / Parametric Estimation
dspparest3

Description

Burg AR A.
Estimator method

Compute estimate of autoregressive (AR) model parameters using Burg

The Burg AR Estimator block uses the Burg method to fit an autoregressive (AR) model to the input data by minimizing (least squares) the forward and backward prediction errors while constraining the AR parameters to satisfy the Levinson-Durbin recursion.

The input is a sample-based vector (row, column, or 1-D) or frame-based vector (column only) representing a frame of consecutive time samples from a single-channel signal, which is assumed to be the output of an AR system driven by white noise. The block computes the normalized estimate of the AR system parameters, $A(z)$, independently for each successive input frame.

$$
H(z)=\frac{G}{A(z)}=\frac{G}{1+a(2) z^{-1}+\ldots+a(p+1) z^{-p}}
$$

When you select the Inherit estimation order from input dimensions parameter, the order, p, of the all-pole model is one less that the length of the input vector. Otherwise, the order is the value specified by the Estimation order parameter.

The Output(s) parameter allows you to select between two realizations of the AR process:

- A - The top output, A, is a column vector of length $p+1$ with the same frame status as the input, and contains the normalized estimate of the AR model polynomial coefficients in descending powers of z.

$$
\left[\begin{array}{llll}
1 & a(2) & \ldots a(p+1)]
\end{array}\right.
$$

Burg AR Estimator

- K - The top output, K, is a column vector of length p with the same frame status as the input, and contains the reflection coefficients (which are a secondary result of the Levinson recursion).
- A and K - The block outputs both realizations.

The scalar gain, G, is provided at the bottom output (G).
The following table compares the features of the Burg AR Estimator block to the Covariance AR Estimator, Modified Covariance AR Estimator, and Yule-Walker AR Estimator blocks.

	Burg AR Estimator	Covariance AR Estimator	Modified Covariance AR Estimator	Yule-Walker AR Estimator
Characteristics	Does not apply window to data	Does not apply window to data	Does not apply window to data	Applies window to data
	Minimizes the forward and backward prediction errors in the least squares sense, with the AR coefficients constrained to satisfy the L-D recursion	Minimizes the forward prediction error in the least squares sense	Minimizes the forward and backward prediction errors in the least squares sense	Minimizes the forward prediction error in the least squares sense (also called "autocorrelation method")
Advantages	Always produces a stable model		Always produces a stable model	

Burg AR Estimator

	Burg AR Estimator	Covariance AR Estimator	Modified Covariance AR Estimator	Yule-Walker AR Estimator
Disadvantages		May produce unstable models	May produce unstable models	Performs relatively poorly for short data records
Conditions for Nonsingularity		Order must be less than or equal to half the input frame size	Order must be less than or equal to $2 / 3$ the input frame size	Because of the biased estimate, the autocorrelation matrix is guaranteed to positive-definite, hence nonsingular

Dialog Box

Burg AR Estimator

Output(s)

The realization to output, model coefficients, reflection coefficients, or both.

Inherit estimation order from input dimensions

When selected, sets the estimation order p to one less than the length of the input vector.

Estimation order

The order of the AR model, p. This parameter is enabled when you do not select Inherit estimation order from input dimensions.

References
 Supported Data Types

Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1988.

Marple, S. L., Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall, 1987.

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point
A	- Double-precision floating point - Single-precision floating point
G	- Double-precision floating point - Single-precision floating point

See Also

Burg Method
Covariance AR Estimator
Modified Covariance AR
Estimator

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

Burg AR Estimator

Yule-Walker AR Estimator
arburg
Signal Processing Blockset
Signal Processing Toolbox

Purpose	Power spectral density estimate using Burg method
Library	Estimation / Power Spectrum Estimation dspspect3
Description	The Burg Method block estimates the power spectral density (PSD) of the input frame using the Burg method. This method fits an autoregressive (AR) model to the signal by minimizing (least squares) the forward and backward prediction errors. Such minimization occurs with the AR parameters constrained to satisfy the Levinson-Durbin recursion.
	The input is a sample-based vector (row, column, or 1-D) or frame-based vector (column only). This input represents a frame of consecutive time samples from a single-channel signal. The block outputs a column vector containing the estimate of the power spectral density of the signal at $N_{f f t}$ equally spaced frequency points. The frequency points are in the range $\left[0, F_{s}\right.$), where F_{s} is the sampling frequency of the signal. When you select the Inherit estimation order from input dimensions parameter, the order of the all-pole model is one less than the input frame size. Otherwise, the Estimation order parameter specifies the order. The block computes the spectrum from the FFT of the estimated AR model parameters.
	Selecting the Inherit FFT length from estimation order parameter specifies that $N_{f f t}$ is one greater than the estimation order. Clearing the Inherit FFT length from estimation order check box, allows you to use the FFT length parameter to specify $N_{f f t}$ as a power of 2. The block zero-pads or wraps the input to $N_{f f t}$ before computing the FFT. The output is always sample based.
	When you select the Inherit sample time from input check box, the block computes the frequency data from the sample period of the input signal. For the block to produce valid output, the following conditions must hold:

Burg Method

- The input to the block is the original signal, with no samples added or deleted (by insertion of zeros, for example).
- The sample period of the time-domain signal in the simulation equals the sample period of the original time series.

If these conditions do not hold, clear the Inherit sample time from input check box. You can then specify a sample time using the Sample time of original time series parameter.

The Burg Method and Yule-Walker Method blocks return similar results for large frame sizes. The following table compares the features of the Burg Method block to the Covariance Method, Modified Covariance Method, and Yule-Walker Method blocks.

	Burg	Covariance	Modified Covariance	Yule-Walker
Characteristics	Does not apply window to data	Does not apply window to data	Does not apply window to data	Applies window to data
	Minimizes the forward and backward prediction errors in the least squares sense, with the AR coefficients constrained to satisfy the L-D recursion	Minimizes the forward prediction error in the least squares sense	Minimizes the forward and backward prediction errors in the least squares sense	Minimizes the forward prediction error in the least squares sense (also called autocorrelation method)

	Burg	Covariance	Modified Covariance	Yule-Walker
Advantages	High resolution for short data records	Better resolution than Y-W for short data records (more accurate estimates)	High resolution for short data records	Performs as well as other methods for large data records
	Always produces a stable model	Able to extract frequencies from data consisting of p or more pure sinusoids	Able to extract frequencies from data consisting of por more pure sinusoids	Always produces a stable model
	Does not suffer spectral line-splitting			
Disadvantages	Peak locations highly dependent on initial phase	May produce unstable models	May produce unstable models	Performs relatively poorly for short data records
May suffer spectral line-splitting for sinusoids in noise, or when order is very large	Frequency bias for estimates of sinusoids in noise	Peak locations slightly dependent on initial phase	Frequency bias for estimates of sinusoids in noise	

Burg Method

	Burg	Covariance	Modified Covariance	Yule-Walker
	Frequency bias for estimates of sinusoids in noise		Minor frequency bias for estimates of sinusoids in noise	
Conditions for Nonsingularity		Order must be less than or equal to half the input frame size	Order must be less than or equal to 2/3 the input frame size	Because of the biased estimate, the autocorrelation matrix is guaranteed
to be				
positive-definite,				
hence				
nonsingular				

Examples

The dspsacomp demo compares the Burg method with several other spectral estimation methods.

Burg Method

Dialog Box

Function Block Parameters: Burg Method

Burg Method (mask) (link)
Power spectral density estimation via Burg's method.
-Parameters
I Inherit estimation order from input dimensions
Estimation order:
6
Г Inherit FFT length from estimation order
FFT length:
256
Inherit sample time from input

Inherit estimation order from input dimensions

Selecting this check box sets the estimation order to one less than the length of the input vector.

Estimation order

The order of the AR model. This parameter becomes visible only when you clear the Inherit estimation order from input dimensions check box.

Inherit FFT length from estimation order

When selected, the FFT length is one greater than the estimation order. To specify the number of points on which to perform the FFT, clear the Inherit FFT length from estimation order check box. You can then specify a power-of-two FFT length using the FFT length parameter.

Burg Method

FFT length

Enter the number of data points on which to perform the FFT, $N_{f f t}$. When $N_{f f t}$ is larger than the input frame size, the block zero-pads each frame as needed. When $N_{f f t}$ is smaller than the input frame size, the block wraps each frame as needed. This parameter becomes visible only when you clear the Inherit FFT length from input dimensions check box.

Inherit sample time from input

If you select the Inherit sample time from input check box, the block computes the frequency data from the sample period of the input signal. For the block to produce valid output, the following conditions must hold:

- The input to the block is the original signal, with no samples added or deleted (by insertion of zeros, for example).
- The sample period of the time-domain signal in the simulation equals the sample period of the original time series.

If these conditions do not hold, clear the Inherit sample time from input check box. You can then specify a sample time using the Sample time of original time series parameter.

Sample time of original time series

Specify the sample time of the original time-domain signal. This parameter becomes visible only when you clear the Inherit sample time from input check box.

[^0]
Burg Method

Supported Data Types

Port	Supported Data Types
Input	• Double-precision floating point • Single-precision floating point
Output	• Double-precision floating point • Single-precision floating point

See Also

Burg AR Estimator	Signal Processing Blockset
Covariance Method	Signal Processing Blockset
Modified Covariance Method	Signal Processing Blockset
Short-Time FFT	Signal Processing Blockset
Yule-Walker Method	Signal Processing Blockset
spectrum.burg	Signal Processing Toolbox

See "Power Spectrum Estimation" for related information.

Check Signal Attributes

Description
Check Signal Attributes

Purpose	Error when input signal does or does not match selected attributes exactly
Library	Signal Management / Signal Attributes dspsigattribs

Error when input signal does or does not match selected attributes exactly
dspsigattribs
The Check Signal Attributes block terminates the simulation with an error when the input characteristics differ from the characteristics you specify in the block parameters.

When you set Error when input to Does not match attributes exactly, the block generates an error when the input fails to match any of the specified attributes. Only signals that possess all of the specified attributes propagate to the output unaltered and do not cause the block to generate an error.

When you set Error when input to Matches attributes exactly, the block generates an error only when the input possesses all specified attributes. Signals that do not possess all of the specified attributes propagate to the output unaltered, and do not cause the block to generate an error.

Signal Attributes

The Check Signal Attributes block can test for up to five different signal attributes, as specified by the following parameters. When you select Ignore for any parameter, the block does not check the signal for the corresponding attribute. For example, when you set Complexity to Ignore, neither real nor complex inputs cause the block to generate an error. The attributes are:

- Complexity

Check whether the input is real or complex. You can display this information in a model by attaching a Probe block with Probe complex signal selected. Alternatively, you can select Port Data Types from the Format > Port/Signal Displays menu.

- Frame status

Check Signal Attributes

Check whether the signal is frame based or sample based. The Simulink environment displays sample-based signals using a single line and frame-based signals using a double line.

- Dimensionality

Check the dimensionality of the input for compliance or noncompliance with the attributes in the subordinate Dimension menu. See the following table. M and N are positive integers unless otherwise indicated.

Dimensions	Is...	Is not...
1-D	1-D vector, 1-D scalar	M-by- N matrix, 1-by- N matrix (row vector), M-by-1 matrix (column vector), 1-by-1 matrix (2-D scalar)
2-D	M-by- N matrix, 1-by- N matrix (row vector), M-by- 1 matrix (column vector), 1-by-1 matrix (2-D scalar)	1-D vector, 1-D scalar
Scalar (1-D or 2-D)	1-D scalar, 1-by-1 matrix (2-D scalar)	1-D vector with length >1, M-by- N matrix with $M>1$ and/or $N>1$
Vector (1-D or 2-D)	1-D vector, 1-D scalar, 1-by- N matrix (row vector), M-by- 1 matrix (column vector), 1-by-1 matrix (2-D scalar) Vector (1-D or 2-D) or scalar	M-by- N matrix with $M>1$ and $N>1$
Row Vector (2-D)	1-by- N matrix (row vector), 1-by-1 matrix (2-D scalar) Row vector (2-D) or scalar	1-D vector, 1-D scalar, M-by- N matrix with $M>1$
Column Vector (2-D)	M-by- 1 matrix (column vector), 1-by-1 matrix (2-D scalar) Column vector (2-D) or scalar	1-D vector, 1-D scalar, M-by- N matrix with $N>1$

Check Signal Attributes

Dimensions	Is...	Is not...
Full matrix	M-by- N matrix with $M>1$ and $N>1$	1-D vector, 1-D scalar, 1-by- N matrix (row vector), M-by- 1 matrix (column vector), 1-by-1 matrix (2-D scalar)
Square matrix	M-by- N matrix with $M=N$, 1-D scalar, 1-by-1 matrix (2-D scalar	M-by- N matrix with $M \neq N$, 1-D vector, 1-by- N matrix (row vector), M-by-1 matrix (column vector)

When you select Signal Dimensions from the Format > Port/Signal Displays menu, Simulink displays the size of a 1-D vector signal as an unbracketed integer, and displays the dimension of a 2-D signal as a pair of bracketed integers, [MxN]. Simulink does not display any size information for a 1-D or 2-D scalar signal. You can also display dimension information for a signal in a model by attaching a Probe block with Probe signal dimensions selected.

- Data type

Check the signal data type for compliance (Is...) or noncompliance (Is not...) with the attributes in the subordinate General data type menu. See the following table. You can individually select any of the specific data types listed in the Is ... column from the subordinate Specific data type menu.

General Data Type	Is...	Is not...
Boolean	boolean	single, double, uint8, int8, uint16, int16, uint32, int32, fixed point, enumerated

Check Signal Attributes

General Data Type	Is...	Is not...
Enumerated	A user-defined enumerated data type. See "Using Enumerated Data" in the Simulink documentation.	boolean, single, double, uint8, int8, uint16, int16, uint32, int32, fixed point
Floating point	single, double	boolean, uint8, int8, uint16, int16, uint32, int32, fixed point, enumerated
Floating point or Boolean	single, double, boolean	uint8, int8, uint16, int16, uint32, int32, fixed point, enumerated
Fixed point	fixed point, uint8, int8, uint16, int16, uint32, int32	boolean, single, double, enumerated
Integer	Signed integer int8, int16, int32 Unsigned integer uint8, uint16, uint32	boolean, single, double, fixed point, enumerated

To display data type information, in your model window, from the Format menu, point to Port/Signal Displays and select Port Data Types.

- Sample time

Check Signal Attributes

Check whether the signal is discrete time or continuous time. When you select Colors from the Format > Sample Time Display menu, Simulink displays continuous-time signal lines in black or grey and discrete-time signal lines in colors corresponding to the relative rate.

When you attach a Probe block with Probe sample time enabled to a continuous-time signal, the block icon displays the string Ts: [0 To], where To is the sample time offset. Valid values of To for continuous-time signals are 0 and 1 . When To is 0 , updates occur at every major and minor time step. When To is 1 , updates occur only at major time steps and the sample time is fixed in minor time step.

When you attach a Probe block with Probe sample time enabled to a discrete-time signal, the block icon displays the string Ts: [Ts To] for sample-based signals, and Tf:[Tf To] for frame-based signals. Ts and Tf are the positive sample period and frame period, respectively. To is the offset, such that $0 \leq$ offset < period. Frame-based signals are almost always discrete time.

Check Signal Attributes

Dialog Box

Error when input

Specify whether the block generates an error when the input does or does not possess all of the required attributes.

Complexity

Specify the complexity for which you want to check the input, Real or Complex. When you select Ignore from the list, the block does not check the complexity of the input.

Frame status

Specify the frame status for which you want to check the input, Sample-based or Frame-based. When you select Ignore from the list, the block does not check the frame status of the input.

Check Signal Attributes

Dimensionality

Specify whether you want to check the input for compliance or noncompliance with the attributes in the subordinate Dimensions menu. When you select Ignore from the list, the block does not check the dimensionality of the input.

Dimensions

Specify the dimensions for which you want to check the input. This parameter is only visible when you set the Dimensionality parameter to Is... or Is not....

Data type

Specifies whether you want to check the input for compliance or noncompliance with the attributes in the subordinate General data type menu. When you select Ignore from the list, the block does not check the input data type.

General data type

Specify the general data type for which you want to check the input. This parameter is only visible when you set the Data type to Is... or Is not....

Specific floating-point

Specify the floating-point data type for which you want to check the input. This parameter is only visible when you set the General data type to Floating-point or Floating-point or boolean.

Specific fixed-point

Specify the fixed-point data type for which you want to check the input. This parameter is only visible when you set the General data type to Fixed-point.

Specific integer

Specify the integer data type for which you want to check the input. This parameter is only visible when you set the General data type to Integer.

Check Signal Attributes

Sample time

Specify the sample time for which you want to check the input, Discrete or Continuous. When you select Ignore from the list, the block does not check the sample time of the input.

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Boolean - 8,16 , and 32 -bit signed integers - 8,16 , and 32 -bit unsigned integers - Enumerated
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Boolean - 8,16 , and 32 -bit signed integers - 8,16 , and 32 -bit unsigned integers - Enumerated

See Also

Buffer
Convert 1-D to 2-D
Convert 2-D to 1-D
Data Type Conversion

Check Signal Attributes

Frame Status Conversion (Obsolete)	Signal Processing Blockset
Inherit Complexity	Signal Processing Blockset
Probe	Simulink
Reshape	Simulink
Submatrix	Signal Processing Blockset

Purpose
 Generate swept-frequency cosine (chirp) signal

Library

Description

Signal Processing Sources

```
dspsrcs4
```

The Chirp block outputs a swept-frequency cosine (chirp) signal with unity amplitude and continuous phase. To specify the desired output chirp signal, you must define its instantaneous frequency function, also known as the output frequency sweep. The frequency sweep can be
linear, quadratic, or logarithmic, and repeats once every Sweep time by default. See other sections of this reference page for more details about the block.

Sections of This Reference Page

- Variables Used in This Reference Page on page 2-144
- "Setting the Output Frame Status" on page 2-144
- "Shaping the Frequency Sweep by Setting Frequency Sweep and Sweep Mode" on page 2-145
- "Unidirectional and Bidirectional Sweep Modes" on page 2-146
- "Setting Instantaneous Frequency Sweep Values" on page 2-147
- "Block Computation Methods" on page 2-148
- "Cautions Regarding the Swept Cosine Sweep" on page 2-151
- "Dialog Box" on page 2-153
- "Examples" on page 2-155
- "Supported Data Types" on page 2-166
- "See Also" on page 2-166

Variables Used in This Reference Page

f_{0}	Initial frequency parameter (Hz)
$f_{i}\left(t_{g}\right)$	Target frequency parameter (Hz)
t_{g}	Target time parameter (seconds)
$T_{s w}$	Sweep time parameter (seconds)
ϕ_{0}	Initial phase parameter (radians)
$\psi(t)$	Phase of the chirp signal (radians)
$f_{i}(t)$	User-specified output instantaneous frequency function (Hz); user-specified sweep
$f_{i(a c t u a l)}(t)$	Actual output instantaneous frequency function $(\mathrm{Hz}) ;$ actual output sweep
$y_{\text {chirp }}(t)$	Output chirp function

Setting the Output Frame Status

Use Samples per frame parameter to set the block's output frame status, as summarized in the following table. The Sample time parameter sets the sample time of both sample- and frame-based outputs.

Setting of Samples Per Frame Parameter	Output Frame Status
1	Sample based
n (any integer greater than 1)	Frame based, frame size n

Shaping the Frequency Sweep by Setting Frequency Sweep and Sweep Mode

The basic shape of the output instantaneous frequency sweep, $f_{i}(t)$, is set by the Frequency sweep and Sweep mode parameters, described in the following table.

Parameters for Setting Sweep Shape	Possible Setting	Parameter Description
Frequency sweep	Linear Quadratic Logarithmic Swept cosine	Determines whether the sweep frequencies vary linearly, quadratically, or logarithmically. Linear and swept cosine sweeps both vary linearly.
Sweep mode	Unidirectional	Determines whether the sweep is unidirectional Bidirectional bidirectional. For details, see "Unidirectional and Bidirectional Sweep Modes" on page 2-146

The following diagram illustrates the possible shapes of the frequency sweep that you can obtain by setting the Frequency sweep and Sweep mode parameters.

For information on how to set the frequency values in your sweep, see "Setting Instantaneous Frequency Sweep Values" on page 2-147.

Unidirectional and Bidirectional Sweep Modes

The Sweep mode parameter determines whether your sweep is unidirectional or bidirectional, which affects the shape of your output frequency sweep (see "Shaping the Frequency Sweep by Setting Frequency Sweep and Sweep Mode" on page 2-145). The following table describes the characteristics of unidirectional and bidirectional sweeps.

| Sweep Mode
 Parameter
 Settings | Sweep Characteristics |
| :--- | :--- |$|$| - Lasts for one Sweep time, $T_{s w}$ | |
| :--- | :--- |
| Unidirectional | - Repeats once every $T_{s w}$ |

The following diagram illustrates a linear sweep in both sweep modes. For information on setting the frequency values in your sweep, see "Setting Instantaneous Frequency Sweep Values" on page 2-147.

Unidirectional Linear Sweep

Bidirectional Linear Sweep

Setting Instantaneous Frequency Sweep Values

Set the following parameters to tune the frequency values of your output frequency sweep. Note that because this is a source block, the
simulation pauses while the block dialog box is open. You must close the dialog box by clicking OK to resume the simulation.

- Initial frequency $(\mathrm{Hz}), f_{0}$
- Target frequency (Hz), $f_{i}\left(t_{g}\right)$
- Target time (seconds), t_{g}

The following table summarizes the sweep values at specific times for all Frequency sweep settings. For information on the formulas used to compute sweep values at other times, see "Block Computation Methods" on page 2-148.

Instantaneous Frequency Sweep Values

Frequency Sweep	Sweep Value at $t=0$	Sweep Value at $t=t_{g}$	Time when Sweep Value Is Target Frequency, $f_{i}\left(t_{g}\right)$
Linear	f_{0}	$f_{i}\left(t_{g}\right)$	t_{g}
Quadratic	f_{0}	$f_{i}\left(t_{g}\right)$	t_{g}
Logarithmic	f_{0}	$f_{i}\left(t_{g}\right)$	t_{g}
Swept cosine	f_{0}	$2 f_{i}\left(t_{g}\right)-f_{o}$	$t_{g} / 2$

Block Computation Methods

The Chirp block uses one of two formulas to compute the block output, depending on the Frequency Sweep parameter setting. For details, see the following sections:

- "Equations for Output Computation" on page 2-149
- "Output Computation Method for Linear, Quadratic, and Logarithmic Frequency Sweeps" on page 2-150
- "Output Computation Method for Swept Cosine Frequency Sweep" on page 2-151

Equations for Output Computation

The following table shows the equations used by the block to compute the user-specified output frequency sweep, $f_{i}(t)$, the block output, $y_{\text {chirp }}(t)$, and the actual output frequency sweep, $f_{i(\text { actual })}(t)$. The only time the user-specified sweep is not the actual output sweep is when the Frequency sweep parameter is set to Swept cosine.

Note The following equations apply only to unidirectional sweeps in which $f_{i}(0)<f_{i}\left(t_{g}\right)$. To derive equations for other cases, you might find it helpful to examine the following table and the diagram in "Shaping the Frequency Sweep by Setting Frequency Sweep and Sweep Mode" on page 2-145.

The table below contains the following variables:

- $f_{\mathrm{i}}(t)$ - the user-specified frequency sweep
- $f_{i(a c t u a l)}(t)$ - the actual output frequency sweep, usually equal to $f_{i}(t)$
- $y(t)$ - the Chirp block output
- $\psi(t)$ - the phase of the chirp signal, where $\psi(0)=0$, and $2 \pi f_{i}(t)$ is the derivative of the phase

$$
f_{i}(t)=\frac{1}{2 \pi} \cdot \frac{d \psi(t)}{d t}
$$

- ϕ_{0} - the Initial phase parameter value, where $y_{\text {chirp }}(0)=\cos \left(\phi_{0}\right)$

Equations Used by the Chirp Block for Unidirectional Positive Sweeps

Frequency Sweep	Block Output Chirp Signal	User-Specified Frequency Sweep, $\mathbf{f}_{i}(\boldsymbol{t})$	β	Actual Frequency Sweep, $\boldsymbol{f}_{\text {i(actual) }}(\boldsymbol{t})$
Linear	$y(t)=\cos \left(\psi(t)+\phi_{0}\right)$	$f_{i}(t)=f_{0}+\beta t$	$\beta=\frac{f_{i}\left(t_{g}\right)-f_{0}}{t_{g}}$	$f_{i(\text { actual })^{(t)}=f_{i}^{(t)}}$
Quadratic	Same as Linear	$f_{i}(t)=f_{0}+\beta t^{2}$	$\beta=\frac{f_{i}\left(t_{g}\right)-f_{0}}{2}$	$f_{i(\text { actual })^{(t)}=f_{i}^{(t)}}$
Logarithmic	Same as Linear	$F_{i}(t)=f_{0}\left(\frac{f_{i}\left(t_{g}\right)}{f_{0}}\right)^{\frac{t}{t g}}$	N/A	$f_{i(a c t u a l)}(t)=f_{i}(t)$
Swept cosine	$y(t)=\cos \left(2 \pi f_{i}(t) t+\phi_{0}\right)$	Same as Linear	Same as Linear	$f_{i(a c t u a l)}(t)=f_{i}(t)+\beta t$

Output Computation Method for Linear, Quadratic, and Logarithmic Frequency Sweeps

The derivative of the phase of a chirp function gives the instantaneous frequency of the chirp function. The Chirp block uses this principle to calculate the chirp output when the Frequency Sweep parameter is set to Linear, Quadratic, or Logarithmic.

$$
\begin{aligned}
& y_{\text {chirp }}(t)=\cos \left(\psi(t)+\phi_{0}\right) \\
& f_{i}(t)=\frac{1}{2 \pi} \cdot \frac{d \psi(t)}{d t}
\end{aligned}
$$

Linear, quadratic, or logarithmic chirp signal with phase $\psi(t)$ Phase derivative is instantaneous frequency

For instance, if you want a chirp signal with a linear instantaneous frequency sweep, you should set the Frequency Sweep parameter to

Linear, and tune the linear sweep values by setting other parameters appropriately. Note that because this is a source block, the simulation pauses while the block dialog box is open. You must close the dialog box by clicking OK to resume the simulation. The block outputs a chirp signal, the phase derivative of which is the specified linear sweep. This ensures that the instantaneous frequency of the output is the linear sweep you desired. For equations describing the linear, quadratic, and logarithmic sweeps, see "Equations for Output Computation" on page 2-149.

Output Computation Method for Swept Cosine Frequency Sweep

To generate the swept cosine chirp signal, the block sets the swept cosine chirp output as follows.

$$
y_{\text {chirp }}(t)=\cos \left(\psi(t)+\phi_{0}\right)=\cos \left(2 \pi f_{i}(t) t+\phi_{0}\right)
$$

Swept cosine
chirp output
(Instantaneous
frequency equation,
shown above, does
not hold.)

Note that the instantaneous frequency equation, shown above, does not hold for the swept cosine chirp, so the user-defined frequency sweep, $f_{i}(t)$, is not the actual output frequency sweep, $f_{i(\text { actual })}(t)$, of the swept cosine chirp. Thus, the swept cosine output might not behave as you expect. To learn more about swept cosine chirp behavior, see "Cautions Regarding the Swept Cosine Sweep" on page 2-151 and "Equations for Output Computation" on page 2-149.

Cautions Regarding the Swept Cosine Sweep

When you want a linearly swept chirp signal, we recommend you use a linear frequency sweep. Though a swept cosine frequency sweep also yields a linearly swept chirp signal, the output might have unexpected frequency content. For details, see the following two sections.

Swept Cosine Instantaneous Output Frequency at the Target Time is not the Target Frequency

The swept cosine sweep value at the Target time is not necessarily the Target frequency. This is because the user-specified sweep is not the actual frequency sweep of the swept cosine output, as noted in "Output Computation Method for Swept Cosine Frequency Sweep" on page $2-151$. See the table Instantaneous Frequency Sweep Values on page 2-148 for the actual value of the swept cosine sweep at the Target time.

Swept Cosine Output Frequency Content May Greatly Exceed Frequencies in the Sweep

In Swept cosine mode, you should not set the parameters so that $1 / T$ sw is very large compared to the values of the Initial frequency and Target frequency parameters. In such cases, the actual frequency content of the swept cosine sweep might be closer to $1 / T \mathrm{sw}$, far exceeding the Initial frequency and Target frequency parameter values.

Dialog
Box

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters During Simulation" in the online Simulink documentation for details.

Frequency sweep

The type of output instantaneous frequency sweep, $f_{i}(t)$: Linear, Logarithmic, Quadratic, or Swept cosine.

Sweep mode
The directionality of the chirp signal: Unidirectional or Bidirectional.

Initial frequency (Hz)

For Linear, Quadratic, and Swept cosine sweeps, the initial frequency, f_{0}, of the output chirp signal. For Logarithmic sweeps, Initial frequency is one less than the actual initial frequency of the sweep. Also, when the sweep is Logarithmic, you must set the Initial frequency to be less than the Target frequency. Tunable.

Target frequency (Hz)

For Linear, Quadratic, and Logarithmic sweeps, the instantaneous frequency, $f_{i}\left(t_{g}\right)$, of the output at the Target time, t_{g}. For a Swept cosine sweep, Target frequency is the instantaneous frequency of the output at half the Target time, $t_{g} / 2$. When Frequency sweep is Logarithmic, you must set the Target frequency to be greater than the Initial frequency. Tunable.

Target time (s)

For Linear, Quadratic, and Logarithmic sweeps, the time, t_{g}, at which the Target frequency, $f_{i}\left(t_{g}\right)$, is reached by the sweep. For a Swept cosine sweep, Target time is the time at which the sweep reaches $2 f_{i}\left(t_{g}\right)-f_{0}$. You must set Target time to be no greater than Sweep time, $T_{s w} \geq t_{g}$. Tunable.

Sweep time (s)

In Unidirectional Sweep mode, the Sweep time, $T_{s w}$, is the period of the output frequency sweep. In Bidirectional Sweep
mode, the Sweep time is half the period of the output frequency sweep. You must set Sweep time to be no less than Target
time, $T_{s w} \geq t_{g}$. Tunable.

Initial phase (rad)

The phase, ϕ_{0}, of the cosine output at $t=0 ; y_{\text {chirp }}(t)=\cos \left(\phi_{0}\right)$. Tunable.

Sample time

The sample period, T_{s}, of the output. The output frame period is $M_{o}{ }^{*} T_{s}$.

Samples per frame

The number of samples, M_{o}, to buffer into each output frame. When the value of this parameter is 1 , the block outputs a sample-based signal.

Output data type

The data type of the output, single-precision or double-precision.

Examples

The first few examples demonstrate how to use the Chirp block's main parameters, how to view the output in the time domain, and how to view the output spectrogram:

- "Example 1: Setting a Final Frequency Value for Unidirectional Sweeps" on page 2-156
- "Example 2: Bidirectional Sweeps" on page 2-159
- "Example 3: When Sweep Time is Greater Than Target Time" on page 2-161

Examples 4 and 5 illustrate Chirp block settings that might produce unexpected outputs:

- "Example 4: Output Sweep with Negative Frequencies" on page 2-163
- "Example 5: Output Sweep with Frequencies Greater Than Half the Sampling Frequency" on page 2-164

Example 1: Setting a Final Frequency Value for Unidirectional Sweeps

Often times, you might want a unidirectional sweep for which you know the initial and final frequency values. You can specify the final frequency of a unidirectional sweep by setting Target time equal to Sweep time, in which case the Target frequency becomes the final frequency in the sweep. The following model demonstrates this method.

This technique might not work for swept cosine sweeps. For details, see "Cautions Regarding the Swept Cosine Sweep" on page 2-151.
Open the Example 1 model by typing doc_chirp_ref at the MATLAB command line. You can also rebuild the model yourself; see the following list for model parameter settings (leave unlisted parameters in their default states).

Since Target time is set to equal Sweep time (1 second), the Target frequency (25 Hz) is the final frequency of the unidirectional sweep. Run your model to see the time domain output:

Type the following command to view the chirp output spectrogram:
spectrogram(dsp_examples_yout, hamming(128),... 110,[0:.01:40],400)

Chirp Block Parameters for Example 1

Frequency sweep	Linear
Sweep mode	Unidirectional
Initial frequency	0
Target frequency	25
Target time	1
Sweep time	1

Initial phase	0
Sample time	$1 / 400$
Samples per frame	400
Vector Scope Block Parameters for Example 1	
Input domain	Time
Time display span	6
Signal To Workspace Block Parameters for Example 1	
Variable name	dsp_examples_yout
Configuration Dialog Parameters for Example 1	
Stop time	5

Example 2: Bidirectional Sweeps

Change the Sweep mode parameter in the Example 1 model to Bidirectional, and leave all other parameters the same to view the following bidirectional chirp. Note that in the bidirectional sweep, the period of the sweep is twice the Sweep time (2 seconds), whereas it was one Sweep time (1 second) for the unidirectional sweep in Example 1.
Open the Example 2 model by typing doc_chirp_ref2 at the MATLAB command line.

Run your model to see the time domain output:

Type the following command to view the chirp output spectrogram: spectrogram(dsp_examples_yout, hamming(128), ...

110,[0:.01:40],400)

Example 3: When Sweep Time is Greater Than Target Time

Setting Sweep time to 1.5 and leaving the rest of the parameters as in the Example 1 model gives the following output. The sweep still reaches the Target frequency (25 Hz) at the Target time (1 second), but since Sweep time is greater than Target time, the sweep continues on its linear path until one Sweep time (1.5 seconds) is traversed.

Unexpected behavior might arise when you set Sweep time greater than Target time; see "Example 4: Output Sweep with Negative Frequencies" on page 2-163 for details.

Open the Example 3 model by typing doc_chirp_ref3 at the MATLAB command line.

Run your model to see the time domain output:

spectrogram(dsp_examples_yout, hamming(128), ...
110, [0:.01:40], 400)
Type the following command to view the chirp output spectrogram:

Example 4: Output Sweep with Negative Frequencies

Modify the Example 1 model by changing Sweep time to 1.5, Initial frequency to 25 , and Target frequency to 0 . The output chirp of this example might not behave as you expect because the sweep contains negative frequencies between 1 and 1.5 seconds. The sweep reaches the Target frequency of 0 Hz at one second, then continues on its negative slope, taking on negative frequency values until it traverses one Sweep time (1.5 seconds).
The spectrogram might reflect negative sweep frequencies along the x-axis so they appear to be positive. If you unexpectedly get a chirp
output with a spectrogram resembling the one below, your chirp's sweep might contain negative frequencies. See the next example for another possible unexpected chirp output.

Open the Example 4 model by typing doc_chirp_ref4 at the MATLAB command line.

Run your model to see the time domain output:

Example 5: Output Sweep with Frequencies Greater Than Half the Sampling Frequency

Modify the Example 1 model by changing the Target frequency parameter to 275. The output chirp of this model might not behave as you expect because the sweep contains frequencies greater than half the sampling frequency $(200 \mathrm{~Hz})$, which causes aliasing. If you unexpectedly get a chirp output with a spectrogram resembling the one
following, your chirp's sweep might contain frequencies greater than half the sampling frequency. See the previous example for another possible unexpected chirp output.
Open the Example 5 model by typing doc_chirp_ref5 at the MATLAB command line.

Run your model to see the time domain output:

Type the following command to view the chirp output spectrogram:
spectrogram(dsp_examples_yout, hamming (64), ...
60,256,400)

Supported	- Double-precision floating point
Data	- Single-precision floating point
Types	

See Also
Signal From Workspace
Signal Generator
Sine Wave
Signal Processing Blockset
Simulink
Signal Processing Blockset

chirp
spectrogram

Signal Processing Toolbox
Signal Processing Toolbox

Cholesky Factorization

Purpose

Library

Description

Factor square Hermitian positive definite matrix into triangular components

Math Functions / Matrices and Linear Algebra / Matrix Factorizations dspfactors

The Cholesky Factorization block uniquely factors the square Hermitian positive definite input matrix S as

$$
S=L L^{*}
$$

where L is a lower triangular square matrix with positive diagonal elements and L^{*} is the Hermitian (complex conjugate) transpose of L. The block outputs a matrix with lower triangle elements from L and upper triangle elements from L^{*}. The output is always sample based. The output is not in the same form as the output of the MATLAB chol function. In order to convert the output of the Cholesky Factorization block to the MATLAB form, use the following equation:

$$
\mathrm{R}=\operatorname{triu}\left(L L^{\prime}\right) ;
$$

Here, LL' is the output of the Cholesky Factorization block. Due to roundoff error, these equations do not produce a result that is exactly the same as the MATLAB result.

Block Output Composed of \mathbf{L} and \mathbf{L}^{*}

Cholesky Factorization

Input Requirements for Valid Output

The block output is valid only when its input has the following characteristics:

- Hermitian - The block does not check whether the input is Hermitian; it uses only the diagonal and upper triangle of the input to compute the output.
- Real-valued diagonal entries - The block disregards any imaginary component of the input's diagonal entries.
- Positive definite - Set the block to notify you when the input is not positive definite as described in "Response to Nonpositive Definite Input" on page 2-169.

Response to Nonpositive Definite Input

To generate a valid output, the block algorithm requires a positive definite input (see "Input Requirements for Valid Output" on page $2-169)$. Set the Non-positive definite input parameter to determine how the block responds to a nonpositive definite input:

- Ignore - Proceed with the computation and do not issue an alert. The output is not a valid factorization. A partial factorization will be present in the upper left corner of the output.
- Warning - Display a warning message in the MATLAB Command Window, and continue the simulation. The output is not a valid factorization. A partial factorization will be present in the upper left corner of the output.
- Error - Display an error dialog and terminate the simulation.

> Note The Non-positive definite input parameter is a diagnostic parameter. Like all diagnostic parameters on the Configuration Parameters dialog box, it is set to Ignore in the code generated for this block by Real-Time Workshop code generation software.

Performance Comparisons with Other Blocks

Note that L and L^{*} share the same diagonal in the output matrix. Cholesky factorization requires half the computation of Gaussian elimination (LU decomposition), and is always stable.

Dialog Box

Non-positive definite input

Response to nonpositive definite matrix inputs: Ignore, Warning, or Error. See "Response to Nonpositive Definite Input" on page 2-169.

References

Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.

Supported Data Types

Port	Supported Data Types
S	• Double-precision floating point
	• Single-precision floating point

Cholesky Factorization

See Also	Autocorrelation LPC	Signal Processing Blockset
Cholesky Inverse	Signal Processing Blockset	
Cholesky Solver	Signal Processing Blockset	
LDL Factorization	Signal Processing Blockset	
LU Factorization	Signal Processing Blockset	
QR Factorization	Signal Processing Blockset	
chol	MATLAB	

See "Matrix Factorizations" for related information.

Cholesky Inverse

Purpose

Library

Description

```
Sym. Pos. Def.
    Inverse
    (Ghol)
```

Compute inverse of Hermitian positive definite matrix using Cholesky factorization

Math Functions / Matrices and Linear Algebra / Matrix Inverses dspinverses

The Cholesky Inverse block computes the inverse of the Hermitian positive definite input matrix S by performing Cholesky factorization.

$$
S^{-1}=\left(L L^{*}\right)^{-1}
$$

L is a lower triangular square matrix with positive diagonal elements and L^{*} is the Hermitian (complex conjugate) transpose of L. Only the diagonal and upper triangle of the input matrix are used, and any imaginary component of the diagonal entries is disregarded. Cholesky factorization requires half the computation of Gaussian elimination (LU decomposition), and is always stable. The output is always sample based.

Response to Nonpositive Definite Input

The algorithm requires that the input be Hermitian positive definite. When the input is not positive definite, the block reacts with the behavior specified by the Non-positive definite input parameter. The following options are available:

- Ignore - Proceed with the computation and do not issue an alert. The output is not a valid inverse.
- Warning - Display a warning message in the MATLAB Command Window, and continue the simulation. The output is not a valid inverse.
- Error - Display an error dialog box and terminate the simulation.

Dialog
Box

Note The Non-positive definite input parameter is a diagnostic parameter. Like all diagnostic parameters on the Configuration Parameters dialog box, it is set to Ignore in the code generated for this block by Real-Time Workshop code generation software.

Non-positive definite input

Response to nonpositive definite matrix inputs: Ignore, Warning, or Error. See "Response to Nonpositive Definite Input" on page 2-172.

References

Supported Data
Types

Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.

See Also

Cholesky Factorization

Cholesky Solver Signal Processing Blockset

Cholesky Inverse

LDL Inverse	Signal Processing Blockset
LU Inverse	Signal Processing Blockset
Pseudoinverse	Signal Processing Blockset
inv	MATLAB

See "Matrix Inverses" for related information.

Purpose

Solve $S \mathrm{X}=B$ for X when S is square Hermitian positive definite matrix

Library

Description

Math Functions / Matrices and Linear Algebra / Linear System Solvers dspsolvers

The Cholesky Solver block solves the linear system $S \mathrm{X}=B$ by applying Cholesky factorization to input matrix at the S port, which must be square (M-by- M) and Hermitian positive definite. Only the diagonal and upper triangle of the matrix are used, and any imaginary component of the diagonal entries is disregarded. The input to the B port is the
right side M-by- N matrix, B. The output is the unique solution of the equations, M-by- N matrix X, and is always sample based.
A length- M vector input for right side B is treated as an M-by- 1 matrix.

Response to Nonpositive Definite Input

When the input is not positive definite, the block reacts with the behavior specified by the Non-positive definite input parameter. The following options are available:

- Ignore - Proceed with the computation and do not issue an alert. The output is not a valid solution.
- Warning - Proceed with the computation and display a warning message in the MATLAB Command Window. The output is not a valid solution.
- Error - Display an error dialog box and terminate the simulation.

Note The Non-positive definite input parameter is a diagnostic parameter. Like all diagnostic parameters on the Configuration Parameters dialog box, it is set to Ignore in the code generated for this block by Real-Time Workshop code generation software.

Algorithm

Dialog
Box

Cholesky factorization uniquely factors the Hermitian positive definite input matrix S as

$$
S=L L^{*}
$$

where L is a lower triangular square matrix with positive diagonal elements.

The equation $S X=B$ then becomes

$$
L L^{*} X=B
$$

which is solved for X by making the substitution $Y=L^{*} X$, and solving the following two triangular systems by forward and backward substitution, respectively.

$$
\begin{aligned}
& L Y=B \\
& L^{*} X=Y
\end{aligned}
$$

Non-positive definite input

Response to nonpositive definite matrix inputs: Ignore, Warning, or Error. See "Response to Nonpositive Definite Input" on page 2-175.

Supported	- Double-precision floating point
Data	- Single-precision floating point
Types	

See Also

Autocorrelation LPC	Signal Processing Blockset
Cholesky Factorization	Signal Processing Blockset
Cholesky Inverse	Signal Processing Blockset
LDL Solver	Signal Processing Blockset
LU Solver	Signal Processing Blockset
QR Solver	Signal Processing Blockset

chol
MATLAB
See "Linear System Solvers" for related information.

CIC Compensator

Purpose	Design CIC compensator
Library	Filtering / Filter Design Toolbox
	dspfdesign

Description

This block brings the functionality of the Filter Design Toolbox filterbuilder function to the Simulink environment. You must have a Filter Design Toolbox product license to design filters with this block. However, you can run models containing this block without a license. This allows you to run a model sent to you by a colleague who has designed a filter using this block, even if you do not have the Filter Design Toolbox product.

Dialog Box

See "CIC Compensator Filter Design Dialog Box - Main Pane" in the Filter Design Toolbox documentation for more information about the parameters of this block. The Data Types pane is not available for Filter Design Toolbox blocks in the Signal Processing Blockset product.

Parameters of this block that do not change filter order or structure are tunable. Tunable parameters are enabled during simulation; nontunable parameters are not.

Supported Data Types

Port	Supported Data Types
Input	• Double-precision floating point
	- Single-precision floating point
	• Fixed point
	• 8-, 16-, and 32-bit signed integers
	• 8-, 16-, and 32-bit unsigned integers
Output	• Double-precision floating point
	• Single-precision floating point
	• Fixed point

CIC Compensator

Port	Supported Data Types
	 $\bullet 8-, 16$-, and 32 -bit signed integers $\bullet 8-, 16$-, and 32-bit unsigned integers

CIC Decimation

Library

Description

Purpose Decimate signal using Cascaded Integrator-Comb filter
Filtering / Multirate Filters
dspmlti4
The CIC Decimation block performs a sample rate decrease (decimation) on an input signal by an integer factor. Cascaded Integrator-Comb (CIC) filters are a class of linear phase FIR filters comprised of a comb part and an integrator part.

The transfer function of a CIC decimator filter is

$$
H(z)=H_{I}^{N}(z) H_{c}{ }^{N}(z)=\frac{\left(1-z^{-R M}\right)^{N}}{\left(1-z^{-1}\right)^{N}}=\left[\sum_{k=0}^{R M-1} z^{-k}\right]^{N}
$$

where

- H_{I} is the transfer function of the integrator part of the filter.
- H_{C} is the transfer function of the comb part of the filter.
- N is the number of sections. The number of sections in a CIC filter is defined as the number of sections in either the comb part or the integrator part of the filter, not as the total number of sections throughout the entire filter.
- R is the decimation factor.
- M is the differential delay.

The CIC Decimation block supports real and complex fixed-point inputs. Each channel of a complex input is treated as two real input channels.

CIC Filter Structure

The filter structures supported by the CIC Decimation and CIC Interpolation blocks exactly match those created by Filter Design Toolbox mfilt CIC objects. If you have the Filter Design Toolbox and

CIC Decimation

Fixed-Point Toolbox products installed, you can create an mfilt object in any workspace to specify in the Multirate filter variable parameter of this block. Otherwise, you can specify the CIC filter completely using only block dialog parameters.

This block can be used to create the following CIC filter structure. This decimator has a latency of N, where N is the number of sections in either the comb or the integrator part of the filter.

Examples

Dialog

 BoxThe GSM Digital Down Converter demo provides an example of using the CIC Decimation block.

Coefficient Source

The CIC Decimation block can operate in two different modes. Select the mode in the Coefficient source group box. If you select

- Dialog parameters, you enter information about the filter such as structure and coefficients in the block mask.
- Multirate filter object (MFILT), you specify the filter using a Filter Design Toolbox mfilt object, if you have the Filter Design Toolbox and Fixed-Point Toolbox products installed.

Different items appear on the CIC Decimation block dialog depending on whether you select Dialog parameters or Multirate filter object (MFILT) in the Coefficient source group box. See the following sections for details:

- "Specify Filter Characteristics in Dialog" on page 2-182
- "Specify Multirate Filter Object" on page 2-186

CIC Decimation

Specify Filter Characteristics in Dialog

The Main pane of the CIC Decimation block dialog appears as follows when Dialog parameters is selected in the Coefficient source group box.

Decimation factor (R)

Specify the decimation factor of the filter.

CIC Decimation

Differential delay (M)

Specify the differential delay of the comb part of the filter, M, as shown in the diagram in "CIC Filter Structure" on page 2-180.

Number of sections (N)

Specify the number of filter sections. This number is equal to the number of sections in either the comb part of the filter or in the integrator part of the filter. This value is not equal to the total number of sections in the comb and integrator parts combined.

Data type specification mode

Choose how you specify the fixed-point word length and fraction length of the filter sections and/or output.

- Full precision - In this mode, the word and fraction lengths of the filter sections and outputs are automatically selected for you. All word lengths are set to

$$
\text { word length }=\operatorname{ceil}\left(N * \log _{2}(M * R)\right)+I
$$

where

- I = input word length
- $\mathrm{M}=$ differential delay
- $\mathrm{N}=$ number of sections
$-\mathrm{R}=$ decimation factor
All fraction lengths are set to the input fraction length.
- Minimum section word lengths - In this mode, you specify the word length of the filter output in the Output word length parameter. The word lengths of the filter sections and all fraction lengths are automatically selected for you such that each of the section word lengths is as small as possible. The precision of each filter section is less than in Full precision mode, but the range of each section is preserved.
- Specify word lengths - In this mode you specify the word lengths of the filter sections and output in the Section word

CIC Decimation

lengths and Output word length parameters. The fraction lengths of the filter sections and output are automatically selected for you such that when least significant bits are discarded at each section, the range of that section is preserved.

- Binary point scaling - In this mode you fully specify the word and fraction lengths of the filter sections and output in the Section word lengths, Section fraction lengths, Output word length, and Output fraction length parameters.

Section word lengths

Specify the word length, in bits, of the filter sections.
This parameter is only visible if Specify word lengths or Binary point scaling is selected for the Data type specification mode parameter.

Section fraction lengths

Specify the fraction length of the filter sections.
This parameter is only visible if Binary point scaling is selected for the Data type specification mode parameter.

Output word length

Specify the word length, in bits, of the filter output.
This parameter is only visible if Minimum section word lengths, Specify word lengths, or Binary point scaling is selected for the Data type specification mode parameter.

Output fraction length

Specify the fraction length of the filter output.
This parameter is only visible if Binary point scaling is selected for the Data type specification mode parameter.

View filter response

This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox product and displays the filter response

CIC Decimation

of the filter defined in the block. For more information on FVTool, see the Signal Processing Toolbox documentation.

Note This button is only available when the Filter Design Toolbox and Fixed-Point Toolbox products are installed. If you specify a filter in the Multirate filter variable parameter, you must apply the filter by clicking the Apply button before using the View filter response button.

CIC Decimation

Specify Multirate Filter Object

The Main pane of the CIC Decimation block dialog appears as follows when Multirate filter object (MFILT) is specified in the Coefficient source group box.

Multirate filter variable

Specify the multirate filter object (mfilt) that you would like the block to implement. You can do this in one of three ways:

- You can fully specify the mfilt object in the block mask.
- You can enter the variable name of a mfilt object that is defined in any workspace.
- You can enter a variable name for a mfilt object that is not yet defined, as shown in the default value.
For more information on creating mfilt objects, see the mfilt function reference page in the Filter Design Toolbox documentation.

View filter response

This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox product and displays the filter response of the mfilt object specified in the Multirate filter variable parameter. For more information on FVTool, see the Signal Processing Toolbox documentation.

Note This button is only available when the Filter Design Toolbox and Fixed-Point Toolbox products are installed. If you specify a filter in the Multirate filter variable parameter, you must apply the filter by clicking the Apply button before using the View filter response button.

References

[1] Hogenauer, E.B., "An Economical Class of Digital Filters for Decimation and Interpolation," IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-29(2): pp. 155-162, 1981.
[2] Meyer-Baese, U., Digital Signal Processing with Field Programmable Gate Arrays, Springer Verlag, 2001.
[3] Harris, Fredric J., Multirate Signal Processing for Communication Systems, Prentice Hall PTR, 2004.

CIC Decimation

Supported	- Fixed point (signed only)
Data	- $8-, 16$-, and 32 -bit signed integers
Types	

See Also	CIC Interpolation	Signal Processing Blockset
FIR Decimation	Signal Processing Blockset	
FIR Interpolation	Signal Processing Blockset	
	filter	Filter Design Toolbox
	mfilt.cicdecim	Filter Design Toolbox
	mfilt.cicinterp	Filter Design Toolbox

Purpose	Design Cascaded Integrator-Comb (CIC) Filter
Library	Filtering / Filter Design Toolbox
	dspfdesign

Description This block brings the functionality of the Filter Design Toolbox
 filterbuilder function to the Simulink environment. You must have a Filter Design Toolbox product license to design filters with this block. However, you can run models containing this block without a license. This allows you to run a model sent to you by a colleague who has designed a filter using this block, even if you do not have the Filter Design Toolbox product.

Dialog Box

See "CIC Filter Design Dialog Box - Main Pane" in the Filter Design Toolbox documentation for more information about the parameters of this block.

Parameters of this block that do not change filter order or structure are tunable. Tunable parameters are enabled during simulation; nontunable parameters are not.

Supported Data Types

Port	Supported Data Types
Input	• Double-precision floating point
	- Single-precision floating point
	• Fixed point
	• 8-, 16-, and 32-bit signed integers
	• 8-, 16-, and 32-bit unsigned integers
Output	• Fixed point

CIC Interpolation

Purpose
Library

Description

Interpolate signal using Cascaded Integrator-Comb filter
Filtering / Multirate Filters
dspmlti4
The CIC Interpolation block performs a sample rate increase (interpolation) on an input signal by an integer factor. Cascaded Integrator-Comb (CIC) filters are a class of linear phase FIR filters comprised of a comb part and an integrator part.

The transfer function of a CIC interpolator filter is

$$
H(z)=H_{I}^{N}(z) H_{C}^{N}(z)=\frac{\left(1-z^{-R M}\right)^{N}}{\left(1-z^{-1}\right)^{N}}=\left[\sum_{k=0}^{R M-1} z^{-k}\right]^{N}
$$

where

- H_{I} is the transfer function of the integrator part of the filter.
- H_{C} is the transfer function of the comb part of the filter.
- N is the number of sections. The number of sections in a CIC filter is defined as the number of sections in either the comb part or the integrator part of the filter, not as the total number of sections throughout the entire filter.
- R is the interpolation factor.
- M is the differential delay.

The CIC Interpolation block supports real and complex fixed-point inputs. Each channel of a complex input is treated as two real input channels.

CIC Filter Structure

The filter structures supported by the CIC Interpolation and CIC Decimation blocks exactly match those created by Filter Design Toolbox mfilt CIC objects. If you have the Filter Design Toolbox and

Fixed-Point Toolbox products installed, you can create an mfilt object in any workspace to specify in the Multirate filter variable parameter of this block. Otherwise, you can specify the CIC filter completely using only block dialog parameters.
This block can be used to create the following CIC filter structure. This interpolator has a latency of N, where N is the number of sections in either the comb or the integrator part of the filter.

Dialog Box

Coefficient Source

The CIC Interpolation block can operate in two different modes. Select the mode in the Coefficient source group box. If you select

- Dialog parameters, you enter information about the filter such as structure and coefficients in the block mask
- Multirate filter object (MFILT), you specify the filter using a Filter Design Toolbox mfilt object, if you have the Filter Design Toolbox and Fixed-Point Toolbox products installed.

Different items appear on the CIC Interpolation block dialog depending on whether you select Dialog parameters or Multirate filter object (MFILT) in the Coefficient source group box. See the following sections for details:

- "Specify Filter Characteristics in Dialog" on page 2-191
- "Specify Multirate Filter Object" on page 2-195

Specify Filter Characteristics in Dialog

The Main pane of the CIC Interpolation block dialog appears as follows when Dialog parameters is selected in the Coefficient source group box.

CIC Interpolation

Interpolation factor (R)

Specify the interpolation factor of the filter.

Differential delay (M)

Specify the differential delay of the comb portion of the filter, M, as shown in the diagram in "CIC Filter Structure" on page 2-190.

CIC Interpolation

Number of sections (N)

Specify the number of filter sections. This number is equal to the number of sections in either the comb part of the filter or in the integrator part of the filter. This value is not equal to the total number of sections in the comb and integrator parts combined.

Data type specification mode

Choose how you specify the fixed-point word length and fraction length of the filter sections and/or output.

- Full precision - In this mode, the word and fraction lengths of the filter sections and outputs are automatically selected for you. The output and last section word lengths are set to

$$
\text { word length }=\operatorname{ceil}\left(\log _{2}\left(\frac{(R * M)^{N}}{R}\right)\right)+I
$$

where

- I = input word length
- $\mathrm{M}=$ differential delay
- $\mathrm{N}=$ number of sections
$-\mathrm{R}=$ interpolation factor
The other section word lengths are set is such a way as to accommodate the bit growth, as described in Hogenauer's paper [1]. All fraction lengths are set to the input fraction length.
- Minimum section word lengths - In this mode, you specify the word length of the filter output in the Output word length parameter. The word lengths of the filter sections are set in the same way as in Full precision mode.

The section fraction lengths are set to the input fraction length. The output fraction length is set to the input fraction length minus the difference between the last section and output word lengths.

CIC Interpolation

- Specify word lengths - In this mode you specify the word lengths of the filter sections and output in the Section word lengths and Output word length parameters. The fraction lengths of the filter sections are set such that the spread between word length and fraction length is the same as in full-precision mode. The output fraction length is set to the input fraction length minus the difference between the last section and output word lengths.
- Binary point scaling - In this mode you fully specify the word and fraction lengths of the filter sections and output in the Section word lengths, Section fraction lengths, Output word length, and Output fraction length parameters.

Section word lengths

Specify the word length, in bits, of the filter sections.
This parameter is only visible if Specify word lengths or Binary point scaling is selected for the Data type specification mode parameter.

Section fraction lengths

Specify the fraction length of the filter sections.
This parameter is only visible if Binary point scaling is selected for the Data type specification mode parameter.

Output word length

Specify the word length, in bits, of the filter output.
This parameter is only visible if Minimum section word lengths, Specify word lengths, or Binary point scaling is selected for the Data type specification mode parameter.

Output fraction length

Specify the fraction length of the filter output.
This parameter is only visible if Binary point scaling is selected for the Data type specification mode parameter.

CIC Interpolation

Framing

For frame-based operation, specify the method by which to implement the interpolation; increase the output frame rate, or increase the output frame size. This parameter cannot be set to Maintain input frame rate for sample-based signals.

View filter response

This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox product and displays the filter response of the mfilt object specified in the Multirate filter variable parameter. For more information on FVTool, see the Signal Processing Toolbox documentation.

Note This button is only available when the Filter Design Toolbox and Fixed-Point Toolbox products are installed. If you specify a filter in the Multirate filter variable parameter, you must apply the filter by clicking the Apply button before using the View filter response button.

Specify Multirate Filter Object

The Main pane of the CIC Interpolation block dialog appears as follows when Multirate filter object (MFILT) is specified in the Coefficient source group box.

CIC Interpolation

Multirate filter variable

Specify the multirate filter object (mfilt) that you would like the block to implement. You can do this in one of three ways:

- You can fully specify the mfilt object in the block mask.
- You can enter the variable name of a mfilt object that is defined in any workspace.
- You can enter a variable name for a mfilt object that is not yet defined, as shown in the default value.
For more information on creating mfilt objects, see the mfilt function reference page in the Filter Design Toolbox documentation.

Framing

For frame-based operation, specify the method by which to implement the interpolation; increase the output frame rate, or increase the output frame size. This parameter cannot be set to Maintain input frame rate for sample-based signals.

View filter response

This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox product and displays the filter response of the mfilt object specified in the Multirate filter variable parameter. For more information on FVTool, see the Signal Processing Toolbox documentation.

Note This button is only available when the Filter Design Toolbox and Fixed-Point Toolbox products are installed. If you specify a filter in the Multirate filter variable parameter, you must apply the filter by clicking the Apply button before using the View filter response button.

References

[1] Hogenauer, E.B., "An Economical Class of Digital Filters for Decimation and Interpolation," IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-29(2): pp. 155-162, 1981.
[2] Meyer-Baese, U., Digital Signal Processing with Field Programmable Gate Arrays, Springer Verlag, 2001.

CIC Interpolation

[3] Harris, Fredric J., Multirate Signal Processing for Communication Systems, Prentice Hall PTR, 2004.

Supported Data Types

- Fixed point (signed only)
- 8 -, 16-, and 32 -bit signed integers

See Also

CIC Decimation	Signal Processing Blockset
FIR Decimation	Signal Processing Blockset
FIR Interpolation	Signal Processing Blockset
filter	Filter Design Toolbox
mfilt.cicdecim	Filter Design Toolbox
mfilt.cicinterp	Filter Design Toolbox

Complex Cepstrum

Purpose	Compute complex cepstrum of input
Library	Transforms dspxfrm3
Description	The Complex Cepstrum block computes the complex cepstrum of each channel in the real-valued M-by- N input matrix, u. For both sample-based and frame-based inputs, the block assumes that each input column is a frame containing M consecutive samples from an independent channel. The block does not accept complex-valued inputs. Gemptrum
The input is altered by the application of a linear phase term so that there is no phase discontinuity at $\pm n$ radians. That is, each input channel is independently zero padded and circularly shifted to have zero phase at Π radians.	
The output is a real M_{o}-by- N matrix, where M is specified by the FFT length parameter. Each output column contains the length- M_{o} complex cepstrum of the corresponding input column.	
y = cceps (u, Mo) \quad \% Equivalent MATLAB code	

Complex Cepstrum

Dialog
 Box

Inherit FFT length from input port dimensions
When selected, matches the output frame size to the input frame size.

FFT length

The number of frequency points at which to compute the FFT, which is also the output frame size, M_{o}. This parameter is available when you do not select Inherit FFT length from input port dimensions.

Supported
 Data
 Types

- Double-precision floating point
- Single-precision floating point

See Also

DCT	Signal Processing Blockset
FFT	Signal Processing Blockset
Real Cepstrum	Signal Processing Blockset
cceps	Signal Processing Toolbox

Complex Exponential

Purpose

Compute complex exponential function

Library

Math Functions / Math Operations
dspmathops
Description
$\exp (k)=$

Dialog
Box function for each element of the real input, u.

$$
y=e^{j u}=\cos u+j \sin u
$$ status as the input.

The Complex Exponential block computes the complex exponential
where $j=\sqrt{-1}$. The output is complex, with the same size and frame
Block Parameters: Complex Exponential

| Complex Exponential (mask)- |
| :--- | :--- |
| Compute the complex exponential function of real inputs via |
| Euler's formula, $y=\cos (x)+\sin (x)$. |

OK	Cancel	Help

Supported Data Types

See Also

- Double-precision floating point
- Single-precision floating point

Simulink
Signal Processing Blockset
MATLAB

Constant

Purpose Generate constant value
Library Signal Processing Sources
dspsrcs4
Description
The Constant block is an implementation of the Simulink Constant block. See Constant for more information.

Constant Diagonal Matrix

Purpose
Library
Generate square, diagonal matrix

- Signal Processing Sources dspsrcs4
- Math Functions / Matrices and Linear Algebra / Matrix Operations dspmtrx3

Description

Dialog Box

The Constant Diagonal Matrix block outputs a square diagonal matrix constant. The Constant along diagonal parameter determines the values along the matrix diagonal. This parameter can be a scalar to be repeated for all elements along the diagonal, or a vector containing the values of the diagonal elements. To generate the identity matrix, set the Constant along diagonal to 1 , or use the Identity Matrix block.

The output is frame based when you select the Frame-based output check box; otherwise, the output is sample based.

The Main pane of the Constant Diagonal Matrix block dialog appears as follows.

Constant Diagonal Matrix

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters During Simulation" in the online Simulink documentation for details.

Constant(s) along diagonal

Specify the values of the elements along the diagonal. You can input a scalar or a vector. Tunable.

When you specify any data type information in this field, it is overridden by the value of the Output data type parameter on the Data Types pane, unless you select Inherit from 'Constant(s) along diagonal'.

Frame-based output

Select to cause the output of the block to be frame based. Otherwise, the output is sample based.

The Data types pane of the Constant Diagonal Matrix block dialog appears as follows.

Output data type

Specify the output data type in one of the following ways:

- Choose one of the built-in data types from the list.

Constant Diagonal Matrix

- Choose Fixed-point to specify the output data type and scaling in the Signed, Word length, Set fraction length in output to, and Fraction length parameters.
- Choose User-defined to specify the output data type and scaling in the User-defined data type, Set fraction length in output to, and Fraction length parameters.
- Choose Inherit from 'Constant(s) along diagonal' to set the output data type and scaling to match the values of the Constant(s) along diagonal parameter on the Main pane.
- Choose Inherit via back propagation to set the output data type and scaling to match the next block downstream.

The value of this parameter overrides any data type information specified in the Constant(s) along diagonal parameter on the Main pane, except when you select Inherit from 'Constant(s) along diagonal'.

Signed
Select to output a signed fixed-point signal. Otherwise, the signal is unsigned. This parameter is only visible when you select Fixed-point for the Output data type parameter.

Word length

Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible when you select Fixed-point for the Output data type parameter.

User-defined data type

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the following Simulink ${ }^{\circledR}$ Fixed Point ${ }^{\text {TM }}$ functions: sfix, ufix, sint, uint, sfrac, and ufrac. This parameter is only visible when you select User-defined for the Output data type parameter.

Set fraction length in output to

Specify the scaling of the fixed-point output by either of the following two methods:

Constant Diagonal Matrix

- Choose Best precision to have the output scaling automatically set such that the output signal has the best possible precision.
- Choose User-defined to specify the output scaling in the Fraction length parameter.

This parameter is only visible when you select Fixed-point for the Output data type parameter, or when you select User-defined and the specified output data type is a fixed-point data type.

Fraction length

For fixed-point output data types, specify the number of fractional bits, or bits to the right of the binary point. This parameter is only visible when you select Fixed-point or User-defined for the Output data type parameter and User-defined for the Set fraction length in output to parameter.

Supported
 Data Types

- Double-precision floating point
- Single-precision floating point
- Fixed point
- 8 -, 16-, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

See Also

Create Diagonal Matrix	Signal Processing Blockset
Constant	Simulink
Identity Matrix	Signal Processing Blockset
diag	MATLAB

Constant Ramp

Purpose	Generate ramp signal with length based on input dimensions
Library	Signal Operations dspsigops
Description	The Constant Ramp block generates the constant ramp signal
$y=(0: L-1) * m+b$	

where m is the slope specified by the scalar Slope parameter, and b is the y-intercept specified by the scalar Offset parameter.
For a 1-D vector input, L is equal to the length of the input vector. For an N-D array input, the length L of the output ramp is equal to the length of the input in the dimension specified by the Ramp length equals number of or Dimension parameter. The output, y, is always a 1-D vector.

Constant Ramp

Dialog Box

The Main pane of the Constant Ramp block dialog appears as follows

Ramp length equals number of

Specify whether the length of the output ramp is the number of rows, number of columns, or the length of the specified dimension of the input.

Dimension

Specify the one-based dimension of the input array that determines the length of the output ramp.

This parameter is only visible when you select Elements in specified dimension for the Ramp length equals number of parameter.

Slope

Specify the scalar slope of the ramp.

Constant Ramp

Offset

Specify the scalar y-intercept of the ramp.
The Data types pane of the Constant Ramp block dialog appears as follows.

Output data type

Specify the output data type in one of the following ways:

- Select Same as input to force the data type of the output to be the same as the data type of the input to the block.
- Select one of the built-in data types from the list.
- Select Fixed-point to specify the output data type and scaling in the Signed, Word length, Set fraction length in output to, and Fraction length parameters.

Constant Ramp

- Select User-defined to specify the output data type and scaling in the User-defined data type, Set fraction length in output to, and Fraction length parameters.
- Select Inherit via back propagation to set the output data type and scaling to match the next block downstream.

This block differs from other Signal Processing Blockset blocks in that unless you choose Same as input for this parameter, the data types of the input and the output do not need to be the same.

Signed

Select to output a signed fixed-point signal. Otherwise, the signal is unsigned. This parameter is only visible when you select Fixed-point for the Output data type parameter.

Word length

Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible when you select Fixed-point for the Output data type parameter.

User-defined data type

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the following Simulink Fixed Point functions: sfix, ufix, sint, uint, sfrac, and ufrac. This parameter is only visible when you select User-defined for the Output data type parameter.

Set fraction length in output to

Specify the scaling of the fixed-point output by either of the following two methods:

- Select Best precision to have the output scaling automatically set such that the output signal has the best possible precision.
- Select User-defined to specify the output scaling in the Fraction length parameter.

This parameter is only visible when you select Fixed-point for the Output data type parameter, or when you select

User-defined and the specified output data type is a fixed-point data type.

Fraction length

For fixed-point output data types, specify the number of fractional bits, or bits to the right of the binary point. This parameter is only visible when you select Fixed-point or User-defined for the Output data type parameter and User-defined for the Set fraction length in output to parameter.

Supported Data Types

- Double-precision floating point
- Single-precision floating point
- Fixed point
- 8 -, 16-, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

This block differs from other Signal Processing Blockset blocks in that unless you choose Same as input for the Output data type parameter, the data types of the input and the output do not need to be the same.

See Also

Create Diagonal	Signal Processing Blockset
Matrix	
Constant	Simulink
Identity Matrix	Signal Processing Blockset

Contiguous Copy (Obsolete)

Purpose	Create discontiguous input in contiguous block of memory
Library	dspobslib

Description

Contiguous Gopy

Note The Contiguous Copy block is still supported but is likely to be obsoleted in a future release.

The Contiguous Copy block copies the input to a contiguous block of memory, and passes this new copy to the output. The output is identical to the input, but is guaranteed to reside in a contiguous section of memory.

Because Simulink software employs an efficient copy-by-reference method for propagating data in a model, some operations produce outputs with discontiguous memory locations.

Although this does not present a problem during simulation, blocks linked to versions of DSP Blockset prior to 4.0 may require contiguous inputs for code generation with the Real-Time Workshop product. When such blocks are used in a model intended for code generation, they should be preceded by the Contiguous Copy block to ensure that their inputs are contiguous.

Dialog Box

Contiguous Copy (Obsolete)

Supported	- Double-precision floating point
Data	- Single-precision floating point
Types	- Fixed point
	- Boolean
	• $8-16$-, and 32 -bit signed integers
	- 8 -, 16-, and 32 -bit unsigned integers

Convert 1-D to 2-D

Purpose
Library

Description

reshape(U,M,N)

Reshape 1-D or 2-D input to 2-D matrix with specified dimensions

Signal Management / Signal Attributes
dspsigattribs
The Convert 1-D to 2-D block reshapes a length- M_{i} 1-D vector or an M_{i}-by- N_{i} matrix to an M_{o}-by- N_{o} matrix, where M_{o} is specified by the Number of output rows parameter, and N_{o} is specified by the Number of output columns parameter.

$$
y=\text { reshape }(u, \text { Mo,No }) \quad \text { E Equivalent MATLAB code }
$$

The input is reshaped columnwise, as shown in the two cases below. The length- 6 vector and the 2 -by- 3 matrix are both reshaped to the same 3 -by- 2 output matrix.

An error is generated when $\left(M_{o}{ }^{*} N_{o}\right) \neq\left(M_{i}{ }^{*} N_{i}\right)$. That is, the total number of input elements must be conserved in the output.

The output is frame based when you select the Frame-based output check box; otherwise, the output is sample based.

Dialog
Box
Block Parameters: Convert
Convert 1-D to 2-D (mask) link)
Output a (2-D) matrix signal.
Parameters
Number of output rows:
1
Number of output columns:
1
Γ Frame-based output
\square Apply

Number of output rows

The number of rows, M_{o}, in the output matrix.

Number of output columns

The number of rows, N_{o}, in the output matrix.

Frame-based output

Creates a frame-based output when selected.

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating point
	• Single-precision floating point
	- Fixed point (signed and unsigned)
	- Boolean
	• $8-16$-, and 32 -bit signed integers

Convert 1-D to 2-D

Port	Supported Data Types
	• 8-, 16-, and 32-bit unsigned integers
Output	• Double-precision floating point
	• Single-precision floating point
	• Fixed point (signed and unsigned)
	• Boolean
	$\bullet 8-, 16-$, and 32 -bit signed integers
	$\bullet 8-, 16-$, and 32 -bit unsigned integers

See Also

Buffer
Convert 2-D to 1-D Signal Processing Blockset
Frame Status Conversion (Obsolete)
Reshape
Submatrix
Signal Processing Blockset
Signal Processing Blockset
Simulink
Signal Processing Blockset

Purpose

Library

Description

Convert 2-D matrix input to 1-D vector
Signal Management / Signal Attributes dspsigattribs

The Convert 2-D to 1-D block reshapes an M-by- N matrix input to a 1-D vector with length $M^{*} N$.

$$
y=u(:) \quad \% \text { Equivalent MATLAB code }
$$

The input is reshaped columnwise, as shown below for a 3-by-2 matrix.

The output is always sample-based.

Dialog Box

Block Parameters: Convert 2-D to 1-D ?
-Convert 2-D to 1-D (mask) (link)
Output a (1-D) vector signal.

Convert 2-D to 1-D

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Boolean - 8-, 16 -, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers - Enumerated
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8-, 16-, and 32 -bit unsigned integers - Enumerated

See Also

Buffer	Signal Processing Blockset
Convert 1-D to 2-D	Signal Processing Blockset
Frame Status Conversion (Obsolete)	Signal Processing Blockset
Reshape	
Submatrix	Simulink
	Signal Processing Blockset

Convolution

Purpose
 Library
 Description
 CONV

Compute convolution of two inputs

Signal Operations

```
dspsigops
```

The Convolution block convolves the first dimension of a sample-based N-D input array u, with the first dimension of a sample-based N -D input array v. The block can also independently convolve a sample-based vector with the first-dimension of an N-D input array. For frame-based inputs, the Convolution block convolves analogous columns of an M_{u}-by- N input matrix u and an M_{v}-by- N input matrix v. The Convolution block can also independently convolve a single-channel frame-based column vector with each column of a multiple-channel frame-based matrix.

The frame status of both inputs to the Convolution block must be the same. The output of the block is always sample-based.

The Convolution block accepts real and complex floating-point and fixed-point inputs except for complex unsigned fixed-point inputs. Fixed-point signals are not supported for the frequency domain.

Convolution with Signal Processing Blockset Blocks

The general equation for convolution is

$$
y(k)=\sum_{n} u(n-k) * h(k)
$$

There are two Signal Processing Blockset blocks that can be used for this purpose:

- Convolution
- Digital Filter

The Convolution block assumes that all of u and h are available at each Simulink time step, and computes the entire convolution at every one.

Convolution

The Digital Filter block can be used for convolving signals in situations where all of h is available at each time step, but u is a sequence that comes in over the life of the simulation. When you use the Digital Filter block, the convolution is computed only once. To convolve inputs with the Digital Filter block, you must set the Transfer function type to FIR (all zeros).

Use the following questions to help you determine which block best fits your needs:

Question	Answer	Recommended Block(s)
How many convolutions do you intend to perform?	Many convolutions, one at each time step	• Convolution block
	One convolution over the life of the simulation	• Convolution block - Digital Filter block (in FIR mode)
How long are your input sequences?	Both sequences have a finite length	• Convolution block - Digital Filter block (in FIR mode)
	One sequence has an infinite (not predetermined) length	• Digital Filter block (in FIR mode)
How many of the inputs are scalar sample-based streams?	None	• Convolution block • Digital Filter block (in FIR mode)

Convolution

Convolving Frame-Based Inputs

When the inputs to the Convolution block are a frame based M_{u}-by- N input matrix u and an M_{v}-by- N input matrix v, the output, y, is a sample-based $\left(M_{u}+M_{v}-1\right)$-by- N matrix whose j th column has elements

$$
y_{i, j}=\sum_{k=0}^{\max \left(M_{u}, M_{v}\right)-1} u_{k, j} v_{(i-k), j} \quad 0 \leq i \leq\left(M_{u}+M_{v}-2\right)
$$

Inputs u and v are zero when indexed outside of their valid ranges. When both inputs are real, the output is real; when one or both inputs are complex, the output is complex.

When one input is a column vector (single channel) and the other is a matrix (multiple channels), the single-channel input is independently convolved with each channel of the multichannel input. For example, when u is a M_{u}-by- 1 column vector and v is an M_{v}-by- N matrix, the output is an $\left(M_{u}+M_{v}-1\right)$-by- N matrix whose j th column has elements

$$
y_{i, j}=\sum_{k=0}^{\max \left(M_{u}, M_{v}\right)-1} u_{k} v_{(i-k), j} \quad 0 \leq i \leq\left(M_{u}+M_{v}-2\right)
$$

Convolving Sample-Based Inputs

The Convolution block supports sample-based N-D input arrays. The convolution of N-D array input is always computed across the first dimension. If both inputs are N-D arrays, the size of their first dimension can differ, but the size of all other dimensions must be equal. For example, when u is an M_{u}-by- N-by- P array, and v is an M_{v}-by- N-by- P array, the output is an $\left(M_{u}+M_{v}-1\right)$-by- N-by- P array.
When one input is an N-D sample-based array and the other is a vector, the vector is independently convolved with the first dimension of the N -D input. For example, when u is a M_{u}-by- 1 column vector and v is an M_{v}-by- N-by- P array, the output is an $\left(M_{u}+M_{v}-1\right)$-by- N-by- P array.

Convolution

The Convolution block also accepts two vector inputs. When u and v are sample-based vectors with lengths M_{u} and M_{v}, the Convolution block performs the vector convolution

$$
y_{i}=\sum_{k=0}^{\max \left(M_{u}, M_{v}\right)-1} u_{k} v_{(i-k)} \quad 0 \leq i \leq\left(M_{u}+M_{v}-2\right)
$$

The dimensions of the sample-based output vector are determined by the dimensions of the input vectors:

- When both inputs are row vectors, or when one input is a row vector and the other is a 1-D vector, the output is a 1-by- $\left(M_{\mathrm{u}}+M_{\mathrm{v}}-1\right)$ row vector.
- When both inputs are column vectors, or when one input is a column vector and the other is a 1- D vector, the output is a $\left(M_{\mathrm{u}}+M_{\mathrm{v}}-1\right)$-by- 1 column vector.
- When both inputs are 1-D vectors, the output is a 1-D vector of length $M_{\mathrm{u}}+M_{\mathrm{v}}-1$.

Fixed-Point Data Types

The following diagram shows the data types used within the Convolution block for fixed-point signals (time domain only).

Convolution

You can set the product output, accumulator, and output data types in the block dialog as discussed in the next section.

The output of the multiplier is in the product output data type when the input is real. When the input is complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, see "Multiplication Data Types".

Dialog Box

The Main pane of the Convolution block dialog appears as follows.

Function Block Parameters: Convolution
Convolution
Convolve two inputs. The block computes in the time domain or frequency domain. To minimize the nun computations, select "Fastest" in the Computation domain parameter. To minimize memory use, select " Computation domain parameter.

```
Main | Data type attributes 
Parameters
Computation domain: Time
```


Convolution

Computation domain

Set the domain in which the block computes convolutions:

- Time - The block computes in the time domain, which minimizes memory use.
- Frequency - The block computes in the frequency domain, which might require fewer computations than computing in the time domain, depending on the input length.
- Fastest - The block computes in the domain, which minimizes the number of computations.

The Data type attributes pane of the Convolution block dialog appears as follows.

Convolution

Function Block Parameters: Convolution

Convolution

Convolve two inputs. The block computes in the time domain or frequency domain. To minimize the nun computations, select "Fastest" in the Computation domain parameter. To minimize memory use, select " Computation domain parameter.
Main Data type attributes
Fixed-point operational parameters -
Rounding mode: Floor

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When th is floating point, all block data types match the input.

	Data Type		Assistant	Minimum	Max
Product output:	Inherit: Inherit via internal rule	-	>>		
Accumulator:	Inherit: Inherit via internal rule	-	>>		
Output:	Inherit: Same as accumulator	\checkmark	>>	[[

「 Lock scaling against changes by the autoscaling tool

Note Fixed-point signals are only supported for the time domain. To use the parameters on this pane, make sure Time is selected for the Computation domain parameter on the Main pane.

Rounding mode

Select the rounding mode for fixed-point operations.

Convolution

Overflow mode

Select the overflow mode for fixed-point operations.

Product output data type

Specify the product output data type. See "Fixed-Point Data Types" on page 2-222 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button $\quad \gg$ to display the Data Type Assistant, which helps you set the Product output data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Accumulator data type

Specify the accumulator data type. See "Fixed-Point Data Types" on page 2-222 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button $\quad \ggg$ to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Convolution

Output data type

Specify the output data type. See "Fixed-Point Data Types" on page 2-222 for illustrations depicting the use of the output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as accumulator
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button $\quad \ggg$ to display the Data Type Assistant, which helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in Simulink User's Guide for more information.

Minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to - Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

Convolution

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers

See Also
Correlation
conv
Signal Processing Blockset
MATLAB

Correlation

Purpose
 Library
 Description

Compute cross-correlation of two inputs

Statistics
dspstat3

The Correlation block computes the cross-correlation of the first dimension of a sample-based N-D input array u, and the first dimension of a sample-based N-D input array v. The block can also independently cross-correlate a sample-based vector with the first-dimension of an N-D input array. For frame-based inputs, the Correlation block computes the cross-correlation of analogous columns of an M_{u}-by- N input matrix u and an M_{v}-by- N input matrix v. The Correlation block can also independently cross-correlate a single-channel frame-based column vector with each column of a multiple-channel frame-based matrix.

The frame status of both inputs to the Correlation block must be the same. The output of the block is always sample-based.

The Correlation block accepts real and complex floating-point and fixed-point inputs except for complex unsigned fixed-point inputs. Fixed-point signals are not supported for the frequency domain.

Correlating Frame-Based Inputs

When the inputs to the Correlation block are an M_{u}-by- N frame-based input matrix u and an M_{v}-by- N frame-based input matrix v, the output, y, is a sample-based $\left(M_{u}+M_{v}-1\right)$-by- N matrix whose j th column has elements

$$
\begin{array}{ll}
y_{u v(i, j)}=\sum_{k=0}^{\max \left(M_{u}, M_{v}\right)-1} u_{k, j} v_{(k-i), j}^{*} & 0 \leq i<M_{v} \\
y_{u v(i, j)}=y_{v u(-i, j)}^{*} & -M_{u}<i<0
\end{array}
$$

where * denotes the complex conjugate. Inputs u and v are zero when indexed outside of their valid ranges. When both inputs are real,

Correlation

the output is real; when one or both inputs are complex, the output is complex.

When one input is a column vector (single channel) and the other is a matrix (multiple channels), the single-channel input is independently cross-correlated with each channel of the multichannel input. Each column of the input represents a separate channel. For example, when u is a M_{u}-by- 1 column vector and v is an M_{v}-by- N matrix, the output is an ($M_{u}+M_{v}-1$)-by- N matrix whose j th column has elements

$$
\begin{array}{ll}
y_{u v(i, j)}=\sum_{k=0}^{\max \left(M_{u}, M_{v}\right)-1} u_{k} v_{(k-i), j}^{*} & 0 \leq i<M_{v} \\
y_{u v(i, j)}=y_{v u(-i, j)}^{*} & -M_{u}<i<0
\end{array}
$$

Correlating Sample-Based Inputs

The Correlation block supports sample-based N-D array input. The cross-correlation for sample-based N-D inputs is always computed across the first dimension. If both inputs are N-D arrays, the size of their first dimensions can differ, but the size of all other dimensions must be equal. For example, when u is an M_{u}-by- N-by- P array and v is an M_{v}-by- N-by- P array, the output, y, is a sample-based ($M_{u}+M_{v}-1$)-by- N-by- P array.
When one input is an N-D sample-based array and the other is a vector, the vector is independently cross-correlated with each column of the N -D input. For example, when u is a M_{u}-by- 1 column vector and v is an M_{v}-by- N-by- P array, the output is an $\left(M_{u}+M_{v}-1\right)$-by- N-by- P array.

The Correlation block also accepts two vector inputs. When u and v are sample-based column vectors with lengths M_{u} and M_{v}, the Correlation block performs the vector cross-correlation according to the following equation:

Correlation

$$
\begin{array}{ll}
y_{u v(i)}=\sum_{k=0}^{\max \left(M_{u}, M_{v}\right)-1} u_{k} v_{(k-i)}^{*} & 0 \leq i<M_{v} \\
y_{u v(i)}=y_{v u(-i)}^{*} & -M_{u}<i<0
\end{array}
$$

The dimensions of the sample-based output vector are determined by the dimensions of the input vectors:

- When both inputs are column vectors, or when one input is a column vector and the other is a 1- D vector, the output is a $\left(M_{u}+M_{\mathrm{v}}-1\right)$-by- 1 column vector.
- When both inputs are row vectors, or when one input is a row vector and the other is a 1-D vector, the output is a 1-by- $\left(M_{u}+M_{\mathrm{v}}-1\right)$ row vector.
- When both inputs are 1-D vectors, the output is a 1-D vector of length $M_{u}+M_{v}-1$.

Fixed-Point Data Types

The following diagram shows the data types used within the Correlation block for fixed-point signals (time domain only).

Correlation

You can set the product output, accumulator, and output data types in the block dialog as discussed in the next section.

The output of the multiplier is in the product output data type when the input is real. When the input is complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, see "Multiplication Data Types".

The Main pane of the Correlation block dialog appears as follows.

Function Block Parameters: Correlation

Correlation

Correlate two inputs. The block computes in the time domain or frequency domain. To minimize the number : computations, select "Fastest" in the Computation domain parameter. To minimize memory use, select "Time" Computation domain parameter.

```
Main Data type attributes
Parameters
Computation domain: Time
```


Computation domain

Set the domain in which the block computes correlations:

- Time - The block computes in the time domain, which minimizes memory use.
- Frequency - The block computes in the frequency domain, which might require fewer computations than computing in the time domain, depending on the input length.
- Fastest - The block computes in the domain, which minimizes the number of computations.

The Data type attributes pane of the Correlation block dialog appears as follows.

Correlation

Function Block Parameters: Correlation

Correlation

Correlate two inputs. The block computes in the time domain or frequency domain. To minimize the number computations, select "Fastest" in the Computation domain parameter. To minimize memory use, select "Time" Computation domain parameter.
Main Data type attributes
Fixed-point operational parameters -
Rounding mode: Floor Overflow mode: Wrap

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the blo is floating point, all block data types match the input.

「 Lock scaling against changes by the autoscaling tool
OK Cancel Help

Note Fixed-point signals are only supported for the time domain. To use the parameters on this pane, make sure Time is selected for the Computation domain parameter on the Main pane.

Rounding mode

Select the rounding mode for fixed-point operations.

Correlation

Overflow mode

Select the overflow mode for fixed-point operations.

Product output data type

Specify the product output data type. See "Fixed-Point Data Types" on page 2-231 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button $\quad \gg$ to display the Data Type Assistant, which helps you set the Product output data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Accumulator data type

Specify the accumulator data type. See "Fixed-Point Data Types" on page 2-231 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button $\quad \ggg$ to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Correlation

Output data type

Specify the output data type. See "Fixed-Point Data Types" on page 2-231 for illustrations depicting the use of the output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as accumulator
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button \ggg to display the Data Type Assistant, which helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in Simulink User's Guide for more information.

Minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to - Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating point
	- Single-precision floating point
	- Fixed point (signed and unsigned)
	- 8-, 16-, and 32-bit signed integers
	- 8-, 16-, and 32-bit unsigned integers
Output	- Double-precision floating point
	- Single-precision floating point
	- Fixed point (signed and unsigned)
	- 8-, 16-, and 32-bit signed integers
	- 8-, 16-, and 32-bit unsigned integers

See Also

Autocorrelation	Signal Processing Blockset
Convolution	Signal Processing Blockset
xcorr	Signal Processing Toolbox

Counter

Purpose
Library

Description

Count up or down through specified range of numbers

Signal Management / Switches and Counters dspswit3

The Counter block increments or decrements an internal counter each time it receives a trigger event at the Inc/Dec port. A trigger event at the Rst port resets the counter to its initial state.

The input to the Rst port must be a real, sample-based scalar. The input to the Inc/Dec port can be a real, sample-based scalar, or a real, frame-based vector (that is, a single channel). When both inputs are sample based, they must have the same sample period. When the Inc/Dec input is frame based, the frame period must equal the sample period of the Rst input.

Sections of This Reference Page

- "Setting the Count Event Parameter" on page 2-238
- "Setting the Counter Size and Initial Count Parameters" on page 2-241
- "Sample-Based Operation" on page 2-241
- "Frame-Based Operation" on page 2-242
- "Free-Running Operation" on page 2-243
- "Examples" on page 2-243
- "Dialog Box" on page 2-246
- "Supported Data Types" on page 2-248
- "See Also" on page 2-249

Setting the Count Event Parameter

Specify the trigger event for both inputs through the Count event parameter. Use one of the following valid values:

Counter

- Rising edge - Triggers a count or reset operation when the Inc/Dec or Rst input behaves in one of the following ways:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

Not a rising edge because it continues

- Falling edge - Triggers a count or reset operation when the Inc/Dec or Rst input behaves in one of the following ways:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the next figure)

Counter

- Either edge - Triggers a count or reset operation when the Inc/Dec or Rst input is a Rising edge or Falling edge (as described above).
- Non-zero sample - Triggers a count or reset operation at each sample time when the Inc/Dec or Rst input is not zero.
- Free running disables the Inc/Dec port and enables the Samples per output frame and Sample time parameters. The block increments or decrements the counter at a constant interval, T_{s}, specified by the Sample time parameter. For more information, see "Free-Running Operation" on page 2-243. The Rst port behaves as if the Count event parameter were set to Non-zero sample.

Note When running simulations in the Simulink MultiTasking mode, sample-based reset signals have a one-sample latency, and frame-based reset and clock signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a trigger event at the Inc/Dec or Rst port and when it applies the trigger. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

Setting the Counter Size and Initial Count Parameters

At the start of the simulation, the block sets the counter to the value specified by the Initial count parameter, which can be any unsigned integer in the range defined by the Counter size parameter. The Counter size parameter allows you to choose from three standard counter ranges, or specify an arbitrary counter limit in the dialog box or via input port:

- 8 bits specifies a counter with a range of 0 to 255 .
- 16 bits specifies a counter with a range of 0 to 65535 .
- 32 bits specifies a counter with a range of 0 to $2^{32}-1$.
- User defined enables the Maximum count parameter, which allows you to specify any arbitrary unsigned integer representable by the data type specified at the Max port as the upper-count limit. The range of the counter is then 0 to the Maximum count value. The data type at the Max port must not allow word lengths larger than the Counter data type.
- Specify via input port enables the Max port, which allows you to specify any arbitrary integer representable by the data type specified for the Counter data type parameter as the upper-count limit.

Sample-Based Operation

The block operates in sample-based mode when the Inc/Dec input is a sample-based scalar. Sample-based vectors and matrices are not accepted.

When the Count direction parameter is set to Up, a sample-based trigger event at the Inc (increment) input causes the block to increment the counter by one. The block continues incrementing the counter when triggered until the counter value reaches the upper-count limit. At the next Inc/Dec trigger event, the block resets the counter to 0 and resumes incrementing the counter with the subsequent Inc/Dec trigger event.

When the Count direction parameter is set to Down, a sample-based trigger event at the Dec (decrement) input causes the block to decrement

Counter

the counter by one. The block continues decrementing the counter when triggered until the counter value reaches 0 . At the next Inc/Dec trigger event, the block resets the counter to the upper-count limit and resumes decrementing the counter with the subsequent Inc/Dec trigger event.

Between triggering events the block holds the output at its most recent value. The block resets the counter to its initial state when the trigger event specified in the Count event menu is received at the optional Rst input. When the Inc/Dec and Rst ports receive trigger events simultaneously, the block first resets the counter, and then increments or decrements appropriately. If you do not need to reset the counter during the simulation, you can disable the Rst port by clearing the Reset input check box.

The Output parameter provides three options for the output port configuration of the block icon:

- Count configures the block icon to show a Cnt port, which produces the current value of the counter as a sample-based scalar with the same sample period as the inputs.
- Hit configures the block icon to show a Hit port, which produces zeros while the value of the counter does not equal the value of any of the integers specified for the Hit values parameter. You can specify an integer scalar or a vector of integers for the Hit values parameter. When the counter value does equal any of the values specified for the Hit values parameter, the block generates a value of 1 at the Hit port. This option produces sample-based outputs with the same sample period as the inputs.
- Count and Hit configures the block icon with both ports.

Frame-Based Operation

The Counter block operates in frame-based mode when the Inc/Dec input is a frame-based vector. The block does not accept multichannel frame-based inputs.

Frame-based operation is the same as sample-based operation, except that the block increments or decrements the counter by the total
number of trigger events contained in the Inc/Dec input frame. Thus, the counter may change multiple times during the processing of a single Inc/Dec input frame.

When the block has a hit port, it outputs a value of 1 if any of the specified Hit values match any of the counter values during the processing of the Inc/Dec input frame.

When a trigger event splits across two consecutive frames, it is counted in the frame that contains the conclusion of the event. When the Rst port receives a trigger event first, the block first resets the counter, and then increments or decrements the counter by the number of trigger events contained in the Inc/Dec frame.

The Cnt and Hit outputs are sample-based scalars with sample period equal to the Inc/Dec input frame period.

Free-Running Operation

The block operates in free-running mode when you select Free running for the Count event parameter.
The Rst port behaves as if the Count event parameter were set to Non-zero sample: the block triggers a reset at each sample time that the Rst input is not zero.

The Inc/Dec input port is disabled in this mode, and the block simply increments or decrements the counter using the constant sample period specified by the Sample time parameter, T_{s}.
In this mode, the Cnt output is a frame-based M-by- 1 matrix containing the count value at each of M consecutive sample times, where M is specified by the Samples per output frame parameter. The Hit output is a frame-based M-by- 1 matrix containing the hit status (0 or 1) at each of those M consecutive sample times. Both outputs have a frame period of $M^{*} T_{s}$.

In the following model, the Simulink Pulse Generator block drives the Dec port of the Counter block, and the N-Sample Enable block triggers the Rst port. All the Counter block's inputs and outputs are multiplexed into a single To Workspace block using a 4 -port Mux block.

Counter

The following figure shows the first 22 samples of the model's four-column output, yout.

You can see that the seventh input samples to both the Dec and Rst ports of the Counter block represent trigger events (rising edges), so at this time step the block first resets the counter to its initial value of 5 , and then immediately decrements the count to 4 . When the counter reaches its minimum value of 0 , it rolls over to its maximum value of 20 with the subsequent trigger event at the Cnt port.

Counter

Dialog
 Box

Function Block Parameters: Counter			X
Counter (mask) (link) Count up or down based on input count events. If the "Count event" is set to "Free running" the output updates at the specified sample time.			
Parameters			
Count direction: Up			
Count event: Free running		\checkmark	
Counter size: User defined		\checkmark	
Maximum count:			
255			
Initial count:			
0			
Output: Count and Hit		\checkmark	
Hit values:			
32			
\sqrt{V} Reset input			
Samples per output frame			
1			
Sample time:			
1			
Count data type: double			
Hit data type: Logical			
OK Cancel Help Apply			

Count direction

Specify whether to count Up or Down. The port label on the block icon changes to Inc (increment) or Dec (decrement) based on the value of this parameter. Tunable in Simulink Normal mode.

Count event

Specify the type of event that triggers the block to increment, decrement, or reset the counter when received at the Inc/Dec or Rst ports. Free running disables the Inc/Dec port, and counts continuously with the period specified by the Sample time parameter. For more information on all the possible settings, see "Setting the Count Event Parameter" on page 2-238.

Counter size

Specify the range of integer values the block should count through before recycling to zero. For more information, see "Setting the Counter Size and Initial Count Parameters" on page 2-241.

Maximum count

Specify the counter's maximum value when Counter size is set to User defined. You can set the Maximum count parameter to any integer representable by the data type specified for the Counter data type parameter. Tunable in Simulink Normal mode.

Initial count

Specify the counter's initial value at the start of the simulation and after reset. Tunable.

Output

Select the output ports to enable: Cnt, Hit, or both.

Hit values

Specify a scalar or vector of integers whose occurrence in the count should be flagged by a 1 at the (optional) Hit output. This parameter is available when Hit or Count and Hit are selected in the Output menu. Tunable.

Reset input

Select to enable the Rst input port.

Counter

Samples per output frame

Specify the number of samples, M, in each output frame. This parameter is available when you select Free running in the Count event menu.

Sample time

Specify the output sample period, T_{s}, in free-running mode. This parameter is available when you select Free running in the Count event menu.

Count data type

Specify the data type of the Cnt output. This parameter is available when the Output parameter is set to Count or Count and Hit.

Hit data type

Specify the data type of the Hit output. This parameter is available when the Output parameter is set to Hit or the Output parameter is set to Count and Hit and the Count data type parameter is set to Double.

Supported Data Types

Port	Supported Data Types
Inc/Dec	- Double-precision floating point - Single-precision floating point - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers
Rst	- Double-precision floating point - Single-precision floating point - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers

Port	Supported Data Types
Max	• 8-, 16-, and 32-bit unsigned integers
Cnt	- Double-precision floating point
	- Single-precision floating point
	- 8-, 16-, and 32-bit signed integers
	- 8-, 16-, and 32-bit unsigned integers

See Also
Edge Detector
N-Sample Enable
N-Sample Switch
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

Covariance AR Estimator

Description

Gov AR Estimator

Purpose	Compute estimate of autoregressive (AR) model parameters using covariance method
Library	Estimation / Parametric Estimation dspparest3

Compute estimate of autoregressive (AR) model parameters using covariance method

Estimation / Parametric Estimation
dspparest3

The Covariance AR Estimator block uses the covariance method to fit an autoregressive (AR) model to the input data. This method minimizes the forward prediction error in the least squares sense.
The input is a sample-based vector (row, column, or 1-D) or frame-based vector (column only) representing a frame of consecutive time samples from a single-channel signal, which is assumed to be the output of an AR system driven by white noise. The block computes the normalized estimate of the AR system parameters, $A(z)$, independently for each successive input frame.

$$
H(z)=\frac{G}{A(z)}=\frac{G}{1+a(2) z^{-1}+\ldots+a(p+1) z^{-p}}
$$

The order, p, of the all-pole model is specified by the Estimation order parameter. To guarantee a valid output, you must set the Estimation order parameter to be less than or equal to half the input vector length.

The top output, A , is a column vector of length $p+1$ with the same frame status as the input, and contains the normalized estimate of the AR model coefficients in descending powers of z.

$$
\left[\begin{array}{llll}
1 & a(2) & \ldots & a(p+1)]
\end{array}\right.
$$

The scalar gain, G, is provided at the bottom output (G).
See the Burg AR Estimator block reference page for a comparison of the Burg AR Estimator, Covariance AR Estimator, Modified Covariance AR Estimator, and Yule-Walker AR Estimator blocks.

Covariance AR Estimator

Dialog

 Box

Estimation order

The order of the AR model, p. To guarantee a nonsingular output, you must set p to be less than or equal to half the input length. Otherwise, the output might be singular.

References

Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1988.

Marple, S. L., Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall, 1987.

Supported Data Types

Port	Supported Data Types				
Input	• Double-precision floating point				
	- Single-precision floating point	$	$	A	- Double-precision floating point
:---	:---				
	- Single-precision floating point				

Covariance AR Estimator

See Also
Burg AR Estimator
Covariance Method
Modified Covariance AR Estimator
Yule-Walker AR Estimator arcov

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

Signal Processing Blockset
Signal Processing Toolbox

Covariance Method

Purpose Power spectral density estimate using covariance method

Library

Description

Estimation / Power Spectrum Estimation
dspspect3
The Covariance Method block estimates the power spectral density (PSD) of the input using the covariance method. This method fits an autoregressive (AR) model to the signal by minimizing the forward prediction error in the least squares sense. The Estimation order parameter specifies the order of the all-pole model. The block computes the spectrum from the FFT of the estimated AR model parameters. To guarantee a valid output, the Estimation order parameter must be less than or equal to half the input vector length.

The input is a sample-based vector (row, column, or 1-D) or frame-based vector (column only). It represents a frame of consecutive time samples from a single-channel signal. The block outputs a column vector containing the estimate of the power spectral density of the signal at $N_{f f t}$ equally spaced frequency points. The frequency points are in the range $\left[0, F_{s}\right.$), where F_{s} is the sampling frequency of the signal.

Selecting Inherit FFT length from estimation order, specifies that $N_{f f t}$ is one greater than the estimation order. Clearing the Inherit FFT length from estimation order check box allows you to use the FFT length parameter to specify $N_{f f t}$ as a power of 2 . The block zero-pads or wraps the input to $N_{f f t}$ before computing the FFT. The output is always sample based.

When you select the Inherit sample time from input check box, the block computes the frequency data from the sample period of the input signal. For the block to produce valid output, the following conditions must hold:

- The input to the block is the original signal, with no samples added or deleted (by insertion of zeros, for example).
- The sample period of the time-domain signal in the simulation equals the sample period of the original time series.

Covariance Method

If these conditions do not hold, clear the Inherit sample time from input check box. You can then specify a sample time using the Sample time of original time series parameter.

See the Burg Method block reference for a comparison of the Burg Method, Covariance Method, Modified Covariance Method, and Yule-Walker Method blocks.

Estimation order

The order of the AR model. To guarantee a nonsingular output, the value of this parameter must be less than or equal to half the input length.

Inherit FFT length from estimation order

When selected, this option specifies that the FFT length is one greater than the estimation order.

Covariance Method

FFT length

Enter the number of data points on which to perform the FFT, $N_{f f t}$. When $N_{f f t}$ is larger than the input frame size, the block zero-pads each frame as needed. When $N_{f f t}$ is smaller than the input frame size, the block wraps each frame as needed. This parameter becomes visible only when you clear the Inherit FFT length from estimation order check box.

Inherit sample time from input

When you select the Inherit sample time from input check box, the block computes the frequency data from the sample period of the input signal. For the block to produce valid output, the following conditions must hold:

- The input to the block is the original signal, with no samples added or deleted (by insertion of zeros, for example).
- The sample period of the time-domain signal in the simulation equals the sample period of the original time series.

If these conditions do not hold, clear the Inherit sample time from input check box. You can then specify a sample time using the Sample time of original time series parameter.

Sample time of original time series

Specify the sample time of the original time-domain signal. This parameter becomes visible only when you clear the Inherit sample time from input check box.

References Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1988.
Marple, S. L. Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall, 1987.
Orfanidis, S. J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1995.

Covariance Method

Supported Data Types

Port	Supported Data Types
Input	• Double-precision floating point
	• Single-precision floating point

See Also

Burg Method	Signal Processing Blockset
Covariance AR Estimator	Signal Processing Blockset
Modified Covariance Method	Signal Processing Blockset
Short-Time FFT	Signal Processing Blockset
Yule-Walker Method	Signal Processing Blockset
spectrum.cov	Signal Processing Toolbox

See "Power Spectrum Estimation" for related information.

Create Diagonal Matrix

Purpose

Library

Description

Dialog

Box

Supported Data Types

Create square diagonal matrix from diagonal elements

Math Functions / Matrices and Linear Algebra / Matrix Operations dspmtrx3

The Create Diagonal Matrix block populates the diagonal of the M-by- M matrix output with the elements contained in the length- M vector input, D . The elements off the diagonal are zero.

$$
A=\operatorname{diag}(D) \quad \text { Equivalent MATLAB code }
$$

The output is always sample based.

Port	Supported Data Types
D	• Double-precision floating point
	• Single-precision floating point
	• Fixed point (signed and unsigned)
	• Boolean
	• $8-, 16$-, and 32 -bit signed integers
	$\bullet 8-, 16$-, and 32 -bit unsigned integers

Create Diagonal Matrix

Port	Supported Data Types
A	\bullet Double-precision floating point
	• Single-precision floating point
	• Fixed point (signed and unsigned)
	• Boolean
	• 8 -, 16 -, and 32 -bit signed integers
	$\bullet 8-, 16$-, and 32 -bit unsigned integers

See Also
Constant Diagonal Signal Processing Blockset
Matrix

Extract Diagonal	Signal Processing Blockset
diag	MATLAB

Cumulative Product

Purpose

Compute cumulative product of channel, column, or row elements

Library

Description

Math Functions / Math Operations
dspmathops
The Cumulative Product block computes the cumulative product of elements in each channel, column, or row of the M-by- N input matrix.

The inputs can be sample-based or frame-based vectors and matrices. The output always has the same dimensions, rate, frame status, data type, and complexity as the input.

The Cumulative Product block accepts real and complex fixed-point and floating-point inputs except for complex unsigned fixed-point inputs.

- "Valid Input" on page 2-259
- "Valid Reset Signal" on page 2-260
- "Output Characteristics" on page 2-260
- "Multiplying Along Channels of Frame-Based Inputs" on page 2-260
- "Multiplying Along Channels of Sample-Based Inputs" on page 2-261
- "Resetting the Cumulative Product Along Channels" on page 2-262
- "Multiplying Along Columns" on page 2-264
- "Multiplying Along Rows" on page 2-265
- "Dialog Box" on page 2-267
- "Supported Data Types" on page 2-273
- "See Also" on page 2-273

Valid Input

The block computes the cumulative product of both sample- and frame-based vector and matrix inputs. Inputs can be real or complex. When multiplying along channels or columns, 1-D unoriented vectors

Cumulative Product

are treated as column vectors. When multiplying along rows, 1-D vectors are treated as row vectors.

Valid Reset Signal

The optional reset port, Rst, accepts scalar values, which can be any built-in Simulink data type including boolean. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input.

Output Characteristics

The output always has the same dimensions, rate, frame status, data type, and complexity as the data signal input.

Multiplying Along Channels of Frame-Based Inputs

For frame-based inputs, the block treats each input column as an independent channel. As the following figure and equation illustrate, the output has the following characteristics:

- The first row of the first output is the same as the first row of the first input.
- The first row of each subsequent output is the element-wise product of the first row of the current input (time t), and the last row of the previous output (time $t-T_{f}$, where T_{f} is the frame period).
- The output has the same size, dimension, frame status, data type, and complexity as the input.

Given an M-by- N frame-based input, u, the output, y, is a frame-based M-by- N matrix whose first row has elements

$$
y_{1, j}(t)=u_{1, j}(t) \cdot y_{M, j}\left(t-T_{f}\right)
$$

Cumulative Product

Product Along Chamels for Frame-Based Inputs

$T_{f}=$ Frome period

Multiplying Along Channels of Sample-Based Inputs

For sample-based inputs, the block treats each element of the input matrix as an independent channel. As the following figure and equation illustrate, the output has the following characteristics:

- The first output is the same as the first input.
- Each subsequent output is the element-wise product of the current input (time t) and the previous output (time $t-T_{s}$, where T_{s} is the sample period).
- The output has the same size, dimension, frame status, data type, and complexity as the input.

Given an M-by- N sample-based input, u, the output, y, is a sample-based M-by- N matrix with the elements

$$
y_{i, j}(t)=u_{i, j}(t) \cdot y_{i, j}\left(t-T_{s}\right) \begin{aligned}
& 1 \leq i \leq M \\
& 1 \leq j \leq N
\end{aligned}
$$

For convenience, length-M 1-D vector inputs are treated as M-by-1 column vectors when multiplying along channels, and the output is a length-M 1-D vector.

Cumulative Product

Product Along Channels for Sample-Based Inputs

$$
\mathrm{T}_{\mathrm{s}}=\text { Somple period }
$$

Resetting the Cumulative Product Along Channels

When you set the Multiply input along parameter to Channels (running product), you can set the block to reset the running product whenever it detects a reset event at the optional Rst port. The reset sample time must be a positive integer multiple of the input sample time. The input to the Rst port can be of the Boolean data type.

When the block is reset for sample-based inputs, the block initializes the current output to the values of the current input. For frame-based inputs, the block initializes the first row of the current output to the values in the first row of the current input.

The Reset port parameter specifies the reset event, which can be one of the following:

- None disables the Rst port.
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

Cumulative Product

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above)
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

Cumulative Product

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port rate before the block applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

Multiplying Along Columns

When the Multiply input along parameter is set to Columns, the block computes the cumulative product of each column of the input, where the current cumulative product is independent of the cumulative products of previous inputs.

```
y = cumprod(u) % Equivalent MATLAB code
```

The output has the same size, dimension, frame status, data type, and complexity as the input. The m th output row is the element-wise product of the first m input rows.

Given an M-by- N input, u, the output, y, is an M-by- N matrix whose j th column has elements

$$
y_{i, j}=\prod_{k=1}^{i} u_{k, j} \quad 1 \leq i \leq M
$$

The block treats length- M 1-D vector inputs as M-by-1 column vectors when multiplying along columns.

Product Along Columns

Multiplying Along Rows

When the Multiply input along parameter is set to Rows, the block computes the cumulative product of the row elements, where the current cumulative product is independent of the cumulative products of previous inputs.

$$
y=\text { cumprod }(u, 2) \quad \% \text { Equivalent MATLAB code }
$$

The output has the same size, dimension, frame status, and data type as the input. The nth output column is the element-wise product of the first n input columns.
Given an M-by- N input, u, the output, y, is an M-by- N matrix whose i th row has elements

$$
y_{i, j}=\prod_{k=1}^{j} u_{i, k} \quad 1 \leq j \leq N
$$

The block treats length- N 1-D vector inputs as 1 -by- N row vectors when multiplying along rows.

Cumulative Product

Product Along Rows

Fixed-Point Data Types

The following diagram shows the data types used within the Cumulative Product block for fixed-point signals.

The output of the multiplier is in the product output data type when at least one of the inputs to the multiplier is real. When both of the inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, see "Multiplication Data Types". You can set the accumulator, product output, intermediate product, and output data types in the block dialog as discussed in "Dialog Box" on page 2-267.

Cumulative Product

Dialog Box

The Main pane of the Cumulative Product block dialog appears as follows.

Function Block Parameters: Cumulative Product

Cumulative Product
Cumulative product of input matrix or input vector elements along the specified dimension: rows, colum and sample-based inputs, each element of the input matrix or vector is a channel. For frame-based inp input matrix or vector is a channel.

Main Data type attributes
Parameters
Multiply input along: Channels (running product)
Reset port: None

Multiply input along

The dimension along which to compute the cumulative products.
The options allow you to multiply along Channels (running

Cumulative Product

product), Columns, and Rows. For more information, see the following sections:

- "Multiplying Along Channels of Frame-Based Inputs" on page 2-260
- "Multiplying Along Channels of Sample-Based Inputs" on page 2-261
- "Multiplying Along Columns" on page 2-264
- "Multiplying Along Rows" on page 2-265

Reset port

Determines the reset event that causes the block to reset the product along channels. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input. This parameter is enabled only when you set the Multiply input along parameter to Channels (running product). For more information, see "Resetting the Cumulative Product Along Channels" on page 2-262.

The Data type attributes pane of the Cumulative Product block dialog appears as follows.

Cumulative Product

Function Block Parameters: Cumulative Product

Cumulative Product
Cumulative product of input matrix or input vector elements along the specified dimension: rows, colum and sample-based inputs, each element of the input matrix or vector is a channel. For frame-based inp input matrix or vector is a channel.
Main Data type attributes

Fixed-point operational parameters
Rounding mode: Floor Overflow mode: Wrap

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When th floating point, all block data types match the input.

	Data Type			Minimum
Intermediate product:	Inherit: Same as input	\cdots	>	
Product output:	Inherit: Same as input	*	>>	
Accumulator:	Inherit: Same as input	-	>>	
Output:	Inherit: Same as input	-	>>	[

「 Lock scaling against changes by the autoscaling tool

Note Floating-point inheritance takes precedence over the data type settings defined on this pane. When inputs are floating point, the block ignores these settings, and all internal data types are floating point.

Cumulative Product

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Intermediate product

Specify the intermediate product data type. As shown in "Fixed-Point Data Types" on page 2-266, the output of the multiplier is cast to the intermediate product data type before the next element of the input is multiplied into it. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button $\quad \gg$ to display the Data Type Assistant, which helps you set the Product output data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Product output data type

Specify the product output data type. See "Fixed-Point Data Types" on page 2-266 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Cumulative Product

Click the Show data type assistant button $\quad \gg \quad$ to display the Data Type Assistant, which helps you set the Product output data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Accumulator data type

Specify the accumulator data type. See "Fixed-Point Data Types" on page 2-266 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button $\quad \gg$ to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Output data type

Specify the output data type. See "Fixed-Point Data Types" on page 2-266 for illustrations depicting the use of the output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Cumulative Product

Click the Show data type assistant button $\quad \gg$ to display the Data Type Assistant, which helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in Simulink User's Guide for more information.

Minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to - Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

Cumulative Product

Supported Data Types

Input and Output Ports	Supported Data Types
Data input port, In	- Double-precision floating point - Single-precision floating point - Fixed point - 8 -, 16-, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers
Reset input port, Rst	All built-in Simulink data types: - Double-precision floating point - Single-precision floating point - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output port	- Double-precision floating point - Single-precision floating point - Fixed point - 8 -, 16-, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers

See Also

Cumulative Sum	Signal Processing Blockset
Matrix Product	Signal Processing Blockset
cumprod	MATLAB

Cumulative Sum

Purpose
 Library
 Description

 Running Rst Sum

Compute cumulative sum of channel, column, or row elements

Math Functions / Math Operations
dspmathops
The Cumulative Sum block computes the cumulative sum of the elements in each channel, column, or row of the M-by- N input matrix.

The inputs can be sample-based or frame-based vectors and matrices. The output always has the same dimensions, rate, frame status, data type, and complexity as the input.

The Cumulative Sum block accepts real and complex fixed-point and floating-point inputs except for complex unsigned fixed-point inputs.

Sections of This Reference Page

- "Input and Output Characteristics" on page 2-274
- "Summing Along Channels" on page 2-275
- "Resetting the Cumulative Sum Along Channels" on page 2-277
- "Summing Along Columns" on page 2-279
- "Summing Along Rows" on page 2-280
- "Dialog Box" on page 2-282
- "Supported Data Types" on page 2-286
- "See Also" on page 2-287

Input and Output Characteristics

Valid Input

The block computes the cumulative sum of both sample- and frame-based vector and matrix inputs. Inputs can be real or complex. When summing along channels or columns, 1-D unoriented vectors are treated as column vectors. When summing along rows, 1-D vectors are treated as row vectors.

Valid Reset Signal

The optional reset port, Rst, accepts scalar values, which can be any built-in Simulink data type including boolean. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input.

Output Characteristics

The output always has the same dimensions, rate, frame status, data type, and complexity as the data signal input.

Summing Along Channels

When the Sum input along parameter is set to Channels (running sum), the block computes the cumulative sum of the elements in each input channel. The running sum of the current input takes into account the running sum of all previous inputs. See the following sections for more information:

- "Summing Along Channels of Frame-Based Inputs" on page 2-275
- "Summing Along Channels of Sample-Based Inputs" on page 2-276
- "Resetting the Cumulative Sum Along Channels" on page 2-277

Summing Along Channels of Frame-Based Inputs

For frame-based inputs, the block treats each input column as an independent channel. As the following figure and equation illustrate, the output has the following characteristics:

- The first row of the first output is the same as the first row of the first input.
- The first row of each subsequent output is the sum of the first row of the current input (time t), and the last row of the previous output (time $t-T_{f}$, where T_{f} is the frame period).
- The output has the same size, dimension, frame status, data type, and complexity as the input.

Cumulative Sum

Given an M-by- N frame-based input, u, the output, y, is a frame-based M-by- N matrix whose first row has elements

$$
y_{1, j}(t)=u_{1}, j(t)+y_{M, j}\left(t-T_{f}\right)
$$

Sum Along Channels for Frane-Based Inputs

$T_{f}=$ Frome period

Summing Along Channels of Sample-Based Inputs

For sample-based inputs, the block treats each element of the input matrix as an independent channel. As the following figure and equation illustrate, the output has the following characteristics:

- The first output is the same as the first input.
- Each subsequent output is the sum of the current input (time t) and the previous output (time $t-T_{s}$, where T_{s} is the sample period).
- The output has the same size, dimension, frame status, data type, and complexity as the input.

Given an M-by- N sample-based input, u, the output, y, is a sample-based M-by- N matrix with the elements

$$
y_{i, j}(t)=u_{i, j}(t)+y_{i, j}\left(t-T_{s}\right) \quad \begin{aligned}
& 1 \leq i \leq M \\
& 1 \leq j \leq N
\end{aligned}
$$

Sum Along Channels for Sample-Based hputs

$T_{s}=$ Somple period

Resetting the Cumulative Sum Along Channels

When you set the Sum input along parameter to Channels (running sum), you can set the block to reset the running sum whenever it detects a reset event at the optional Rst port. The reset sample time must be a positive integer multiple of the input sample time. The input to the Rst port can be of the boolean data type.

When the block is reset for sample-based inputs, the block initializes the current output to the values of the current input. For frame-based inputs, the block initializes the first row of the current output to the values in the first row of the current input.

The Reset port parameter specifies the reset event, which can be one of the following:

- None disables the Rst port.
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

Cumulative Sum

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above)
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port rate before the block applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Summing Along Columns

When the Sum input along parameter is set to Columns, the block computes the cumulative sum of each column of the input, where the current cumulative sum is independent of the cumulative sums of previous inputs.

```
y = cumsum(u) % Equivalent MATLAB code
```

The output has the same size, dimension, frame status, data type, and complexity as the input. The m th output row is the sum of the first m input rows.

Given an M-by- N input, u, the output, y, is an M-by- N matrix whose j th column has elements

$$
y_{i, j}=\sum_{k=1}^{j} u_{k, j} \quad 1 \leq i \leq M
$$

The block treats length- M 1-D vector inputs as M-by-1 column vectors when summing along columns.

Cumulative Sum

Sum Along Columns

Summing Along Rows

When the Sum input along parameter is set to Rows, the block computes the cumulative sum of the row elements, where the current cumulative sum is independent of the cumulative sums of previous inputs.

```
y = cumsum(u,2) % Equivalent MATLAB code
```

The output has the same size, dimension, frame status, and data type as the input. The nth output column is the sum of the first n input columns.

Given an M-by- N input, u, the output, y, is an M-by- N matrix whose i th row has elements

$$
y_{i, j}=\sum_{k=1}^{j} u_{i, k} \quad 1 \leq j \leq N
$$

The block treats length- N 1-D vector inputs as 1-by- N row vectors when summing along rows.

Sum Along Rows

Fixed-Point Data Types

The following diagram shows the data types used within the Cumulative Sum block for fixed-point signals.

You can set the accumulator and output data types in the block dialog as discussed in "Dialog Box" on page 2-282.

Cumulative Sum

Dialog Box

The Main pane of the Cumulative Sum block dialog appears as follows.

Function Block Parameters: Cumulative Sum

Cumulative Sum
Cumulative sum of input matrix or input vector elements along the specified dimension: rows, columns, or ch For 1-D and sample-based inputs, each element of the input matrix or vector is a channel. For frame-based each column of the input matrix or vector is a channel.

Main
Data type attributes
Parameters
Sum input along: Channels (running sum)
Reset port: None

Help

Sum input along

The dimension along which to compute the cumulative summations. The options allow you to sum along Channels (running sum), Columns, and Rows. For more information, see the following sections:

- "Summing Along Channels" on page 2-275
- "Summing Along Columns" on page 2-279
- "Summing Along Rows" on page 2-280

Reset port

Determines the reset event that causes the block to reset the sum along channels. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input. This parameter is enabled only when you set the Sum input along parameter to Channels (running sum). For more information, see "Resetting the Cumulative Sum Along Channels" on page 2-277.

The Data type attributes pane of the Cumulative Sum block dialog appears as follows.

Cumulative Sum

Function Block Parameters: Cumulative Sum

Cumulative Sum

Cumulative sum of input matrix or input vector elements along the specified dimension: rows, columns, or ch For 1-D and sample-based inputs, each element of the input matrix or vector is a channel. For frame-based each column of the input matrix or vector is a channel.

```
Main Data type attributes
Fixed-point operational parameters
    Rounding mode: Floor Overflow mode: Wrap
```

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the blo input is floating point, all block data types match the input.

Lock scaling against changes by the autoscaling tool

| OK | Help |
| :---: | :---: | :---: | :---: | :---: |

Note Floating-point inheritance takes precedence over the data type settings defined on this pane. When inputs are floating point, the block ignores these settings, and all internal data types are floating point.

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Cumulative Sum

Accumulator data type

Specify the accumulator data type. See "Fixed-Point Data Types" on page 2-281 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button $\quad \gg$ to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Output data type

Specify the output data type. See "Fixed-Point Data Types" on page 2-281 for illustrations depicting the use of the output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as accumulator
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button $\quad \gg$ to display the Data Type Assistant, which helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in Simulink User's Guide for more information.

Cumulative Sum

Minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

Supported Data Types

Input and Output Ports	Supported Data Types
Data input port, In	• Double-precision floating point
	- Single-precision floating point
	- Fixed point
	• 8-, 16-, and 32 -bit signed integers
	$\bullet 8-, 16$-, and 32 -bit unsigned integers

Input and Output Ports	Supported Data Types
Reset input port, Rst	All built-in Simulink data types: - Double-precision floating point - Single-precision floating point - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output port	- Double-precision floating point - Single-precision floating point - Fixed point - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers

See Also

Cumulative Product	Signal Processing Blockset
Difference	Signal Processing Blockset
Matrix Sum	Signal Processing Blockset
cumsum	MATLAB

Data Type Conversion

Purpose Convert input signal to specified data type
Library Signal Management / Signal Attributes
dspsigattribs
$\begin{array}{ll}\text { Description } & \text { The Data Type Conversion block is an implementation of the Simulink } \\ \text { Data Type Conversion block. See Data Type Conversion for more } \\ \text { information. }\end{array}$

Purpose
 Library
 Description
 dB (1 ohm)

Convert magnitude data to decibels (dB or dBm)

Math Functions / Math Operations
dspmathops
The dB Conversion block converts a linearly scaled power or amplitude input to dB or dBm . The reference power is 1 Watt for conversions to dB and 1 mWatt for conversions to dBm . The Input signal parameter specifies whether the input is a power signal or a voltage signal, and the Convert to parameter controls the scaling of the output. When selected, the Add eps to input to protect against " $\log (0)=-i n f$ " parameter adds a value of eps to all power and voltage inputs. When this option is not enabled, zero-valued inputs produce -inf at the output.
The size and frame status of the output are the same as the input.

Power Inputs

Select Power as the Input signal parameter when the input, u, is a real, nonnegative, power signal (units of watts). When the Convert to parameter is set to $d B$, the block performs the $d B$ conversion

$$
y=10 * \log 10(u) \quad \% \text { Equivalent MATLAB code }
$$

When the Convert to parameter is set to dBm, the block performs the dBm conversion

$$
y=10 * \log 10(u)+30
$$

The dBm conversion is equivalent to performing the dB operation after converting the input to milliwatts.

Voltage Inputs

Select Amplitude as the Input signal parameter when the input, u, is a real voltage signal (units of volts). The block uses the scale factor specified in ohms by the Load resistance parameter, R, to convert the voltage input to units of power (watts) before converting to dB or dBm .

dB Conversion

When the Convert to parameter is set to dB , the block performs the dB conversion

$$
y=10 * \log 10\left(\operatorname{abs}(u)^{\wedge} 2 / R\right)
$$

When the Convert to parameter is set to dBm, the block performs the dBm conversion

$$
y=10 * \log 10\left(a b s(u)^{\wedge} 2 / R\right)+30
$$

The dBm conversion is equivalent to performing the dB operation after converting the (abs(u)^2/R) result to milliwatts.

Convert to

The logarithmic scaling to which the input is converted, dB or dBm . The reference power is 1 W for conversions to dB and 1 mW for conversions to dBm . Tunable.

Input signal

The type of input signal, Power or Amplitude.

Load resistance

The scale factor used to convert voltage inputs to units of power. Tunable.

Add eps to input to protect against " $\log (0)=-i n f$ "

When selected, adds eps to all input values (power or voltage). Tunable.

Supporfed	- Double-precision floating point
Data	- Single-precision floating point
Types	

See Also

dB Gain	Signal Processing Blockset
Math Function	Simulink
$\log 10$	MATLAB

Purpose Apply decibel gain
Library Math Functions / Math Operations
dspmathops

Description
40 dB
(0.01)

The dB Gain block multiplies the input by the decibel values specified in the Gain parameter. For an M-by- N input matrix u with elements $u_{i j}$, the Gain parameter can be a real M-by- N matrix with elements $g_{i j}$ to be multiplied element-wise with the input, or a real scalar.

$$
y_{i j}=10 u_{i j}^{\left(g_{i j} / k\right)}
$$

The value of k is 10 for power signals (select Power as the Input signal parameter) and 20 for voltage signals (select Amplitude as the Input signal parameter).
The value of the equivalent linear gain

$$
g_{i j}^{l i n}=10^{\left(g_{i j} / k\right)}
$$

is displayed in the block icon below the $d B$ gain value. The size and frame status of the output are the same as the input.

The dB Gain block supports real and complex floating-point and fixed-point data types.

Fixed-Point Data Types

The following diagram shows the data types used within the dB Gain subsystem block for fixed-point signals.

The settings for the fixed-point parameters of the Gain block in the diagram above are as follows:

- Integer rounding mode: Floor
- Saturate on integer overflow - unselected
- Parameter data type mode - Inherit via internal rule
- Output data type mode - Inherit via internal rule

See the Gain reference page for more information.

Dialog

 Box

Gain

The dB gain to apply to the input, a scalar or a real M-by- N matrix. Tunable.

Input signal

The type of input signal: Power or Amplitude. Tunable.

Note This block does not support tunability in generated code.

Supported
Data
Types

- Double-precision floating point
- Single-precision floating point
- Fixed point (signed and unsigned)
- 8 -, 16-, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

See Also | dB Conversion | Signal Processing Blockset | |
| :--- | :--- | :--- |
| Math Function | Simulink | |
| | $\log 10$ | MATLAB |

Purpose

Library

Description
DCT

Compute discrete cosine transform (DCT) of input
Transforms
dspxfrm3

The DCT block computes the unitary discrete cosine transform (DCT) of each channel in the M-by- N input matrix, u.

$$
y=\operatorname{dct}(u) \quad \% \text { Equivalent MATLAB code }
$$

When the input is a sample-based row vector, the DCT block computes the discrete cosine transform across the vector dimension of the input. For all other sample-based N-D arrays, the block computes the DCT across the first dimension of the input.

For both sample-based and frame-based inputs, the block assumes that each input column is a frame containing M consecutive samples from an independent channel. The frame size, M, must be a power of two. To work with other frame sizes, use the Pad block to pad or truncate the frame size to a power-of-two length.

When the input is an M-by- N matrix, the DCT block outputs an M-by- N matrix whose l th column contains the length- M DCT of the corresponding input column.

$$
y(k, l)=w(k) \sum_{m=1}^{M} u(m, l) \cos \frac{\pi(2 m-1)(k-1)}{2 M}, \quad k=1, \ldots, M
$$

where

$$
w(k)=\left\{\begin{array}{cc}
\frac{1}{\sqrt{M}}, & k=1 \\
\sqrt{\frac{2}{M}}, & 2 \leq k \leq M
\end{array}\right.
$$

The output is always sample based, and the output port rate and data type (real/complex) are the same as those of the input port.
For convenience, length-M 1-D vector inputs and sample-based length-M row vector inputs are processed as single channels (that is, as M-by-1 column vectors), and the output has the same dimension as the input.
The Sine and cosine computation parameter determines how the block computes the necessary sine and cosine values. This parameter has two settings, each with its advantages and disadvantages, as described in the following table.
$\left.\begin{array}{l|l|l}\hline \begin{array}{l}\text { Sine and } \\ \text { Cosine } \\ \text { Computation } \\ \text { Parameter } \\ \text { Setting }\end{array} & \begin{array}{l}\text { Sine and Cosine Computation } \\ \text { Method }\end{array} & \text { Effect on Block Performance }\end{array} \left\lvert\, \begin{array}{ll}\text { Table lookup } & \begin{array}{l}\text { The block computes and stores the } \\ \text { trigonometric values before the } \\ \text { simulation starts, and retrieves } \\ \text { them during the simulation. } \\ \text { When you generate code from } \\ \text { the block, the processor running } \\ \text { the generated code stores the } \\ \text { trigonometric values computed } \\ \text { by the block in a speed-optimized } \\ \text { table, and retrieves the values } \\ \text { during code execution. }\end{array}\end{array} \begin{array}{l}\text { The block usually runs much } \\ \text { more quickly, but requires } \\ \text { extra memory for storing the } \\ \text { precomputed trigonometric values. }\end{array}\right.\right]$

This block supports Simulink virtual buses.

Fixed-Point Data Types

The following diagrams show the data types used within the DCT block for fixed-point signals. You can set the sine table, accumulator, product output, and output data types displayed in the diagrams in the DCT block dialog as discussed in "Dialog Box" on page 2-300.

Inputs to the DCT block are first cast to the output data type and stored in the output buffer. Each butterfly stage processes signals in the accumulator data type, with the final output of the butterfly being cast back into the output data type.

\longmapsto buterfly stage-——|

Butterily Stage Data Types

Iwidde Multiplication Data Types

The output of the multiplier is in the product output data type when at least one of the inputs to the multiplier is real. When both of the
inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, see "Multiplication Data Types".

DCT

The Main pane of the DCT block dialog appears as follows.

Sine and cosine computation

Sets the block to compute sines and cosines by either looking up sine and cosine values in a speed-optimized table (Table lookup),
or by making sine and cosine function calls (Trigonometric fen). See the previous table.

The Fixed-point pane of the DCT block dialog appears as follows.

(Function Block Parameters: DCT

-DCT
Outputs the discrete cosine transform (DCT) of a real or complex input. The DCT is computed across the vector dimension for a sample-based vector input and across the first dimension for all other inputs. The dimension across which the DCT is computed must be a power-of-two length.
Main Fixed-point

Settings on this pane only apply when block inputs are fixed-point signals.
Fixed-point operational parameters
Rounding mode: Floor Overflow mode: Wrap
Fixed-point data types

	Mode
Sine table	Same word length as input ∇
Product output	Inherit via internal rule
Accumulator	Inherit via internal rule
Output	Inherit via internal rule

「 Lock scaling against changes by the autoscaling tool

Rounding mode

Select the rounding mode for fixed-point operations. The sine table values do not obey this parameter; they always round to Nearest.

Overflow mode

Select the overflow mode for fixed-point operations.

Sine table

Choose how you specify the word length of the values of the sine table. The fraction length of the sine table values is always equal to the word length minus one:

- When you select Same word length as input, the word length of the sine table values match that of the input to the block.
- When you select Specify word length, you can enter the word length of the sine table values, in bits.

The sine table values do not obey the Rounding mode and Overflow mode parameters; they are always saturated and rounded to Nearest.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. See "Fixed-Point Data Types" on page 2-297 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block:

- When you select Inherit via internal rule, the product output word length and fraction length are calculated automatically. For information about how the product output word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to specify how you would like to designate the accumulator word and fraction lengths. See "Fixed-Point Data Types" on page 2-297 and "Multiplication Data Types" for illustrations depicting the use of the accumulator data type in this block:

- When you select Inherit via internal rule, the accumulator word length and fraction length are calculated automatically. For information about how the accumulator word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".
- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you specify the output word length and fraction length:

- When you select Inherit via internal rule, the output word length and fraction length are calculated automatically. The internal rule first calculates an ideal output word length and fraction length using the following equations:

$$
W L_{\text {ideal output }}=W L_{\text {input }}+\text { floor }\left(\log _{2}(D C T \text { length }-1)\right)+1
$$

$$
F L_{\text {ideal output }}=F L_{\text {input }}
$$

Using these ideal results, the internal rule then selects word lengths and fraction lengths that are appropriate for your hardware. For more information, see "Inherit via Internal Rule".

- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling feature of the Fixed-Point Tool. See the fxptdlg reference page for more information.

Supported Data Types

Port	Supported Data Types
Input	• Double-precision floating point
	• Single-precision floating point
	• Fixed point (signed and unsigned)
	• 8 -, 16-, and 32 -bit signed integers
	• 8-, 16-, and 32 -bit unsigned integers
Output	• Double-precision floating point
	- Single-precision floating point
	• Fixed point (signed only)
	• 8-, 16 -, and 32 -bit signed integers

See Also | Complex Cepstrum | Signal Processing Blockset | |
| :--- | :--- | :--- |
| FFT | Signal Processing Blockset | |
| | IDCT | Signal Processing Blockset |
| | Real Cepstrum | Signal Processing Blockset |
| | dct | Signal Processing Toolbox |

Purpose
Delay discrete-time input by specified number of samples or frames
Library

Description

Signal Operations
dspsigops
The Delay block delays a discrete-time input by the number of samples or frames specified in the Delay units and Delay parameters. The Delay value must be an integer value greater than or equal to zero. When you enter a value of zero for the Delay parameter, any initial conditions you might have entered have no effect on the output.

The Delay block allows you to set the initial conditions of the signal that is being delayed. The initial conditions must be numeric.
This block reference contains the following topics:

- "Sample-Based Operation" on page 2-306 - Use the Delay block with a sample-based input signal
- "Frame-Based Operation" on page 2-307 - Use the Delay block with a frame-based input signal

Sample-Based Operation

When the input is a sample-based N-D array, each sample of the input is treated as an independent channel. Thus, the total number of channels is equal to the product of the input dimensions. The dimension of the output is the same as that of the input.
When the input is a sample-based N-D array, the Delay parameter can be a scalar integer by which to equally delay all channels or an N -D array of the same dimensions as the input array, containing nonnegative integers that specify the number of sample intervals to delay each channel of the input.

There are four different choices for initial conditions. The initial conditions can be the same or different for each channel. They can also be the same or different within a channel. See the "Sample-Based Operation Examples" on page 2-310 section for more information.

Frame-Based Operation

When the input is a frame-based M-by- N matrix, the block treats each of the N columns as an independent channel, and delays each channel as specified by the Delay parameter.
When the input is frame based, the Delay parameter can be a scalar integer by which to equally delay all channels or a vector whose length is equal to the number of channels.

There are four different choices for initial conditions. The initial conditions can be the same or different for each channel. They can also be constant or varying along each channel. See the "Frame-Based Operation Examples" on page 2-315 section for more information.

Resetting the Delay

The Delay block resets the delay whenever it detects a reset event at the optional Rst port. The reset sample time must be a positive integer multiple of the input sample time.
The reset event is specified by the Reset port parameter, and can be one of the following:

- None disables the Rst port.
- Rising edge triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

Delay

Not a rising edge because it continues

- Falling edge triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge triggers a reset operation when the Rst input is Rising edge or Falling edge (as described earlier).
- Non-zero sample triggers a reset operation at each sample time that the Rst input is not zero.

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port rate before the block applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

This block supports Simulink virtual buses.

Dialog Box

Delay

Delay units

Select whether you want to delay your input by a specified number of Samples or Frames. You can choose to delay your signal by a certain number of samples or frames, regardless of whether your input is sample or frame based.

Delay (samples) or Delay (frames)

See "Sample-Based Operation" on page 2-306 and "Frame-Based Operation" on page 2-307 for a description of what format to use for each configuration of the block dialog.

Specify different initial conditions for each channel
Select this check box when you want the initial conditions to vary across the channels. When you do not select this check box, the initial conditions are the same across the channels.

Specify different initial conditions within a channel
Select this check box when you want the initial conditions to vary within the channels. When you do not select this check box, the initial conditions are the same within the channels.

Initial conditions

Enter a scalar, vector, matrix, or cell array of initial condition values, depending on your choice for the Specify different initial conditions for each channel and Specify different initial conditions within a channel check boxes. See "Sample-Based Operation" on page 2-306 and "Frame-Based Operation" on page 2-307 for a description of what format to use for each configuration of the block dialog.

Reset port

Determines the reset event that causes the block to reset the delay. For more information, see "Resetting the Delay" on page 2-307.

Examples Sample-Based Operation Examples

There are four different choices for initial conditions. The initial conditions can be the same or different for each channel. They can also
be the same or different along each channel. The next sections describe the behavior of the block for each of these four cases:

- "Case 1 - Use the Same Initial Conditions for Each Channel and Within a Channel" on page 2-311
- "Case 2 - Use Different Initial Conditions for Each Channel and the Same Initial Conditions Within a Channel" on page 2-312
- "Case 3 - Use the Same Initial Conditions for Each Channel and Different Initial Conditions Within a Channel" on page 2-313
- "Case 4 - Use Different Initial Conditions for Each Channel and Within a Channel" on page 2-314

Case 1 - Use the Same Initial Conditions for Each Channel and Within a Channel

Enter a scalar value for the initial conditions. This value is used as the constant initial condition value for each of the channels.

For example, suppose your input is a sample-based matrix.

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right],\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right], \ldots
$$

You want the initial conditions of your four-channel signal to be identical and zero for the first two samples:

1 For the Delay (samples) parameter, type 2.
2 Clear the Specify different initial conditions for each channel and Specify different initial conditions within a channel check boxes.

3 For the Initial conditions parameter, specify a scalar value of 0 .
The output of the delay block is

Delay

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right],\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right], \ldots
$$

0 , the scalar initial condition value, is used for each channel and within the channels. It is the output at sample time zero and sample time one.

Case 2 - Use Different Initial Conditions for Each Channel and the Same Initial Conditions Within a Channel

The initial conditions must be an N-D array for N-D input. The initial conditions must have the same dimensions as the input data. These initial condition values are used as the constant initial condition value for each of the channels.

For example, suppose your input is a sample-based matrix.

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right],\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right], \ldots
$$

You want the initial conditions of your four-channel signal to be
$\left[\begin{array}{cc}7 & 9 \\ 11 & 13\end{array}\right]$
for the first two samples:
1 For the Delay (samples) parameter, type 2.
2 Select the Specify different initial conditions for each channel check box.

3 Clear the Specify different initial conditions within a channel check box.

4 For the Initial conditions parameter, type [7 9; 11 13].
The output of the delay block is

$$
\left[\begin{array}{cc}
7 & 9 \\
11 & 13
\end{array}\right],\left[\begin{array}{cc}
7 & 9 \\
11 & 13
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right],\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right], \ldots
$$

The initial condition matrix is the output at sample time zero and sample time one. Different initial conditions are used for each channel; the same initial condition value is used within a channel.

Case 3 - Use the Same Initial Conditions for Each Channel and Different Initial Conditions Within a Channel

In this case, for N-D sample-based inputs, the initial conditions parameter must be a vector whose length is equal to the delay value, specified by the Delay parameter. The values in this vector are used as the initial condition values along each of the channels to be delayed.

For example, suppose your input is a sample-based matrix.

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right],\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right], \ldots
$$

You want the initial conditions of your four channel signal to be the same along each of the channels to be delayed:

1 For the Delay (samples) parameter, type 2.
2 Clear the Specify different initial conditions for each channel check box.

3 Select the Specify different initial conditions within a channel check box.

4 For the Initial conditions parameter, type [lllllllllll 1020.
The output of the delay block is

$$
\left[\begin{array}{ll}
10 & 10 \\
10 & 10
\end{array}\right],\left[\begin{array}{ll}
20 & 20 \\
20 & 20
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right],\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right], \ldots
$$

Delay

The first element of the initial conditions vector is the output, for all channels, at sample time zero. The second element of the initial conditions vector is the output, for all channels, at sample time one. The same initial conditions are used for each channel, but different initial condition values are used within a channel.

Case 4 - Use Different Initial Conditions for Each Channel and Within a Channel

Enter a cell array for your initial condition values. The cell array must be the same size as your input signal. Each cell of the cell array represents the delay values for one channel, and must be a vector of size equal to the delay value. If you have a vector or scalar input and a scalar delay value, you can enter the initial conditions as a matrix.

For example, suppose your input is a sample-based vector.

$$
\left[\begin{array}{ll}
1 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 2
\end{array}\right], \quad\left[\begin{array}{ll}
3 & 3
\end{array}\right], \ldots
$$

You want the initial conditions of your two channel signal to be different for each channel and along each channel:

1 For the Delay (samples) parameter, type 2.
2 Select the Specify different initial conditions for each channel and Specify different initial conditions within a channel check boxes.

3 For the Initial conditions parameter, type [10 20; 30 40]
The output of the delay block is

$$
\left[\begin{array}{ll}
10 & 20
\end{array}\right], \quad\left[\begin{array}{ll}
30 & 40
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 1
\end{array}\right], \quad\left[\begin{array}{ll}
2 & 2
\end{array}\right] \ldots
$$

The first row of the initial conditions vector is the output at sample time zero. The second row of the initial conditions vector is the output at sample time one. Different initial conditions are used for each channel and within the channels.

In addition, suppose your input is a sample-based matrix.

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right],\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right], \ldots
$$

You want the initial conditions of your two-channel signal to be different for each channel and along each channel:

1 For the Delay (samples) parameter, type 2.
2 Select the Specify different initial conditions for each channel and the Specify different initial conditions within a channel check boxes.

3 For the Initial conditions parameter, type \{[1115] [12 16]; [13 17] [14 18] \}. The dimensions of the cell array match the dimensions of the input. Also, each element of the cell array represents the initial conditions within one channel.

The output of the delay block is

$$
\left[\begin{array}{ll}
11 & 12 \\
13 & 14
\end{array}\right],\left[\begin{array}{ll}
15 & 16 \\
17 & 18
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right], \ldots
$$

Each element of the cell array represents the initial conditions within a channel. The first element, a vector, represents the initial conditions within channel 1 . The second element, a vector, represents the initial conditions within channel 2, and so on. Different initial conditions are used for each channel and within the channels.

Frame-Based Operation Examples

There are four different choices for initial conditions. The initial conditions can be the same or different for each channel. They can also be constant or varying along each channel. The next sections describe the behavior of the block for each of these four cases:

Delay

- "Case 1 - Use the Same Initial Conditions for Each Channel and Within a Channel" on page 2-316
- "Case 2 - Use Different Initial Conditions for Each Channel and the Same Initial Conditions Within a Channel" on page 2-317
- "Case 3 - Use the Same Initial Conditions for Each Channel and Different Initial Conditions Within a Channel" on page 2-318
- "Case 4 - Use Different Initial Conditions for Each Channel and Within a Channel" on page 2-319

Case 1 - Use the Same Initial Conditions for Each Channel and Within a Channel

Enter a scalar value for the initial conditions. This value is used as the constant initial condition value for each of the channels.

For example, suppose your input is a frame-based matrix.

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right],\left[\begin{array}{lll}
4 & 4 & 4 \\
5 & 5 & 5 \\
6 & 6 & 6
\end{array}\right],\left[\begin{array}{lll}
7 & 7 & 7 \\
8 & 8 & 8 \\
9 & 9 & 9
\end{array}\right], \ldots
$$

You want the initial conditions of your three-channel signal to be identical and zero for the first frame:

1 For the Delay (frames) parameter, type 1.
2 Clear the Specify different initial conditions for each channel and the Specify different initial conditions within a channel check boxes.

3 For the Initial conditions parameter, specify a scalar value of 0 .
The output of the delay block is

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right],\left[\begin{array}{lll}
4 & 4 & 4 \\
5 & 5 & 5 \\
6 & 6 & 6
\end{array}\right],\left[\begin{array}{lll}
7 & 7 & 7 \\
8 & 8 & 8 \\
9 & 9 & 9
\end{array}\right], \ldots
$$

0 , the scalar initial condition value, is used across the channels and within the channels for the first frame. This frame is the output at sample time zero.

Case 2 - Use Different Initial Conditions for Each Channel and the Same Initial Conditions Within a Channel

The initial conditions must be a vector of length N, where $N \geq 1 . N$ is also equal to the number of channels in your signal. These initial condition values are used as the constant initial condition value for each of the channels.
For example, suppose your input is a frame-based matrix.

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right],\left[\begin{array}{lll}
4 & 4 & 4 \\
5 & 5 & 5 \\
6 & 6 & 6
\end{array}\right],\left[\begin{array}{lll}
7 & 7 & 7 \\
8 & 8 & 8 \\
9 & 9 & 9
\end{array}\right], \ldots
$$

You want the initial conditions of your three-channel signal to be [0 10 20] for the first frame:

1 For the Delay (frames) parameter, type 1.
2 Select the Specify different initial conditions for each channel check box.

3 Clear the Specify different initial conditions within a channel check box.

4 For the Initial conditions parameter, type $\left[\begin{array}{lll}0 & 10 & 20\end{array}\right]$.
The output of the delay block is

Delay

$$
\left[\begin{array}{lll}
0 & 10 & 20 \\
0 & 10 & 20 \\
0 & 10 & 20
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right],\left[\begin{array}{lll}
4 & 4 & 4 \\
5 & 5 & 5 \\
6 & 6 & 6
\end{array}\right],\left[\begin{array}{lll}
7 & 7 & 7 \\
8 & 8 & 8 \\
9 & 9 & 9
\end{array}\right], \ldots
$$

The initial condition vector expands to create the frame that is output at sample time zero. Different initial conditions are used for each channel, but the same initial condition value is used with a channel.

Case 3 - Use the Same Initial Conditions for Each Channel and Different Initial Conditions Within a Channel

In this case, the Delay parameter can be a scalar integer by which to equally delay all channels or a vector whose length is equal to the number of channels. All the values of this vector must be equal.

Enter the initial conditions as a vector. These values are used as the initial condition value along each of the channels to be delayed. The initial condition vector must have length equal to the value of the Delay (frames) parameter multiplied by the frame length. For example, if you want to delay your signal by two frames with frame length two and an initial condition value of 3 , enter your initial condition vector as $\left[\begin{array}{lll}3 & 3 & 3\end{array}\right]$.

For example, suppose your input is a frame-based matrix.

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right],\left[\begin{array}{lll}
4 & 4 & 4 \\
5 & 5 & 5 \\
6 & 6 & 6
\end{array}\right],\left[\begin{array}{lll}
7 & 7 & 7 \\
8 & 8 & 8 \\
9 & 9 & 9
\end{array}\right], \ldots
$$

You want the initial conditions of your three-channel signal to be the same along each of the channels to be delayed:

1 For the Delay (frame) parameter, type 1.
2 Clear the Specify different initial conditions for each channel check box.

3 Select the Specify different initial conditions within a channel check box.

4 For the Initial conditions parameter, type [llllllllll 102030 .
The output of the delay block is
$\left[\begin{array}{lll}10 & 10 & 10 \\ 20 & 20 & 20 \\ 30 & 30 & 30\end{array}\right],\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3\end{array}\right],\left[\begin{array}{lll}4 & 4 & 4 \\ 5 & 5 & 5 \\ 6 & 6 & 6\end{array}\right],\left[\begin{array}{lll}7 & 7 & 7 \\ 8 & 8 & 8 \\ 9 & 9 & 9\end{array}\right], \ldots$

The initial condition vector defines the initial condition values within each of the three channels. The same initial conditions are used for each channel, but different initial condition values are used with a channel.

Case 4 - Use Different Initial Conditions for Each Channel and Within a Channel

Enter a cell array for your initial condition values. Or, when you have a scalar delay value, you can enter the initial conditions as a matrix.
For example, suppose your input is a frame-based matrix.

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right],\left[\begin{array}{lll}
4 & 4 & 4 \\
5 & 5 & 5 \\
6 & 6 & 6
\end{array}\right],\left[\begin{array}{lll}
7 & 7 & 7 \\
8 & 8 & 8 \\
9 & 9 & 9
\end{array}\right], \ldots
$$

You want the initial conditions of your three-channel signal to be different for each channel and along each channel.

1 For the Delay (frames) parameter, type 1.
2 Select the Specify different initial conditions for each channel and the Specify different initial conditions within a channel check boxes.

Delay

3 For the Initial conditions parameter, type either [10 20 30; 40 $5060 ; 708090]$ or $\{[104070] ;[2050$ 80]; [30 60 90]\}. Each cell of the cell array represents the delay along one channel.

Regardless of whether you use a matrix or cell array, the output of the delay block is
$\left[\begin{array}{lll}10 & 20 & 30 \\ 40 & 50 & 60 \\ 70 & 80 & 90\end{array}\right],\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3\end{array}\right],\left[\begin{array}{lll}4 & 4 & 4 \\ 5 & 5 & 5 \\ 6 & 6 & 6\end{array}\right],\left[\begin{array}{lll}7 & 7 & 7 \\ 8 & 8 & 8 \\ 9 & 9 & 9\end{array}\right] \ldots$

The initial condition matrix is the output at sample time zero. The elements of the initial condition cell array define the initial condition values within each channel. The first element, a vector, represents the initial conditions within channel 1 . The second element, a vector, represents the initial conditions within channel 2 , and so on. Different initial conditions are used for each channel and within the channels.

Supported Data Types

- Double-precision floating point
- Single-precision floating point
- Fixed point (signed and unsigned)
- Boolean
- 8 -, 16-, and 32 -bit signed integers
- 8 -, 16-, and 32 -bit unsigned integers

See Also	Unit Delay	Simulink
Variable Fractional Delay	Signal Processing Blockset	
	Variable Integer Delay	Signal Processing Blockset

Purpose
 Library
 Description

Rebuffer sequence of inputs with one-sample shift

Signal Management / Buffers
dspbuff3
The Delay Line block buffers the input samples into a sequence of overlapping or underlapping matrix outputs. In the most typical use (sample-based inputs), each output differs from the preceding output by only one sample, as illustrated below for scalar input.

Note that the first output of the block in the example above is all zeros; this is because the Initial Conditions parameter is set to zero. Due to the latency of the Delay Line block, all outputs are delayed by one frame, the entries of which are defined by the Initial Conditions parameter.

Sample-Based Operation

In sample-based operation, the Delay Line block buffers a sequence of sample-based length- N vector inputs (1-D, row, or column) into a sequence of overlapping frame-based M_{o}-by- N matrix outputs, where M_{o} is specified by the Delay line size parameter ($M_{o}>1$). That is, each input vector becomes a row in the frame-based output matrix.

At each sample time the new input vector is added in the last row of the output, so each output overlaps the previous output by $M_{o}-1$ samples. Therefore, the output sample period and frame period is the same as the input sample period ($T_{s o}=T_{s i}$, and $T_{\mathrm{fo}}=T_{s i}$). When $M_{o}=1$, the input is simply passed through to the output and retains the same dimension, but becomes frame based. The latency of the block always causes an initial delay in the output; the value of the first output is specified by the Initial conditions parameter (see "Initial Conditions" on page 2-324). Sample-based full-dimension matrix inputs are not accepted.

Delay Line

The Delay Line block's sample-based operation is similar to that of a Buffer block with Buffer size equal to M_{o} and Buffer overlap equal to $M_{o}-1$, except that the Buffer block has a different latency.
In the following model, the block operates on a sample-based input with a Delay line size of 3 .

The input vectors in the example above do not begin appearing at the output until the second row of the second matrix due to the block's latency (see "Initial Conditions" on page 2-324). The first output matrix (all zeros in this example) reflects the block's Initial conditions setting. As for any sample-based input, the output frame rate and output sample rate are both equal to the input sample rate.

Frame-Based Operation

In frame-based operation, the Delay Line block rebuffers a sequence of frame-based M_{i}-by- N matrix inputs into a sequence of frame-based M_{o}-by- N matrix outputs, where M_{o} is the output frame size specified by the Delay line size parameter. Depending on whether M_{o} is greater than, less than, or equal to the input frame size, M_{i}, the output frames
can be underlapped or overlapped. Each of the N input channels is rebuffered independently.
When $M_{o}>M_{i}$, the output frame overlap is the difference between the output and input frame size, $M_{o}-M_{i}$. When $M_{o}<M_{i}$, the output is underlapped; the Delay Line block discards the first $M_{i}-M_{o}$ samples of each input frame so that only the last M_{o} samples are buffered into the corresponding output frame. When $M_{o}=M_{i}$, the output data is identical to the input data, but is delayed by the latency of the block. Due to the block's latency, the outputs are always delayed by one frame, the entries of which are specified by the Initial conditions (see "Initial Conditions" on page 2-324).
The output frame period is equal to the input frame period ($T_{f_{0}}=T_{f i}$). The output sample period, $T_{s o}$, is therefore equal to $T_{f i} / M_{o}$, or equivalently, $T_{s i}\left(M_{i} / M_{o}\right)$
In the following model, the block rebuffers a two-channel frame-based input with a Delay line size of 3 .

The first output frame in the example is a product of the latency of the Delay Line block; it is all zeros because the Initial conditions is set to be zero. Since the input frame size, 4 , is larger than the output frame size, 3 , only the last three samples in each input frame are propagated to the corresponding output frame. The frame periods of the input and

Delay Line

output are the same, and the output sample period is $T_{s i}\left(M_{i} / M_{o}\right)$, or $4 / 3$ the input sample period.

Initial Conditions

The Delay Line block's buffer is initialized to the value specified by the Initial condition parameter. The block outputs this buffer at the first simulation step ($t=0$). When the block's output is a vector, the Initial condition can be a vector of the same size, or a scalar value to be repeated across all elements of the initial output. When the block's output is a matrix, the Initial condition can be a matrix of the same size, a vector (of length equal to the number of matrix rows) to be repeated across all columns of the initial output, or a scalar to be repeated across all elements of the initial output.

Dialog Box

Delay line size

The number of rows in output matrix, M_{0}.

Initial conditions

The value of the block's initial output, a scalar, vector, or matrix.

Allow direct feedthrough

When you select this check box, the input data is not delayed by an extra frame before it is available at the output buffer. Instead, the input data is available immediately at the output port of the block.

Show En_Out port for selectively enabling output

When you select this check box, the En_Out port appears on the block icon. This block uses a circular buffer internally even though the output is linear. This means that for valid output, data from the circular buffer has to be linearized. The En_Out port determines whether or not a valid output needs to be computed based on the value of its Boolean input. If the input value to the En_Out port is 1, the block output is linearized, and thus is valid. Otherwise, the output is not linearized, and is invalid. This allows the block to be more efficient when the tapped Delay Line's output is not required at each sample time.

Note that when the input value to the En_Out port is 0, the block can give different results depending on the state of the model. The results can appear to match valid results or can be invalid, and they cannot be predicted. You should ignore the block output in all cases when the input to the En_Out port is 0 .

Hold previous value when the output is disabled

This parameter only appears and applies when the Show En_Out port for selectively enabling output parameter is selected. Use this parameter to specify the block output at those time steps when the internal state buffer is not being linearized to output valid data.

When you do not select this check box, the block memory is free to be used by other parts of the model, and the signal on the output port is invalid. When you select this check box, the most recent valid value is held on the output port, and slightly more memory is used by the block.

Delay Line

Supported Data Types

Port	Supported Data Types
Input	• Double-precision floating point
	- Single-precision floating point
	- Fixed point (signed and unsigned)
	- Boolean
	- 8 -, 16-, and 32 -bit signed integers
	- 8-, 16-, and 32-bit unsigned integers
Output	- Double-precision floating point
	- Single-precision floating point
	- Fixed point (signed and unsigned)
	- Boolean
	- 8-, 16-, and 32-bit signed integers
	- 8-, 16-, and 32-bit unsigned integers

See Also	Buffer	Signal Processing Blockset
Triggered Delay Line		
(Obsolete)		Signal Processing Blockset

Purpose

Remove linear trend from vectors

Library

Statistics
dspstat3
Description

Dialog Box

Supported
Data
Types

See Also least squares sense. that minimizes the quantity

$$
\sum_{i=1}^{M}\left(u_{i}-u_{i}\right)^{2}
$$

- Double-precision floating point
- Single-precision floating point

The Detrend block removes a linear trend from the length- M input vector, u, by subtracting the straight line that best fits the data in the

The least squares line, $\hat{u}=a x+b$, is the line with parameters a and b
for M evenly-spaced values of x, where u_{i} is the i th element in the input vector. The output, $y=u-\hat{u}$, is an M-by- 1 column vector (regardless of the input vector dimension) with the same frame status as the input.

Block Parameters: Detrend 区				
- Detrend (mask]				
Remove linear trend from vector input.				
OK	Cancel	Help	Apply	

Cumulative Sum	Signal Processing Blockset
Difference	Signal Processing Blockset

Detrend

Least Squares
Polynomial Fit
Unwrap
detrend MATLAB

Purpose

Library

Math Functions / Math Operations
dspmathops
Description
 input except for complex unsigned fixed-point inputs.

Compute element-to-element difference along specified dimension of

The Difference block computes the difference between adjacent elements in rows, columns, or a specified dimension of the input array u. This block accepts real and complex fixed-point and floating-point inputs,

Columnwise Differencing

When the Difference along parameter is set to Columns, the block computes differences between adjacent elements along each column.

$$
y=\operatorname{diff}(u) \quad \% \text { Equivalent MATLAB code }
$$

For sample-based inputs, the output is a sample-based ($M-1$)-by- N matrix whose j th column has elements

$$
y_{i, j}=u_{i+1},{ }_{j}-u_{i, j} \quad 1 \leq i \leq(M-1)
$$

For convenience, length-M 1-D vector inputs are treated as M-by-1 column vectors for columnwise differencing, and the output is 1-D.

For example, the following figure shows the block output for sample-based inputs:

Difference

For frame-based inputs, the output is a frame-based M-by- N matrix whose j th column has elements

$$
y_{i, j}=u_{i+1, j}-u_{i, j} \quad 2 \leq i \leq(M-1)
$$

The first element of the output for each column is the first input element minus the last input element of the previous frame. For the first frame, zero is subtracted from the first input element.

$$
y_{1, j}(t)=u_{1, j}(t)-u_{M, j}\left(t-T_{f}\right)
$$

For example, the following figure shows the second frame of the block output for a frame-based input:

Rowwise Differencing

When the Difference along parameter is set to Rows, the block computes differences between adjacent elements along each row. The result is the same regardless of the frame status of the input signal.

$$
y=\operatorname{diff}(u,[], 2) \quad \% \text { Equivalent MATLAB code }
$$

The output is an M-by-($N-1$) matrix whose i th row has elements

$$
y_{i, j}=u_{i, j+1}-u_{i, j} \quad 1 \leq j \leq(N-1)
$$

The frame status of the output is the same as the input. For convenience, length $-N$ 1-D vector inputs are treated as 1 -by- N row vectors for rowwise differencing, and the output is 1-D.

For example, the following figure shows the block output for sample-based inputs. The output is the same for frame-based inputs:

Differencing Along Arbitrary Dimensions

When the Difference along parameter is set to Specified dimension, the behavior of the block is an extension of the rowwise differencing described earlier. The block computes differences between adjacent elements along the dimension specified by the Dimension parameter.

```
y = diff(u,[],d) % Equivalent MATLAB code where d is the dimension
```

The output is an array whose length in the specified dimension is one less than that of the input, and whose lengths in other dimensions are unchanged. For example, consider an M-by-N-by-P-by-R input array with elements $u(i, j, k, l)$ and assume that Dimension is 3. The output of the block is an M-by-N-by-(P-1)-by-R array with elements

$$
y_{i, j, k, l}=u_{i, j, k+1, l}-u_{i, j, k, l} \quad 1 \leq k \leq(P-1)
$$

Fixed-Point Data Types

The following diagram shows the data types used within the Difference block for fixed-point signals.

You can set the accumulator and output data types in the block dialog as discussed in "Dialog Box" on page 2-332.

Difference

Dialog The Main pane of the Difference block appears as follows.
Box

```
Function Block Parameters: Difference X
Difference
    Difference between adjacent input elements. For oriented inputs, difference along the specified dimension.
    Main | Data type attributes
    Parameters
    Difference along: Columns\(\nabla\)
```

\square
\qquad Help Apply

Difference along

Specify whether the block performs columnwise differencing, rowwise differencing, or differencing along a specified dimension.

Dimension

Specify the one-based dimension along which to compute element-to-element differences.

This parameter is only visible when you select Specified dimension for the Difference along parameter.

The Data type attributes pane of the Difference block appears as follows.
Function Block Parameters: Difference

Difference-
Difference between adjacent input elements. For oriented inputs, difference along the specified dimension.
Main Data type attributes
-Fixed-point operational parameters

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the block input is floating point, all block data types match the input.

- Lock scaling against changes by the autoscaling tool

Note Floating-point inheritance takes precedence over the data type settings defined on this pane. When inputs are floating point, the block ignores these settings, and all internal data types are floating point.

Difference

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Accumulator data type

Specify the accumulator data type. See "Fixed-Point Data Types" on page 2-331 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button $\quad \gg$ to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Output data type

Specify the output data type. See "Fixed-Point Data Types" on page 2-331 for illustrations depicting the use of the output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as accumulator
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button $\quad \gg$ to display the Data Type Assistant, which helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in Simulink User's Guide for more information.

Minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to - Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

Supported Data Types

Port	Supported Data Types
Input	• Double-precision floating point
	• Single-precision floating point
	• Fixed point
	$\bullet 8-, 16-$, and 32 -bit signed integers
	$\bullet 8-, 16-$, and 32 -bit unsigned integers

Difference

Port	Supported Data Types
Output	• Double-precision floating point
	• Single-precision floating point
	• Fixed point
	$\bullet 8-, 16-$, and 32 -bit signed integers
	$\bullet 8-, 16-$, and 32 -bit unsigned integers

See Also

Cumulative Sum	Signal Processing Blockset
diff	MATLAB

Differentiator Filter

Purpose Design differentiator filter

Library Filtering / Filter Design Toolbox
 dspfdesign

Description

Differentiator

This block brings the functionality of the Filter Design Toolbox filterbuilder function to the Simulink environment. You must have a Filter Design Toolbox product license to design filters with this block. However, you can run models containing this block without a license. This allows you to run a model sent to you by a colleague who has designed a filter using this block, even if you do not have the Filter Design Toolbox product.

Dialog Box

See "Differentiator Filter Design Dialog Box - Main Pane" in the Filter Design Toolbox documentation for more information about the parameters of this block. The Data Types pane is not available for Filter Design Toolbox blocks in the Signal Processing Blockset product.

Parameters of this block that do not change filter order or structure are tunable. Tunable parameters are enabled during simulation; nontunable parameters are not.

Supported
 Data Types

Port	Supported Data Types
Input	- Double-precision floating point
	- Single-precision floating point
	- Fixed point
	- 8-, 16-, and 32-bit signed integers
	- 8-, 16-, and 32-bit unsigned integers
Output	- Double-precision floating point
	- Single-precision floating point
	- Fixed point

Differentiator Filter

Port \quad Supported Data Types

| $\bullet 8-, 16-$, and 32 -bit signed integers |
| :--- | :--- |
| $\bullet 8-, 16-$, and 32 -bit unsigned integers |

Purpose

Library

Description

Filter each channel of input over time using static or time-varying digital filter implementations

Filtering / Filter Designs
dsparch4

Note Use this block to efficiently implement a floating-point or fixed-point filter for which you know the coefficients, or that is already defined in a Signal Processing Toolbox dfilt object or a Filter Design Toolbox dfilt object. The following Signal Processing Blockset blocks also implement digital filters, but serve slightly different purposes:

- Digital Filter Design - Use to design, analyze, and then efficiently implement floating-point filters. This block provides the same filter implementation as the Digital Filter block for floating-point signals.
- Filter Realization Wizard - Use to implement floating-point or fixed-point filters built from Sum, Gain, and Unit Delay blocks. You can either design the filter using block filter design and analysis parameters, or import the coefficients of a filter that you designed elsewhere.

The Digital Filter block independently filters each channel of the input signal with a specified digital IIR or FIR filter. The block can implement static filters with fixed coefficients, as well as time-varying filters with coefficients that change over time. You can tune the coefficients of a static filter during simulation.

This block filters each channel of the input signal independently over time. The output frame status and dimensions are always the same as those of the input signal that is filtered. When inputs are frame based, the block treats each column as an independent channel; the block filters each column. When inputs are sample based, the block treats each element of the input as an individual channel.

The outputs of this block numerically match the outputs of the Digital Filter Design block and of the dfilt function in Signal Processing Toolbox software or Filter Design Toolbox software.

Note The Digital Filter block has direct feedthrough, so if you connect the output of this block back to its input you get an algebraic loop. For more information on direct feedthrough and algebraic loops, see "Algebraic Loops" in the Simulink documentation.

Sections of This Reference Page

- "Coefficient Source" on page 2-340
- "Supported Filter Structures" on page 2-341
- "Specifying Initial Conditions" on page 2-343
- "State Logging" on page 2-346
- "Fixed-Point Data Types" on page 2-347
- "Dialog Box" on page 2-347
- "Filter Structure Diagrams" on page 2-363
- "Supported Data Types" on page 2-399
- "See Also" on page 2-399

Coefficient Source

The Digital Filter block can operate in three different modes. Select the mode in the Coefficient source group box. If you select

- Dialog parameters, you enter information about the filter such as structure and coefficients in the block mask.
- Input port(s), you enter the filter structure in the block mask, and the filter coefficients come in through one or more block ports. This mode is useful for specifying time-varying filters.
- Discrete-time filter object (DFILT), you specify the filter using a dfilt object from the Signal Processing Toolbox product or the Filter Design Toolbox product.

Supported Filter Structures

When you select Discrete-time filter object (DFILT), the following dfilt structures are supported:

- dfilt.df1
- dfilt.df1t
- dfilt.df2
- dfilt.df2t
- dfilt.df1sos
- dfilt.df1tsos
- dfilt.df2sos
- dfilt.df2tsos
- dfilt.dffir
- dfilt.dffirt
- dfilt.dfsymfir
- dfilt.dfasymfir
- dfilt.latticear
- dfilt.latticemamin

When you select Dialog parameters or Input port(s), the list of filter structures offered in the Filter structure parameter depends on whether you set the Transfer function type to IIR (poles \& zeros), IIR (all poles), or FIR (all zeros), as summarized in the following table.

Digital Filter

Note Each structure listed in the table below supports both fixed-point and floating-point signals.

The table also shows the vector or matrix of filter coefficients you must provide for each filter structure. For more information on how to specify filter coefficients for various filter structures, see "Specifying Static Filters" and "Specifying Time-Varying Filters".

Filter Structures and Filter Coefficients

Transfer Function Type	Supported Filter Structures	Filter Coefficient Specification
IIR (poles \& zeros)	Direct form I Direct form I transposed Direct form II Direct form II transposed	- Numerator coefficients vector [b0, b1, b2, ..., bn] - Denominator coefficients vector [a0, a1, a2, ..., am]
	Biquadratic direct form I (SOS) Biquadratic direct form I transposed (SOS) Biquadratic direct form II (SOS) Biquadratic direct form II transposed (SOS)	- M-by- 6 second-order section (SOS) matrix. - Scale values See "Specifying the SOS Matrix (Biquadratic Filter Coefficients)".
IIR (all poles)	Direct form Direct form transposed	Denominator coefficients vector [a0, a1, a2, ..., am]
	Lattice AR	Reflection coefficients vector [k1, k2, ..., kn]

Filter Structures and Filter Coefficients (Continued)

Transfer Function Type	Supported Filter Structures	Filter Coefficient Specification
FIR (all zeros)	Direct form	Numerator coefficients vector [b0, b1, b2, .., bn]
	Direct form symmetric	
	Direct form antisymmetric	
	Direct form transposed	

Specifying Initial Conditions

In Dialog parameters and Input port(s) modes, the block initializes the internal filter states to zero by default, which is equivalent to assuming past inputs and outputs are zero. You can optionally use the Initial conditions parameter to specify nonzero initial conditions for the filter delays.
To determine the number of initial condition values you must specify, and how to specify them, see the following table on Valid Initial Conditions and Number of Delay Elements (Filter States) on page 2-345. The Initial conditions parameter can take one of four forms as described in the following table.

Valid Initial Conditions

Initial Condition	Examples	Description		
Scalar	5	Each delay element for each (channel is set to 5.		in the filter to the scalar value.
:---				

Digital Filter

Valid Initial Conditions (Continued)

Initial Condition	Examples	Description
Vector (for applying the same delay elements to each channel)	For a filter with two delay elements: $\left[d_{1} d_{2}\right]$ The delay elements for all channels are d1 and d2.	Each vector element specifies a unique initial condition for a corresponding delay element. The block applies the same vector of initial conditions to each channel of the input signal. The vector length must equal the number of delay elements in the filter (specified in the table Number of Delay Elements (Filter States) on page 2-345).
Vector or matrix (for applying different delay elements to each channel)	For a 3-channel input signal and a filter with two delay elements: $\begin{gathered} {\left[d_{1} d_{2} D_{1} D_{2} d_{1} d_{2}\right] \text { or }} \\ {\left[\begin{array}{lll} d_{1} & D_{1} & d_{1} \\ d_{2} & D_{2} & d_{2} \end{array}\right]} \end{gathered}$ - The delay elements for channel 1 are d_{1} and d_{2}. - The delay elements for channel 2 are D_{1} and D_{2}. - The delay elements for channel 3 are d_{1} and d_{2}.	Each vector or matrix element specifies a unique initial condition for a corresponding delay element in a corresponding channel: - The vector length must be equal to the product of the number of input channels and the number of delay elements in the filter (specified in the table Number of Delay Elements (Filter States) on page 2-345). - The matrix must have the same number of rows as the number of delay elements in the filter (specified in the table Number of Delay Elements (Filter States) on page $2-345$), and must have one column for each channel of the input signal.
Empty matrix	[] Each delay element for each channel is set to 0 .	The empty matrix, [], is equivalent to setting the Initial conditions parameter to the scalar value 0 .

The number of delay elements (filter states) per input channel depends on the filter structure, as indicated in the following table.

Number of Delay Elements (Filter States)

Filter Structure	Number of Delay Elements per Channel
Direct form Direct form transposed Direct form symmetric Direct form antisymmetric	\#_of_filter_coeffs-1
Direct form I Direct form I transposed	- \#_of_zeros-1 - \#_of_poles-1
Direct form II Direct form I transposed	max(\#_of_zeros, \#_of_poles)-1
Biquadratic direct form I (SOS) Biquadratic direct form I transposed (SOS) Biquadratic direct form II (SOS) Biquadratic direct form II transposed (SOS)	2
Lattice AR Lattice MA	

Digital Filter

State Logging

Simulink enables you to log the states in your model to the MATLAB workspace. The following table indicates which filter structures of the Digital Filter block support the Simulink state logging feature. See "States" in the Simulink User's Guide documentation for more information.

Transfer Function Type	Filter Structure	State Logging Supported
IIR (poles \& zeros)	Direct form I	No
	Direct form I transposed	Yes
	Direct form I I	No
	Direct form I I transposed	Yes
	Biquadratic direct form I (SOS)	Yes
	Biquadratic direct form I transposed (SOS)	Yes
	Biquadratic direct form II (SOS)	Yes
	Biquadratic direct form II transposed (SOS)	Yes
IIR (all poles)	Direct form	No
	Direct form transposed	Yes
	Lattice AR	Yes
	Direct form	No
	Direct form symmetric	No
	Direct form antisymmetric	No
	Direct form transposed	Yes
	Lattice MA	Yes

Fixed-Point Data Types

All structures supported by the Digital Filter block support fixed-point data types. You can specify intermediate fixed-point data types for quantities such as the coefficients, accumulator, and product output for each filter structure. See "Filter Structure Diagrams" on page 2-363 for diagrams depicting the use of these intermediate fixed-point data types in each filter structure.

Dialog

Box

Coefficient Source

The Digital Filter block can operate in three different modes. Select the mode in the Coefficient source group box. If you select

- Dialog parameters, you enter information about the filter such as structure and coefficients in the block mask.
- Input port(s), you enter the filter structure in the block mask, and the filter coefficients come in through one or more block ports. This mode is useful for specifying time-varying filters.
- Discrete-time filter object (DFILT), you specify the filter using a dfilt object from the Signal Processing Toolbox product or the Filter Design Toolbox product.

Different items appear on the Digital Filter block dialog depending on whether you select Dialog parameters, Input port(s), or Discrete-time filter object (DFILT) in the Coefficient source group box. See the following sections for details:

- "Specify Filter Characteristics in Dialog and/or Through Input Ports" on page 2-347
- "Specify Discrete-Time Filter Object" on page 2-359

Specify Filter Characteristics in Dialog and/or Through Input Ports

The Main pane of the Digital Filter block dialog appears as follows when Dialog parameters is specified in the Coefficient source group

Digital Filter

box. The parameters below can appear when Dialog parameters or Input port(s) is selected, as noted.

Digital Filter
Independently filter each channel of the input over time using a specified digital filter implementation. You can specify filter coefficients using either tunable mask dialog parameters or separate input ports, which are useful for time-varying coefficients.

You can also specify filters using discrete-time filter objects [dfilts] from the Signal Processing Toolbox. Type "help dfill" for more information about creating these objects.
-Coefficient source
c. Dialog parameters
C Input port(s)
C Discrete-time filter object (DFILT)

\section*{| Main | Fixed-point |
| :--- | :--- |}

Parameters
Transfer function type: IIR (poles \& zeros)
Filter structure: Direct form II transposed
Numerator coefficients: [1 2]
Denominator coefficients: [10.1]
Initial conditions: 0
View Filter Response

Transfer function type

Select the type of transfer function of the filter; IIR (poles \& zeros), IIR (all poles), or FIR (all zeros). See "Supported Filter Structures" on page 2-341 for more information.

Filter structure

Select the filter structure. The selection of available structures varies depending the setting of the Transfer function type parameter. See "Supported Filter Structures" on page 2-341 for more information.

Numerator coefficients

Specify the vector of numerator coefficients of the filter's transfer function.

This parameter is only visible when Dialog parameters is selected and when the selected filter structure lends itself to specification with numerator coefficients. Tunable.

Denominator coefficients

Specify the vector of denominator coefficients of the filter's transfer function.

This parameter is only visible when Dialog parameters is selected and when the selected filter structure lends itself to specification with denominator coefficients. Tunable.

Reflection coefficients

Specify the vector of reflection coefficients of the filter's transfer function.

This parameter is only visible when Dialog parameters is selected and when the selected filter structure lends itself to specification with reflection coefficients. Tunable.

SOS matrix (Mx6)

Specify an M-by-6 SOS matrix containing coefficients of a second-order section (SOS) filter, where M is the number of sections. You can use the ss2sos and tf2sos functions from

Signal Processing Toolbox software to check whether your SOS matrix is valid. For more on the requirements of the SOS matrix, see "Specifying the SOS Matrix (Biquadratic Filter Coefficients)".

This parameter is only visible when Dialog parameters is selected and when the selected filter structure is biquadratic. Tunable.

Scale values

Specify the scale values to be applied before and after each section of a biquadratic filter.

- If you specify a scalar, that value is applied before the first filter section. The rest of the scale values are set to 1 .
- You can also specify a vector with $M+1$ elements, assigning a different value to each scale. See "Filter Structure Diagrams" on page 2-363 for diagrams depicting the use of scale values in biquadratic filter structures.

This parameter is only visible when Dialog parameters is selected and when the selected filter structure is biquadratic. Tunable.

First denominator coefficient $=1$, remove a0 term in the structure

Select this parameter to reduce the number of computations the block must make to produce the output by omitting the $1 / a_{0}$ term in the filter structure. The block output is invalid if you select this parameter when the first denominator filter coefficient is not always 1 for your time-varying filter.

This parameter is only enabled when the Input port(s) is selected and when the selected filter structure lends itself to this specification. See "Removing the a0 Term in the Filter Structure" for a diagram and details.

Coefficient update rate

Specify how often the block updates time-varying filters; once per sample or once per frame. This parameter only affects the output when the input signal is frame based.

This parameter is only visible when the Input port(s) is selected and when the selected filter structure lends itself to this specification. For more information, see "Specifying Time-Varying Filters".

Initial conditions

Specify the initial conditions of the filter states. To learn how to specify initial conditions, see "Specifying Initial Conditions" on page 2-343.

Initial conditions on zeros side

(Not shown in dialog above.) Specify the initial conditions for the filter states on the side of the filter structure with the zeros (b_{0}, b_{1}, b_{2}, \ldots); see the diagram below.

This parameter is enabled only when the filter has both poles and zeros, and when you select a structure such as direct form I, which has separate filter states corresponding to the poles $\left(a_{k}\right)$ and zeros $\left(b_{k}\right)$. To learn how to specify initial conditions, see "Specifying Initial Conditions" on page 2-343.

Initial conditions on poles side

(Not shown in dialog above). Specify the initial conditions for the filter states on the side of the filter structure with the poles (a_{0}, a_{1}, a_{2}, \ldots); see the diagram below.

This parameter is enabled only when the filter has both poles and zeros, and when you select a structure such as direct form I , which has separate filter states corresponding to the poles (a_{k}) and zeros $\left(b_{k}\right)$. To learn how to specify initial conditions, see "Specifying Initial Conditions" on page 2-343.

View filter response

This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox product and displays the filter response of the filter defined by the block. For more information on FVTool, see the Signal Processing Toolbox documentation.

Note This button is only available when the Filter Design Toolbox product is installed. If you specify a filter in the Filter parameter, you must apply the filter by clicking the Apply button before using the View filter response button.

The Fixed point pane of the Digital Filter block dialog appears as follows when Dialog parameters is specified in the Coefficient source group box. The parameters below can appear when Dialog parameters or Input port(s) is selected, depending on the filter structure and whether the coefficients are being entered via ports or on the block mask.

Digital Filter

Rounding mode

Select the rounding mode for fixed-point operations. The filter coefficients do not obey this parameter; they always round to Nearest.

Overflow mode

Select the overflow mode for fixed-point operations. The filter coefficients do not obey this parameter; they are always saturated.

Section I/O

Choose how you specify the word length and the fraction length of the fixed-point data type going into and coming out of each section of a biquadratic filter. See "Filter Structure Diagrams" on page 2-363 for illustrations depicting the use of the section I/O data type in this block.

This parameter is only visible when the selected filter structure is biquadratic:

- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word and fraction lengths of the section input and output, in bits.
- When you select Slope and bias scaling, you can enter the word lengths, in bits, and the slopes of the section input and output. This block requires power-of-two slope and a bias of zero.

Tap sum

Choose how you specify the word length and the fraction length of the tap sum data type of a direct form symmetric or direct form antisymmetric filter. See "Filter Structure Diagrams" on page 2-363 for illustrations depicting the use of the tap sum data type in this block.

This parameter is only visible when the selected filter structure is either Direct form symmetric or Direct form antisymmetric:

- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the tap sum accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the tap sum accumulator. This block requires power-of-two slope and a bias of zero.

Multiplicand

Choose how you specify the word length and the fraction length of the multiplicand data type of a direct form I transposed or biquadratic direct form I transposed filter. See "Filter Structure Diagrams" on page 2-363 for illustrations depicting the use of the multiplicand data type in this block.

This parameter is only visible when the selected filter structure is either Direct form I transposed or Biquad direct form I transposed (SOS):

- When you select Same as output, these characteristics match those of the output to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the multiplicand data type, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the multiplicand data type. This block requires power-of-two slope and a bias of zero.

Coefficients

Choose how you specify the word length and the fraction length of the filter coefficients (numerator and/or denominator). See "Filter Structure Diagrams" on page 2-363 for illustrations depicting the use of the coefficient data types in this block:

- When you select Same word length as input, the word length of the filter coefficients match that of the input to the
block. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Specify word length, you can enter the word length of the coefficients, in bits. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Binary point scaling, you can enter the word length and the fraction length of the coefficients, in bits. If applicable, you can enter separate fraction lengths for the numerator and denominator coefficients.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the coefficients. If applicable, you can enter separate slopes for the numerator and denominator coefficients. This block requires power-of-two slope and a bias of zero.
- The filter coefficients do not obey the Rounding mode and the Overflow mode parameters; they are always saturated and rounded to Nearest.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. See "Filter Structure Diagrams" on page 2-363 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block:

- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to specify how you would like to designate the accumulator word and fraction lengths. See "Filter Structure Diagrams" on page 2-363 and "Multiplication Data Types" for illustrations depicting the use of the accumulator data type in this block:

- When you select Same as input, these characteristics match those of the input to the block.
- When you select Same as product output, these characteristics match those of the product output.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

State

Use this parameter to specify how you would like to designate the state word and fraction lengths. See "Filter Structure Diagrams" on page 2-363 for illustrations depicting the use of the state data type in this block.

This parameter is not visible for direct form and direct form I filter structures.

- When you select Same as input, these characteristics match those of the input to the block.
- When you select Same as accumulator, these characteristics match those of the accumulator.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you specify the output word length and fraction length:

- When you select Same as input, these characteristics match those of the input to the block.
- When you select Same as accumulator, these characteristics match those of the accumulator.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

Specify Discrete-Time Filter Object

The Main pane of the Digital Filter block dialog appears as follows when Discrete-time filter object (DFILT) is specified in the Coefficient source group box.

Digital Filter

Filter

Specify the discrete-time filter object (dfilt) that you would like the block to implement. You can do this in one of three ways:

- You can fully specify the dfilt object in the block mask, as shown in the default value.
- You can enter the variable name of a dfilt object that is defined in any workspace.
- You can enter a variable name for a dfilt object that is not yet defined.

For more information on creating dfilt objects, see the dfilt function reference page in the Signal Processing Toolbox documentation or the Filter Design Toolbox documentation.

View filter response

This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox product and displays the filter response of the dfilt object specified in the Filter parameter. For more information on FVTool, see the Signal Processing Toolbox documentation.

Note This button is only available when the Filter Design Toolbox product is installed. If you specify a filter in the Filter parameter, you must apply the filter by clicking the Apply button before using the View filter response button.

The Fixed-point pane of the Digital Filter block dialog appears as follows when Discrete-time filter object (DFILT) is specified in the Coefficient source group box.

Digital Filter

The fixed-point settings of the filter object specified on the Main pane are displayed on the Fixed-point pane. You cannot change these settings directly on the block mask. To change the fixed-point settings you must edit the filter object directly.

For more information on discrete-time filter objects, see the dfilt function reference page in the Signal Processing Toolbox documentation or the Filter Design Toolbox documentation.

Filter
 Structure Diagrams

The diagrams in the following sections show the filter structures supported by the Digital Filter block. They also show the data types used in the filter structures for fixed-point signals. You can set the coefficient, output, accumulator, product output, and state data types shown in these diagrams in the block dialog. This is discussed in "Dialog Box" on page 2-347.

- "IIR direct form I" on page 2-364
- "IIR direct form I transposed" on page 2-366
- "IIR direct form II" on page 2-369
- "IIR direct form II transposed" on page 2-371
- "IIR biquadratic direct form I" on page 2-374
- "IIR biquadratic direct form I transposed" on page 2-377
- "IIR biquadratic direct form II" on page 2-380
- "IIR biquadratic direct form II transposed" on page 2-382
- "IIR (all poles) direct form" on page 2-385
- "IIR (all poles) direct form transposed" on page 2-387
- "IIR (all poles) direct form lattice AR" on page 2-389
- "FIR (all zeros) direct form" on page 2-390
- "FIR (all zeros) direct form symmetric" on page 2-392
- "FIR (all zeros) direct form antisymmetric" on page 2-394
- "FIR (all zeros) direct form transposed" on page 2-396
- "FIR (all zeros) lattice MA" on page 2-398

Digital Filter

IIR direct form I

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs can be real or complex.
- Numerator and denominator coefficients can be real or complex.
- Numerator and denominator coefficients must be the same complexity as each other.
- When the numerator and denominator coefficients are specified via input ports and have different complexities from each other, you get an error.
- When the numerator and denominator coefficients are specified in the dialog and have different complexities from each other, the block does not error, but instead processes the filter as if two sets of complex coefficients are provided. The coefficient set that is real-valued is treated as if it is a complex vector with zero-valued imaginary parts.
- Numerator and denominator coefficients must have the same word length. They can have different fraction lengths.
- The State data type cannot be specified on the block mask for this structure, because the input and output states have the same data types as the input and output buffers.

Digital Filter

IIR direct form I transposed

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs can be real or complex.
- Numerator and denominator coefficients can be real or complex.
- Numerator and denominator coefficients must be the same complexity as each other.
- When the numerator and denominator coefficients are specified via input ports and have different complexities from each other, you get an error.
- When the numerator and denominator coefficients are specified in the dialog and have different complexities from each other, the block does not error, but instead processes the filter as if two sets of complex coefficients are provided. The coefficient set that is real-valued is treated as if it is a complex vector with zero-valued imaginary parts.
- States are complex when either the input or the coefficients are complex.
- Numerator and denominator coefficients must have the same word length. They can have different fraction lengths.

Digital Filter

IIR direct form II

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs can be real or complex.
- Numerator and denominator coefficients can be real or complex.
- Numerator and denominator coefficients must be the same complexity as each other.
- When the numerator and denominator coefficients are specified via input ports and have different complexities from each other, you get an error.

Digital Filter

- When the numerator and denominator coefficients are specified in the dialog and have different complexities from each other, the block does not error, but instead processes the filter as if two sets of complex coefficients are provided. The coefficient set that is real-valued is treated as if it is a complex vector with zero-valued imaginary parts.
- States are complex when either the inputs or the coefficients are complex.
- Numerator and denominator coefficients must have the same word length. They can have different fraction lengths.

IIR direct form II transposed

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs can be real or complex.
- Numerator and denominator coefficients can be real or complex.
- Numerator and denominator coefficients must be the same complexity as each other.
- When the numerator and denominator coefficients are specified via input ports and have different complexities from each other, you get an error.

Digital Filter

- When the numerator and denominator coefficients are specified in the dialog and have different complexities from each other, the block does not error, but instead processes the filter as if two sets of complex coefficients are provided. The coefficient set that is real-valued is treated as if it is a complex vector with zero-valued imaginary parts.
- States are complex when either the inputs or the coefficients are complex.
- Numerator and denominator coefficients must have the same word length. They can have different fraction lengths.

Digital Filter

IIR biquadratic direct form I

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs and coefficients can be real or complex.
- Numerator and denominator coefficients can be real or complex.
- Specify the coefficients by a M-by- 6 matrix in the block mask. You cannot specify coefficients by input ports for this filter structure.
- When the a0 element of any row is not equal to one, that row is normalized by a 0 prior to filtering.
- States are complex when either the inputs or the coefficients are complex.
- You cannot specify the state data type on the block mask for this structure, because the input and output states have the same data types as the input.
- Scale values must have the same complexity as the coefficient SOS matrix.
- The scale value parameter must be a scalar or a vector of length $M+1$, where M is the number of sections.
- The Section I/O parameter determines the data type for the section input and output data types. The section input and stage output data type must have the same word length but can have different fraction lengths.

The following diagram shows the data types for one section of the filter.

Digital Filter

The following diagram shows the data types between filter sections.

IIR biquadratic direct form I transposed

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs and coefficients can be real or complex.
- Numerator and denominator coefficients can be real or complex.
- Specify the coefficients by a M-by- 6 matrix in the block mask. You cannot specify coefficients by input ports for this filter structure.
- When the a0 element of any row is not equal to one, that row is normalized by a 0 prior to filtering.
- States are complex when either the inputs or the coefficients are complex.
- Scale values must have the same complexity as the coefficient SOS matrix.
- The scale value parameter must be a scalar or a vector of length $M+1$, where M is the number of sections.
- The Section I/O parameter determines the data type for the section input and output data types. The section input and section output data type must have the same word length but can have different fraction lengths.

The following diagram shows the data types for one section of the filter.

Digital Filter

The following diagram shows the data types between filter sections.

IIR biquadratic direct form II

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs and coefficients can be real or complex.
- Numerator and denominator coefficients can be real or complex.
- Specify the coefficients by a M-by- 6 matrix in the block mask. You cannot specify coefficients by input ports for this filter structure.
- When the a0 element of any row is not equal to one, that row is normalized by a 0 prior to filtering.
- States are complex when either the inputs or the coefficients are complex.
- Scale values must have the same complexity as the coefficient SOS matrix.
- The scale value parameter must be a scalar or a vector of length $M+1$, where M is the number of sections.
- The Section I/O parameter determines the data type for the section input and output data types. The section input and section output data type must have the same word length but can have different fraction lengths.

The following diagram shows the data types for one section of the filter.

The following diagram shows the data types between filter sections.

Digital Filter

IIR biquadratic direct form II transposed

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs and coefficients can be real or complex.
- Numerator and denominator coefficients can be real or complex.
- Specify the coefficients by a M-by- 6 matrix in the block mask. You cannot specify coefficients by input ports for this filter structure.
- When the a 0 element of any row is not equal to one, that row is normalized by a 0 prior to filtering.
- States are complex when either the inputs or the coefficients are complex.
- Scale values must have the same complexity as the coefficient SOS matrix.
- The scale value parameter must be a scalar or a vector of length $M+1$, where M is the number of sections.
- The Section I/O parameter determines the data type for the section input and output data types. The section input and section output data type must have the same word length but can have different fraction lengths.

The following diagram shows the data types for one section of the filter.

Digital Filter

The following diagram shows the data types between filter sections.

IIR (all poles) direct form

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs and coefficients can be real or complex.
- Denominator coefficients can be real or complex.
- You cannot specify the state data type on the block mask for this structure, because the input and output states have the same data types as the input.

Digital Filter

IIR (all poles) direct form transposed

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs and coefficients can be real or complex.
- Denominator coefficients can be real or complex.

Digital Filter

IIR (all poles) direct form lattice AR

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs and coefficients can be real or complex.
- Coefficients can be real or complex.

Digital Filter

FIR (all zeros) direct form

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs can be real or complex.
- Numerator coefficients can be real or complex.
- You cannot specify the state data type on the block mask for this structure, because the input and output states have the same data types as the input.

Digital Filter

FIR (all zeros) direct form symmetric

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs can be real or complex.
- Numerator coefficients can be real or complex.
- You cannot specify the state data type on the block mask for this structure, because the input and output states have the same data types as the input.
- It is assumed that the filter coefficients are symmetric. Only the first half of the coefficients are used for filtering.
- The Tap Sum parameter determines the data type the filter uses when it sums the inputs prior to multiplication by the coefficients.

Digital Filter

FIR (all zeros) direct form antisymmetric

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs can be real or complex.
- Numerator coefficients can be real or complex.
- You cannot specify the state data type on the block mask for this structure, because the input and output states have the same data types as the input.
- It is assumed that the filter coefficients are antisymmetric. Only the first half of the coefficients are used for filtering.
- The Tap Sum parameter determines the data type the filter uses when it sums the inputs prior to multiplication by the coefficients.

Digital Filter

FIR (all zeros) direct form transposed

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs can be real or complex.
- Coefficients can be real or complex.
- States are complex when either the inputs or the coefficients are complex.

Digital Filter

FIR (all zeros) lattice MA

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs and coefficients can be real or complex.
- Coefficients can be real or complex.

Supported Data Types
- Double-precision floating point
- Single-precision floating point
- Fixed point (signed only)
- 8 -, 16-, and 32 -bit signed integers

See Also

Digital Filter Design Signal Processing Blockset
Filter Realization Signal Processing Blockset Wizard
dfilt Signal Processing Toolbox
fdatool Signal Processing Toolbox
fvtool Signal Processing Toolbox
sptool Signal Processing Toolbox

Digital Filter Design

Purpose	Design and implement digital FIR and IIR filters
Library	Filtering / Filter Designs
	dsparch4

Description

Note Use this block to design, analyze, and then efficiently implement floating-point filters. The following blocks also implement digital filters, but serve slightly different purposes:

- Digital Filter - Use to efficiently implement floating-point or fixed-point filters that you have already designed. This block provides the same exact filter implementation as the Digital Filter Design block.
- Filter Realization Wizard - Use to implement floating-point or fixed-point filters built from Sum, Gain, and Unit Delay blocks. You can either design the filter within this block, or import the coefficients of a filter that you designed elsewhere.

The Digital Filter Design block implements a digital FIR or IIR filter that you design using the Filter Design and Analysis Tool (fdatool) GUI. This block provides the same exact filter implementation as the Digital Filter block.

The block applies the specified filter to each channel of a discrete-time input signal, and outputs the result. The outputs of the block numerically match the outputs of the Digital Filter block, the MATLAB filter function, and the Filter Design Toolbox filter function.

The sampling frequency, Fs, that you specify in the FDATool GUI should be identical to the sampling frequency of the Digital Filter Design block's input block. When the sampling frequencies of these blocks do not match, the Digital Filter Design block returns a warning message and inherits the sampling frequency of the input block.

Valid Inputs and Corresponding Outputs

The block accepts inputs that are sample-based or frame-based vectors and matrices. The block filters each input channel independently over time, where

- Each column of a frame-based vector or matrix is an independent channel.
- Each element of a sample-based vector or matrix is an independent channel.

The output has the same dimensions and frame status as the input.

Designing the Filter

Double-click the Digital Filter Design block to open FDATool. Use FDATool to design or import a digital FIR or IIR filter. To learn how to design filters with this block and FDATool, see the following topics:

- "Digital Filter Design Block"
- fdatool reference page in the Signal Processing Toolbox documentation

Tuning the Filter During Simulation

You can tune the filter specifications in FDATool during simulations as long as your changes do not modify the filter length or filter order. The block's filter updates as soon as you apply any filter changes in FDATool.

Examples See the "Digital Filter Design Block" section in the Signal Processing Blockset User's Guide.

Digital Filter Design

Dialog
 Box

The FDATool GUI Opened from the Digital Filter Design Block
To get the Transform Filter button \square install the Filter Design Toolbox product. To get the Targets menu, install the Target Support Package ${ }^{\mathrm{TM}}$ product.

To learn how to use the FDATool GUI, see "Designing the Filter" on page 2-401.

Supported - Double-precision floating point Data Types

See Also

Analog Filter Design	Signal Processing Blockset
Window Function	Signal Processing Blockset
fdatool	Signal Processing Toolbox
filter	Signal Processing Toolbox
fvtool	Signal Processing Toolbox
sptool	Signal Processing Toolbox
filter	Filter Design Toolbox

To learn how to use this block and FDATool, see the following:

- "Filters"
- "Digital Filter Design Block"
- fdatool reference page in the Signal Processing Toolbox documentation

Digital FIR Filter Design (Obsolete)

Purpose	Design and implement a variety of FIR filters
Library	dspobslib

Description

Note The Digital FIR Filter Design block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Digital Filter block.

The Digital FIR Filter Design block designs a discrete-time (digital) FIR filter in one of several different band configurations using a window method. Most of these filters are designed using the Signal Processing Toolbox fir1 function, and are real with linear phase response. The block applies the filter to a discrete-time input using the Direct-Form II Transpose Filter (Obsolete) block.

An M-by- N sample-based matrix input is treated as $M^{*} N$ independent channels, and an M-by- N frame-based matrix input is treated as N independent channels. In both cases, the block filters each channel independently over time, and the output has the same size and frame status as the input.

For complete details on the classical FIR filter design algorithm, see the description of the fir1 and fir2 functions in the Signal Processing Toolbox documentation.

Band Configurations

The band configuration for the filter is set from the Filter type pop-up menu. The band configuration parameters below this pop-up menu adapt appropriately to match the Filter type selection.

- Lowpass and Highpass

In lowpass and highpass configurations, the Filter order and Cutoff frequency parameters specify the filter design. Frequencies are normalized to half the sample frequency. The figure below shows the frequency response of the default order- 22 filter with cutoff at 0.4 .

Digital FIR Filter Design (Obsolete)

- Bandpass and Bandstop

In bandpass and bandstop configurations, the Filter order, Lower cutoff frequency, and Upper cutoff frequency parameters specify the filter design. Frequencies are normalized to half the sample frequency, and the actual filter order is twice the Filter order parameter value. The figure below shows the frequency response of the default order- 22 filter with lower cutoff at 0.4 , and upper cutoff at 0.6.

Digital FIR Filter Design (Obsolete)

- Multiband

In the multiband configuration, the Filter order, Cutoff frequency vector, and Gain in the first band parameters specify the filter design. The Cutoff frequency vector contains frequency points in the range 0 to 1 , where 1 corresponds to half the sample frequency. Frequency points must appear in ascending order. The Gain in the first band parameter specifies the gain in the first band: 0 indicates a stopband, and 1 indicates a passband. Additional bands alternate between passband and stopband. The figure below shows the frequency response of the default order- 22 filter with five bands, the first a passband.

Cutoff frequency vector $=\left[\begin{array}{llll}0.2 & 0.4 & 0.6 & 0.8\end{array}\right]$

- Arbitrary shape

In the arbitrary shape configuration, the Filter order, Frequency vector, and Gains at these frequencies parameters specify the filter design. The Frequency vector, fn, contains frequency points in the range 0 to 1 (inclusive) in ascending order, where 1 corresponds to half the sample frequency. The Gains at these frequencies parameter, mn , is a vector containing the desired magnitude response at the corresponding points in the Frequency vector. (Note that the specifications for the Arbitrary shape configuration are similar to those for the Yule-Walker IIR Filter Design block. Arbitrary-shape

Digital FIR Filter Design (Obsolete)

filters are designed using the Signal Processing Toolbox fir2 function.)

The desired magnitude response of the design can be displayed by typing
plot(fn,mn)

Duplicate frequencies can be used to specify a step in the response (such as band 2 below). The figure shows an order-100 filter with five bands.

Frequency $=\left[\begin{array}{llllll}0.0 & 0.3 & 0.3 & 0.6 & 0.7 & 1.0\end{array}\right]$
Gains $=$ Band: $\underbrace{0.01 .0}_{i} \underbrace{0.0}_{i} \underbrace{0.0}_{i} \underbrace{0.5}_{i} 0.5]$

The Window type parameter allows you to select from a variety of different windows. See the Window Function block reference for a complete description of the available options.

Digital FIR Filter Design (Obsolete)

Dialog
 Box

The parameters displayed in the dialog box vary for different design/band combinations. Only some of the parameters listed below are visible in the dialog box at any one time.

Filter type

The type of filter to design: Lowpass, Highpass, Bandpass, Bandstop, Multiband, or Arbitrary Shape. Tunable.

Filter order

The order of the filter. The filter length is one more than this value. For the Bandpass and Bandstop configurations, the order of the final filter is twice this value.

Digital FIR Filter Design (Obsolete)

Cutoff frequency

The normalized cutoff frequency for the Highpass and Lowpass filter configurations. A value of 1 specifies half the sample frequency. Tunable.

Lower cutoff frequency

The lower passband or stopband frequency for the Bandpass and Bandstop filter configurations. A value of 1 specifies half the sample frequency. Tunable.

Upper cutoff frequency

The upper passband or stopband frequency for the Bandpass and Bandstop filter configurations. A value of 1 specifies half the sample frequency. Tunable.

Cutoff frequency vector

A vector of ascending frequency points defining the cutoff edges for the Multiband filter. A value of 1 specifies half the sample frequency. Tunable.

Gain in the first band

The gain in the first band of the Multiband filter: 0 specifies a stopband, 1 specifies a passband. Additional bands alternate between passband and stopband. Tunable.

Frequency vector

A vector of ascending frequency points defining the frequency bands of the Arbitrary shape filter. The frequency range is 0 to 1 including the endpoints, where 1 corresponds to half the sample frequency. Tunable.

Gains at these frequencies

A vector containing the desired magnitude response for the Arbitrary shape filter at the corresponding points in the Frequency vector. Tunable.

Window type

The type of window to apply. See the Window Function block reference. Tunable.

Digital FIR Filter Design (Obsolete)

Stopband ripple

The level (dB) of stopband ripple, R_{s}, for the Chebyshev window. Tunable.

Beta

The Kaiser window 8 parameter. Increasing Beta widens the mainlobe and decreases the amplitude of the window sidelobes in the window's frequency magnitude response. Tunable.

References Antoniou, A. Digital Filters: Analysis, Design, and Applications. 2nd ed. New York, NY: McGraw-Hill, 1993.

Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

Digital FIR Raised Cosine Filter Design (Obsolete)

Purpose

Design and implement raised cosine FIR filter

Library

dspobslib
Description

Note The Digital FIR Raised Cosine Filter Design block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Digital Filter block.

The Digital FIR Raised Cosine Filter Design block uses the Signal Processing Toolbox firrcos function to design a lowpass, linear-phase, digital FIR filter with a raised cosine transition band. The block applies the filter to a discrete-time input using the Direct-Form II Transpose Filter (Obsolete) block.

An M-by- N sample-based matrix input is treated as $M^{*} N$ independent channels, and an M-by- N frame-based matrix input is treated as N independent channels. In both cases, the block filters each channel independently over time, and the output has the same size and frame status as the input.

The frequency response of the raised cosine filter is

$$
H(f)=\left\{\begin{array}{cc}
\frac{1}{2 f_{n 0}} & 0 \leq|f| \leq(1-R) f_{n 0} \\
{\left[\frac{1+\cos \frac{\pi}{2 R f_{n 0}}|f|-(1-R) f_{n 0}}{4 f_{n 0}}\right]} & (1-R) f_{n 0} \leq|f| \leq(1+R) f_{n 0} \\
0 & (1+R) f_{n 0} \leq|f| \leq 1
\end{array}\right.
$$

Digital FIR Raised Cosine Filter Design (Obsolete)

where $H(f)$ is the magnitude response at frequency $f, f_{n 0}$ is the normalized cutoff frequency (-6 dB) specified by the Upper cutoff frequency parameter, and R is a rolloff factor in the range [0,1] determining the passband-to-stopband transition width.
The Square-root raised cosine filter option designs a filter with magnitude response $\sqrt{H(f)}$. This is useful when the filter is part of a pair of matched filters.

When the Design method parameter is set to Rolloff factor, the secondary Rolloff factor parameter is enabled, and R can be directly specified. When Design method is set to Transition bandwidth, the secondary Transition bandwidth parameter is enabled, and the transition region bandwidth, Δf, can be specified in place of R. The transition region is centered on $f_{n 0}$ and must be sufficiently narrow to satisfy

$$
0<\left(f_{n 0} \pm \frac{\Delta f}{2}\right)<1
$$

The Upper cutoff frequency and Transition bandwidth parameter values are normalized to half the sample frequency.
The Window type parameter allows you to apply a variety of different windows to the raised cosine filter. See the Window Function block reference for a complete description of the available options.

Algorithm
The filter output is computed by convolving the input with a truncated, delayed, windowed version of the filter's impulse response. The impulse response for the raised cosine filter is

$$
h\left(k T_{s}\right)=\frac{1}{F_{s}} \operatorname{sinc}\left(2 \pi k T_{s} f_{n 0}\right) \frac{\cos \left(2 \pi R k T_{s} f_{n 0}\right)}{1-\left(4 R k T_{s} f_{n 0}\right)^{2}}-\infty<k<\infty
$$

which has limits

Digital FIR Raised Cosine Filter Design (Obsolete)

$$
h(0)=\frac{1}{F_{s}}
$$

and

$$
h\left(\pm \frac{1}{4 R f_{n 0}}\right)=\frac{R}{2 F_{s}} \sin \left(\frac{\pi}{2 R}\right)
$$

The impulse response for the square-root raised cosine filter is

$$
h\left(k T_{s}\right)=\frac{4 R \cos \left((1+R) 2 \pi k T_{s} f_{n 0}\right)+\frac{\sin \left((1-R) 2 \pi k T_{s} f_{n 0}\right)}{8 R k T_{s} f_{n 0}}}{\pi F_{s} \sqrt{\frac{1}{2 f_{n 0}}}\left(\left(8 R k T_{s} f_{n 0}\right)^{2}-1\right)}-\infty<k<\infty
$$

which has limits

$$
h(0)=(-4 R-\pi+\pi R) \frac{\sqrt{2 f_{n 0}}}{\pi F_{s}}
$$

and

$$
\begin{aligned}
\left(\pm \frac{1}{8 R f_{n 0}}\right)=\frac{\sqrt{2 f_{n 0}}}{2 \pi F_{s}}\left[\pi(1+R) \sin \left(\frac{\pi(1+R)}{4 R}\right)-\right. & 4 R \sin \left(\frac{\pi(R-1)}{4 R}\right) \\
& \left.+\pi(R-1) \cos \left(\frac{\pi(R-1)}{4 R}\right)\right]
\end{aligned}
$$

Digital FIR Raised Cosine Filter Design (Obsolete)

Dialog Box

Filter order

The order of the filter. The filter length is one more than this value.

Upper cutoff frequency

The normalized cutoff frequency, $f_{n 0}$. A value of 1 specifies half the sample frequency. Tunable.

Digital FIR Raised Cosine Filter Design (Obsolete)

Square-root raised cosine filter

Selects the square-root filter option, which designs a filter with magnitude response $\sqrt{H(f)}$. Tunable.

Design method

The method used to design the transition region of the filter, Rolloff factor or Transition bandwidth. Tunable.

Rolloff factor

The rolloff factor, R, enabled when Rolloff factor is selected in the Design method parameter. Tunable.

Transition bandwidth

The transition bandwidth, Δf, enabled when Transition bandwidth is selected in the Design method parameter. Tunable.

Window type

The type of window to apply. See the Window Function block reference. Tunable.

Stopband attenuation in dB

The level (dB) of stopband attenuation, R_{s}, for the Chebyshev window. Tunable.

Beta

The Kaiser window B parameter. Increasing B widens the mainlobe and decreases the amplitude of the window sidelobes in the window's frequency magnitude response. Tunable.

Initial conditions

The filter's initial conditions, a scalar, vector, or matrix. See the Direct-Form II Transpose Filter (Obsolete) block reference for complete syntax information.

References \quad| Proakis, J. G. Digital Communications. Third ed. New York, NY: |
| :--- |
| McGraw-Hill, 1995. |
| |
| |
| |
| |
| |
| |
| Uroakis, J. G. and M. Salehi. Contemporary Communication Systems |

Digital IIR Filter Design (Obsolete)

Purpose	Design and implement IIR filter
Library	dspobslib

Description

Note The Digital IIR Filter Design block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Digital Filter block.

The Digital IIR Filter Design block designs a discrete-time (digital) IIR filter in a lowpass, highpass, bandpass, or bandstop configuration, and applies it to the input using the Direct-Form II Transpose Filter (Obsolete) block.

An M-by- N sample-based matrix input is treated as $M^{*} N$ independent channels, and an M-by- N frame-based matrix input is treated as N independent channels. In both cases, the block filters each channel independently over time, and the output has the same size and frame status as the input.

The Design method parameter allows you to specify Butterworth, Chebyshev type I, Chebyshev type II, and elliptic filter designs. Note that for the bandpass and bandstop configurations, the actual filter length is twice the Filter order parameter value.

Filter Design	Description
Butterworth	The magnitude response of a Butterworth filter is maximally flat in the passband and monotonic overall.
Chebyshev type I	The magnitude response of a Chebyshev type I filter is equiripple in the passband and monotonic in the stopband.

Digital IIR Filter Design (Obsolete)

Filter Design	Description
Chebyshev type II	The magnitude response of a Chebyshev type II filter is monotonic in the passband and equiripple in the stopband.
Elliptic	The magnitude response of an elliptic filter is equiripple in both the passband and the stopband.

The design and band configuration of the filter are selected from the Design method and Filter type pop-up menus in the dialog box. For each combination of design method and band configuration, an appropriate set of secondary parameters is displayed.
The table below lists the available parameters for each design/band combination. For lowpass and highpass band configurations, these parameters include the passband edge frequency $f_{n p}$, the stopband edge frequency $f_{n s}$, the passband ripple R_{p}, and the stopband attenuation R_{s}. For bandpass and bandstop configurations, the parameters include the lower and upper passband edge frequencies, $f_{n p 1}$ and $f_{n p 2}$, the lower and upper stopband edge frequencies, $f_{n s 1}$ and $f_{n s 2}$, the passband ripple R_{p}, and the stopband attenuation R_{s}. Frequency values are normalized to half the sample frequency, and ripple and attenuation values are in dB .

	Lowpass	Highpass	Bandpass	Bandstop
Butterworth	Order, $f_{n p}$	Order, $f_{n p}$	Order, $f_{n p 1}, f_{n p 2}$	Order, $f_{n p 1}, f_{n p 2}$
Chebyshev Type I	Order, $f_{n p}, R_{p}$	Order, $f_{n p}, R_{p}$	Order, $f_{\text {np1 }}, f_{\text {np } 2}$, R_{p}	Order, $f_{n p 1}, f_{n p 2}$, R_{p}
Chebyshev Type II	Order, $f_{n s}, R_{s}$	Order, $f_{n s}, R_{s}$	Order, $f_{n s 1}, f_{n s 2}$, R_{s}	Order, $f_{n s 1}, f_{n s 2}$, R_{s}
Elliptic	Order, $f_{n p}, R_{p}, R_{s}$	Order, $f_{n p}, R_{p}, R_{s}$	Order, $f_{n p 1}, f_{n p 2}$, R_{p}, R_{s}	Order, $f_{n p 1}, f_{n p 2}$, R_{p}, R_{s}

The digital filters are designed using Signal Processing Toolbox software's filter design commands butter, cheby1, cheby2, and ellip.

Digital IIR Filter Design (Obsolete)

Dialog
 Box

The parameters displayed in the dialog box vary for different design/band combinations. Only some of the parameters listed below are visible in the dialog box at any one time.

Design method

The filter design method: Butterworth, Chebyshev type I, Chebyshev type II, or Elliptic. Tunable.

Filter type

The type of filter to design: Lowpass, Highpass, Bandpass, or Bandstop. Tunable.

Filter order

The order of the filter for lowpass and highpass configurations. For bandpass and bandstop configurations, the length of the final filter is twice this value.

Passband edge frequency

The normalized passband edge frequency for the highpass and lowpass configurations of the Butterworth, Chebyshev type I, and elliptic designs. Tunable.

Digital IIR Filter Design (Obsolete)

Lower passband edge frequency

The normalized lower passband frequency for the bandpass and bandstop configurations of the Butterworth, Chebyshev type I, and elliptic designs. Tunable.

Upper passband edge frequency

The normalized upper passband frequency for the bandpass and bandstop configurations of the Butterworth, Chebyshev type I, or elliptic designs. Tunable.

Stopband edge frequency

The normalized stopband edge frequency for the highpass and lowpass band configurations of the Chebyshev type II design. Tunable.

Lower stopband edge frequency

The normalized lower stopband frequency for the bandpass and bandstop configurations of the Chebyshev type II design. Tunable.

Upper stopband edge frequency

The normalized upper stopband frequency for the bandpass and bandstop filter configurations of the Chebyshev type II design. Tunable.

Passband ripple in dB

The passband ripple, in dB , for the Chebyshev type I and elliptic designs. Tunable.

Stopband attenuation in dB

The stopband attenuation, in dB , for the Chebyshev type II and elliptic designs. Tunable.

References

Antoniou, A. Digital Filters: Analysis, Design, and Applications. 2nd ed. New York, NY: McGraw-Hill, 1993.

Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

Direct-Form II Transpose Filter (Obsolete)

Purpose
 Library
 Description

Apply IIR filter to input
dspobslib

Note This block is now just an implementation of the Digital Filter block.

Purpose Generate discrete impulse

Library
 Signal Processing Sources

```
dspsrcs4
```

The Discrete Impulse block generates an impulse (the value 1) at output sample $D+1$, where D is specified by the Delay parameter ($D \geq 0$). All output samples preceding and following sample $\mathrm{D}+1$ are zero.

When D is a length- N vector, the block generates an M-by- N matrix output representing N distinct channels, where frame size M is specified by the Samples per frame parameter. The impulse for the ith channel appears at sample $D(i)+1$. For $M=1$, the output is sample based; otherwise, the output is frame based.

The Sample time parameter value, T_{s}, specifies the output signal sample period. The resulting frame period is $M^{*} T_{s}$.

Examples Construct the model below.

Configure the Discrete Impulse block to generate a frame-based three-channel output of type double, with impulses at samples 1,4 , and 6 of channels 1,2 , and 3 , respectively. Use a sample period of 0.25 and a frame size of 4 . The corresponding settings should be as follows:

- Delay = $\left.\begin{array}{lll}0 & 3 & 5\end{array}\right]$
- Sample time $=0.25$
- Samples per frame $=4$
- Output data type $=$ double

Discrete Impulse

Run the model and look at the output, yout. The first few samples of each channel are shown below.

1	0	0
0	0	0
0	0	0
0	1	0
0	0	0
0	0	1
0	0	0
0	0	0
0	0	0
0	0	0

The block generates an impulse at sample 1 of channel 1 (first column), at sample 4 of channel 2 (second column), and at sample 6 of channel 3 (third column).

Dialog Box

The Main pane of the Discrete Impulse block dialog appears as follows.

Delay

The number of zero-valued output samples, D, preceding the impulse. A length- N vector specifies an N-channel output.

Sample time

The sample period, T_{s}, of the output signal. The output frame period is $M^{*} T_{s}$.

Samples per frame

The number of samples, M, in each output frame. When the value of this parameter is 1 , the block outputs a sample-based signal.

The Data Types pane of the Discrete Impulse block dialog appears as follows.

Discrete Impulse

Output data type

Specify the output data type in one of the following ways:

- Choose one of the built-in data types from the list.
- Choose Fixed-point to specify the output data type and scaling in the Signed, Word length, Set fraction length in output to, and Fraction length parameters.
- Choose User-defined to specify the output data type and scaling in the User-defined data type, Set fraction length in output to, and Fraction length parameters.
- Choose Inherit via back propagation to set the output data type and scaling to match the next block downstream.

Signed

Select to output a signed fixed-point signal. Otherwise, the signal is unsigned. This parameter is only visible when you select Fixed-point for the Output data type parameter.

Word length

Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible when you select Fixed-point for the Output data type parameter.

User-defined data type

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the following Simulink Fixed Point functions: sfix, ufix, sint, uint, sfrac, and ufrac. This parameter is only visible when you select User-defined for the Output data type parameter.

Set fraction length in output to

Specify the scaling of the fixed-point output by either of the following two methods:

- Choose Best precision to have the output scaling automatically set such that the output signal has the best possible precision.
- Choose User-defined to specify the output scaling in the Fraction length parameter.

This parameter is only visible when you select Fixed-point for the Output data type parameter, or when you select User-defined and the specified output data type is a fixed-point data type.

Fraction length

For fixed-point output data types, specify the number of fractional bits, or bits to the right of the binary point. This parameter is only visible when you select Fixed-point or User-defined for the Output data type parameter and User-defined for the Set fraction length in output to parameter.

Supported
Data Types
- Double-precision floating point
- Single-precision floating point
- Fixed point

Discrete Impulse

- Boolean
- 8 -, 16-, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

See Also

Data Type Conversion	Simulink
Constant	Simulink
Multiphase Clock	Signal Processing Blockset
N-Sample Enable	Signal Processing Blockset
Signal From Workspace	Signal Processing Blockset
impz	Signal Processing Toolbox

Purpose	Show value of input
Library	Signal Processing Sinks dspsnks4
Description	The Display block is an implementation of the Simulink Display block. See Display for more information.

Downsample

Purpose	Resample input at lower rate by deleting samples
Library	Signal Operations
	dspsigops

Description

dspsigops
The Downsample block decreases the sampling rate of the input by deleting samples. When the input is a frame-based M_{i}-by- N matrix, the block resamples each channel of the input independently. When the input is a sample-based N-D array, the Downsample block resamples the input array across time. The resample rate is K times lower than the input sample rate, where K is an integer specified by the Downsample factor parameter. The Downsample block resamples the input by discarding $K-1$ consecutive samples following each sample that is passed through to the output.

The Sample offset parameter delays the output samples by an integer number of sample periods, D, where $0 \leq D<(K-1)$, so that any of the K possible output phases can be selected. For example, when you downsample the sequence $1,2,3, \ldots$ by a factor of 4 , you can select from the following four phases.

Input Sequence	Sample Offset, \mathbf{D}	Output Sequence (K=4)
$1,2,3, \ldots$	0	$1,5,9,13,17,21,25,29, \ldots$
$1,2,3, \ldots$	1	$0,2,6,10,14,18,22,26, \ldots$
$1,2,3, \ldots$	2	$0,3,7,11,15,19,23,27, \ldots$
$1,2,3, \ldots$	3	$0,4,8,12,16,20,24,28, \ldots$

The initial zero in each of the latter three output sequences in the table is a result of the default zero Initial condition parameter setting for this example. See "Latency" on page 2-431 for more information on the Initial condition parameter.

This block supports triggered subsystems if, for Sample-based mode, you select Force single-rate and, for Frame-based mode, you select Maintain input frame rate.

Sample-Based Operation

When the input is a sample-based N-D array, the Downsample block resamples the input across time. The block downsamples the input array by discarding $K-1$ samples following each sample that it passes through to the output. The input and output sizes of the Downsample block are identical.

The Sample-based mode parameter determines how the block represents the new rate at the output. There are two available options:

- Allow multirate

When you select Allow multirate, the sample period of the sample-based output is K times longer than the input sample period ($T_{s o}=K T_{s i}$). The block is therefore multirate.

- Force single rate

When you select Force single rate, the block forces the output sample rate to match the input sample rate ($T_{s o}=T_{s i}$) by repeating every K th input sample K times at the output. The block is therefore single rate. (The block's operation when you select Force single rate is similar to the operation of a Sample and Hold block with a repeating trigger event of period $K T_{s i}$.)

The setting of the Frame-based mode parameter does not affect sample-based inputs.

Frame-Based Inputs

When the input is frame based, the block treats each of the N input columns as a frame containing M_{i} sequential time samples from an independent channel. The block downsamples each channel independently by discarding $K-1$ rows of the input matrix following each row that it passes through to the output.

Downsample

The Frame-based mode parameter determines how the block adjusts the rate at the output to accommodate the reduced number of samples. There are two available options:

- Maintain input frame size

The block generates the output at the slower (downsampled) rate by using a proportionally longer frame period at the output port than at the input port. For downsampling by a factor of K, the output frame period is K times longer than the input frame period ($T_{f o}=K T_{f i}$), but the input and output frame sizes are equal.

The following model shows a single-channel input with a frame period of 1 second being downsampled by a factor of 4 to a frame period of 4 seconds. The input and output frame sizes are identical.

- Maintain input frame rate

The block generates the output at the slower (downsampled) rate using a proportionally smaller frame size than the input. For downsampling by a factor of K, the output frame size is K times smaller than the input frame size ($M_{o}=M_{i} / K$), but the input and output frame rates are equal.

The following model shows a single-channel input of frame size 64 being downsampled by a factor of 4 to a frame size of 16 . The input and output frame rates are identical.

The setting of the Sample-based mode pop-up menu does not affect frame-based inputs.

Latency

The Downsample block has zero-tasking latency in the following cases:

- The Downsample factor parameter, K, is 1
- The block input is a frame-based signal, and the Maintain input frame rate parameter is selected
- The block input is a sample-based signal, and Sample offset parameter, D, is 0

Zero-tasking latency means that the block propagates input sample $D+1$ (received at $t=0$) as the first output sample, followed by input sample $D+1+K$, input sample $D+1+2 K$, and so on. The Initial condition parameter value is not used.
In all other cases, the latency is nonzero:

- For sample-based input, the latency is one sample.
- For frame-based input, the latency is one frame.

In all cases of one-sample latency, the initial condition for each channel appears as the first output sample. Input sample $D+1$ appears as the second output sample for each channel, followed by input sample $D+1+K$, input sample $D+1+2 K$, and so on. The Initial condition parameter can be an array of the same size as the input, or a scalar to be applied to all signal channels.

Downsample

In all cases of one-frame latency, the M_{i} rows of the initial condition matrix appear in sequence as the first M_{i} output rows. Input sample $D+1$ (i.e, row $D+1$ of the input matrix) appears in the output as sample $M_{i}+1$, followed by input sample $D+1+K$, input sample $D+1+2 K$, and so on. The Initial condition value can be an M_{i}-by- N matrix containing one value for each channel, or a scalar to be repeated across all elements of the M_{i}-by- N matrix. See the following example for an illustration of this case.

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

Examples Construct this frame-based model.

Adjust the block parameters as follows:

- Configure the Signal From Workspace block to generate a two-channel signal with frame size of 4 and sample period of 0.25 second. This represents an output frame period of 1 second ($0.25^{*} 4$). The first channel should contain the positive ramp signal $1,2, \ldots$, 100 , and the second channel should contain the negative ramp signal $-1,-2, \ldots,-100$. The settings are:
- Signal $=[(1: 100)$ ' (-1:-1:-100)']
- Sample time $=0.25$
- Samples per frame $=4$
- Configure the Downsample block to downsample the two-channel input by decreasing the output frame rate by a factor of 2 relative to the input frame rate. Set a sample offset of 1 , and a 4 -by- 2 initial condition matrix of
$\left[\begin{array}{ll}11 & -11 \\ 12 & -12 \\ 13 & -13 \\ 14 & -14\end{array}\right]$
- Downsample factor $=2$
- Sample offset = 1
- Initial condition $=\left[\begin{array}{lllll}11 & -11 ; 12 & -12 ; 13 & -13 ; 14 & -14\end{array}\right]$
- Frame-based mode = Maintain input frame size
- Configure the Probe blocks by selecting only the Probe sample time check box.

This model is multirate because there are at least two distinct frame rates, as shown by the two Probe blocks. To run this model in the Simulink multitasking mode, open the Configuration Parameters dialog box. From the list on the left side of the dialog box, click Solver. From the Type list, select Fixed-step, and from the Solver list, select Discrete (no continuous states). From the Tasking mode for periodic sample times list, select MultiTasking. Additionally, set the Stop time parameter to 30.
Run the model and look at the output, yout. The first few samples of each channel are shown:

```
yout =
    11 -11
    12-12
    13-13
    14-14
```

2	-2
4	-4
6	-6
8	-8
10	-10
12	-12
14	-14

Since you ran this frame-based multirate model in multitasking mode, the first row of the initial condition matrix appears as the first output sample, followed by the other three initial condition rows. The second row of the first input matrix (row $D+1$, where D is the Sample offset) appears in the output as sample 5 (sample $M_{i}+1$, where M_{i} is the input frame size).

Dialog Box

Function Block Parameters: Downsample
Downsample (mask) (link)
Downsample by an integer factor. Optional sample offset must be an integer value in range ($0, K-1$).

Par 2 2

Sample offset (0 to K-1):
0
Initial condition:
0
Sample-based mode: Allow multirate
Frame-based mode: Maintain input frame size

Downsample factor

The integer factor, K, by which to decrease the input sample rate.

Sample offset

The sample offset, D, which must be an integer in the range [0 , $K-1]$.

Initial condition

The value with which the block is initialized for cases of nonzero latency; a scalar value or an array of the same size as the input.

Sample-based mode

The method by which to implement downsampling for sample-based inputs: Allow multirate (decrease the output sample rate), or Force single-rate (force the output sample

Downsample

rate to match the input sample rate by repeating every K th input sample K times at the output).

Frame-based mode

The method by which to implement downsampling for frame-based inputs: Maintain input frame size (decrease the frame rate), or Maintain input frame rate (decrease the frame size).

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers

See Also	FIR Decimation	Signal Processing Blockset
FIR Rate Conversion	Signal Processing Blockset	
Repeat	Signal Processing Blockset	
Sample and Hold	Signal Processing Blockset	
	Upsample	Signal Processing Blockset

DSP Constant (Obsolete)

Purpose	Generate discrete- or continuous-time constant signal
Library	Signal Processing Sources
	dspobslib

Description

Note The DSP Constant block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Constant block.

The DSP Constant block generates a signal whose value remains constant throughout the simulation. The Constant value parameter specifies the constant to output, and can be any valid MATLAB expression that evaluates to a scalar, vector, or matrix.

When Sample mode is set to Continuous, the output is a continuous-time signal. When Sample mode is set to Discrete, the Sample time parameter is visible, and the signal has the discrete output period specified by the Sample time parameter.

You can set the output signal to Frame-based, Sample-based, or Sample-based (interpret vectors as 1-D) with the Output parameter.

DSP Constant (Obsolete)

Dialog Box

The Main pane of the DSP Constant block dialog box appears as follows.

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters During Simulation" in the online Simulink documentation for details.

Constant value

Specify the constant to generate. This parameter is tunable; values entered here can be tuned, but their dimensions must remain fixed.

When you specify any data type information in this field, it is overridden by the value of the Output data type parameter in the Data Types pane, unless you select Inherit from 'Constant value'.

Sample mode

Specify the sample mode of the output, Discrete for a discrete-time signal or Continuous for a continuous-time signal.

DSP Constant (Obsolete)

Output

Specify whether the output is Sample-based (interpret vectors as 1-D), Sample-based, or Frame-based. When you select Sample-based and the output is a vector, its dimension is constrained to match the Constant value dimension (row or column). When you select Sample-based (interpret vectors as 1-D), however, the output has no specified dimensionality.

Sample time

Specify the discrete sample period for sample-based outputs. When you select Frame-based for the Output parameter, this parameter is named Frame period, and is the discrete frame period for the frame-based output. This parameter is only visible when you select Discrete for the Sample mode parameter.

The Data Types pane of the DSP Constant block dialog box appears as follows.

Output data type

Specify the output data type in one of the following ways:

DSP Constant (Obsolete)

- Choose one of the built-in data types from the list.
- Choose Fixed-point to specify the output data type and scaling in the Signed, Word length, Set fraction length in output to, and Fraction length parameters.
- Choose User-defined to specify the output data type and scaling in the User-defined data type, Set fraction length in output to, and Fraction length parameters.
- Choose Inherit from 'Constant value' to set the output data type and scaling to match the values of the Constant value parameter in the Main pane.
- Choose Inherit via back propagation to set the output data type and scaling to match the following block.

The value of this parameter overrides any data type information specified in the Constant value parameter in the Main pane, except when you select Inherit from 'Constant value'.

Signed

Select to output a signed fixed-point signal. Otherwise, the signal is unsigned. This parameter is only visible when you select Fixed-point for the Output data type parameter.

Word length

Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible when you select Fixed-point for the Output data type parameter.

User-defined data type

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the following Simulink Fixed Point functions: sfix, ufix, sint, uint, sfrac, and ufrac. This parameter is only visible when you select User-defined for the Output data type parameter.

Set fraction length in output to

Specify the scaling of the fixed-point output by either of the following two methods:

DSP Constant (Obsolete)

- Choose Best precision to have the output scaling automatically set such that the output signal has the best possible precision.
- Choose User-defined to specify the output scaling in the Fraction length parameter.

This parameter is only visible when you select Fixed-point for the Output data type parameter, or when you select User-defined and the specified output data type is a fixed-point data type.

Fraction length

For fixed-point output data types, specify the number of fractional bits, or bits to the right of the binary point. This parameter is only visible when you select Fixed-point or User-defined for the Output data type parameter and User-defined for the Set fraction length in output to parameter.

Supported	- Double-precision floating point
Data	- Single-precision floating point
Types	- Fixed point
	- Boolean

- 8 -, 16-, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

See Also

Constant
Signal From Workspace

Simulink
Signal Processing Blockset

Note The DWT block is the same as the Dyadic Analysis Filter Bank block in the Multirate Filters library, but with different default settings. See the Dyadic Analysis Filter Bank block reference page for more information on how to use the block.

The DWT block computes the discrete wavelet transform (DWT) of each column of a frame-based input. By default, the output is a sample-based vector or matrix with the same dimensions as the input. Each column of the output is the DWT of the corresponding input column.

You must install the Wavelet Toolbox ${ }^{\text {TM }}$ product for the block to design wavelet-based filters automatically to compute the DWT. Otherwise, you must specify your own lowpass and highpass FIR filters by setting the Filter parameter to User defined.

For the same input, the DWT block and the Wavelet Toolbox function do not produce the same results. Because the blockset is designed for real-time implementation and the toolbox is designed for analysis, the products handle boundary conditions and filter states differently. To make the output of the dwt function and the DWT block match, complete the following steps:

1 For the dwt function, set the boundary condition to zero-padding by typing dwtmode('zpd') at the MATLAB command prompt.

2 To match the latency of the DWT block, which is implemented using FIR filters, add zeros to the input of the dwt function. The number of zeros you add must be equal to the half the filter length.

For detailed information about how to use this block, see the Dyadic Analysis Filter Bank block reference page.

Examples See "Examples" on page 2-450 in the Dyadic Analysis Filter Bank block reference page.

See Also
Dyadic Analysis Filter Bank IDWT
dwt

Signal Processing Blockset
Signal Processing Blockset
Wavelet Toolbox

Dyadic Analysis Filter Bank

Purpose	Decompose signals into subbands with smaller bandwidths and slower sample rates
Library	Filtering / Multirate Filters dspmlti4
Description	Note This block decomposes frame-based signals with frame size a multiple of 2n into either n+1 or 2n subbands. To decompose
sample-based signals or frame-based signals of different sizes, use the	
Two-Channel Analysis Subband Filter block. (Tou can connect multiple	
copies of the Two-Channel Analysis Subband Filter block to create a	
multilevel dyadic analysis filter bank.)	

The Dyadic Analysis Filter Bank block decomposes a broadband signal into a collection of subbands with smaller bandwidths and slower sample rates. The block uses a series of highpass and lowpass FIR filters to repeatedly divide the input frequency range, as illustrated in the figure "n-Level Asymmetric Dyadic Analysis Filter Bank".

You can specify the filter bank's highpass and lowpass filters by providing vectors of filter coefficients. If you install the Wavelet Toolbox product, you can also specify wavelet-based filters by selecting a wavelet from the Filter parameter. You must set the filter bank structure to asymmetric or symmetric, and specify the number of levels in the filter bank.

Input Requirements

- Input can be a frame-based vector or frame-based matrix.
- The input frame size must be a multiple of 2^{n}, where n is the number of filter bank levels. For example, a frame size of 16 would be appropriate for a three-level tree (16 is a multiple of 2^{3}).
- The block always operates along the columns of the inputs.

Dyadic Analysis Filter Bank

For an illustration of why the above input requirements exist, see the figure Outputs of a 3-Level Asymmetric Dyadic Analysis Filter Bank on page 2-446.

Output Characteristics

The output characteristics vary depending on the block's parameter settings, as summarized in the following list and figure:

- Number of levels parameter set to n
- Tree structure parameter setting:
- Asymmetric - Block produces $n+1$ output subbands
- Symmetric - Block produces 2^{n} output subbands
- Output parameter setting can be Multiple ports or Single port. The following figure illustrates the difference between the two settings for a 3 -level asymmetric dyadic analysis filter bank. For an explanation of the illustrated output characteristics, see the table Output Characteristics for an n-Level Dyadic Analysis Filter Bank on page 2-447.

For more information about the filter bank levels and structures, see "Dyadic Analysis Filter Banks".

Dyadic Analysis Filter Bank

Single Output Port
 (Asymmetric tree structure)

2-cthannel

Outputs of a 3-Level Asymmetric Dyadic Analysis Filter Bank

Dyadic Analysis Filter Bank

The following table summarizes the different output characteristics of the block when it is set to output from single or multiple ports.

Output Characteristics for an n-Level Dyadic Analysis Filter Bank

	Single Output Port	Multiple Output Ports
Output Description	Block concatenates all the subbands into one vector or matrix, and outputs the concatenated subbands from a single output port. Each output column contains subbands of the corresponding input channel.	Block outputs each subband from a separate output port. The topmost port outputs the subband with the highest frequencies. Each output column contains a subband for the corresponding input channel.
Output Frame Status	Sample-based	Frame-based
Output Frame Rate	Not applicable	Same as input frame rate (However, the output frame sizes can vary, so the output sample rates can vary.)
Output Dimensions (Frame Size)	Same number of rows and columns as the input.	The output has the same number of columns as the input. The number of output rows is the output frame size. For an input with frame size M_{i} output y_{k} has frame size $M_{o^{\circ} k}:$
- Symmetric-All outputs have the frame		
size, $M_{\mathrm{i}} / 2^{n}$.		

Dyadic Analysis Filter Bank

Output Characteristics for an n-Level Dyadic Analysis Filter Bank (Continued)

	Single Output Port	Multiple Output Ports
		originate from the same level in the filter bank. $M_{o, k}= \begin{cases}M_{i} / 2^{k} & (1 \leq k \leq n) \\ M_{i} / 2^{n} & (k=n+1)\end{cases}$
Output Sample Rate	Same as input sample rate.	Though the outputs have the same frame rate as the input, they have different frame sizes than the input. Thus, the output sample rates, $F_{s o}$, k , are different from the input sample rate, $F_{s i}$: - Symmetric - All outputs have the sample rate $F_{s i} / 2^{n}$. - Asymmetric - $F_{s o, k}= \begin{cases}F_{s i} / 2^{k} & (1 \leq k \leq n) \\ F_{s i} / 2^{n} & (k=n+1)\end{cases}$

Filter Bank Filters

You must specify the highpass and lowpass filters in the filter bank by setting the Filter parameter to one of the following options:

- User defined - Allows you to explicitly specify the filters with two vectors of filter coefficients in the Lowpass FIR filter coefficients and Highpass FIR filter coefficients parameters. The block uses the same lowpass and highpass filters throughout the filter bank. The two filters should be halfband filters, where each filter passes the frequency band that the other filter stops.

Dyadic Analysis Filter Bank

- Wavelet such as Biorthogonal or Daubechies - The block uses the specified wavelet to construct the lowpass and highpass filters using the Wavelet Toolbox function wfilters. Depending on the wavelet, the block might enable either the Wavelet order or Filter order [synthesis / analysis] parameter. (The latter parameter allows you to specify different wavelet orders for the analysis and synthesis filter stages.) You must install the Wavelet Toolbox product to use wavelets.

Specifying Filters with the Filter Parameter and Related Parameters

Filter	Sample Setting for Related Filter Specification Parameters	Corresponding Wavelet Function Syntax
User-defined	Filters based on Daubechies wavelets with wavelet order 3: - Highpass FIR filter coefficients = [-0.3327 0.8069 -0.4599 $-0.1350 ~ 0.0854 ~ 0.0352] ~$ - Lowpass FIR filter coefficients = [0.0352 -0.0854 -0.1350 $0.4599 ~ 0.8069 ~ 0.3327] ~$	None
Haar	None	
Daubechies	Wavelet order = 4	
Symlets	Wavelet order = 3	wfilters ('haar')
Coiflets	Wavelet order = 1	wfilters ('db4')
Biorthogonal	Filter order [synthesis / analysis] = [3/1]	wfilters ('bior3.1')
Reverse Biorthogonal	Filter order [synthesis / analysis] = [3/1]	wfilters ('rbio3.1')
Discrete Meyer	None	wfilters ('dmey ')

Dyadic Analysis Filter Bank

Examples Wavelets

The primary application for dyadic analysis filter banks and dyadic synthesis filter banks is coding for data compression using wavelets.

At the transmitting end, the output of the dyadic analysis filter bank is fed to a lossy compression scheme, which typically assigns the number of bits for each filter bank output in proportion to the relative energy in that frequency band. This represents the more powerful signal components by a greater number of bits than the less powerful signal components.

At the receiving end, the transmission is decoded and fed to a dyadic synthesis filter bank to reconstruct the original signal. The filter coefficients of the complementary analysis and synthesis stages are designed to cancel aliasing introduced by the filtering and resampling.

Demos

See the floating-point frame-based version of the Signal Processing Blockset Wavelet Reconstruction and Noise Reduction demo, which uses the Dyadic Analysis Filter Bank and Dyadic Synthesis Filter Bank blocks.

The parameters displayed in the block dialog vary depending on the setting of the Filter parameter. Only some of the parameters described below are visible in the dialog box at any one time.

Dyadic Analysis Filter Bank

Filter

The type of filter used to determine the high- and low-pass FIR filters in the dyadic analysis filter bank:

Select User defined to explicitly specify the filter coefficients in the Lowpass FIR filter coefficients and Highpass FIR filter coefficients parameters.

Dyadic Analysis Filter Bank

Select a wavelet such as Biorthogonal or Daubechies to specify a wavelet-based filter. The block uses the Wavelet Toolbox function wfilters to construct the filters. Extra parameters such as Wavelet order or Filter order [synthesis / analysis] might become enabled. For a list of the supported wavelets, see Specifying Filters with the Filter Parameter and Related Parameters on page 2-449.

Lowpass FIR filter coefficients

A vector of filter coefficients (descending powers of z) that specifies coefficients used by all the lowpass filters in the filter bank. This parameter is enabled when you set Filter to User defined. The lowpass filter should be a half-band filter that passes the frequency band stopped by the filter specified in the Highpass FIR filter coefficients parameter. The default values of this parameter specify a filter based on a Daubechies wavelet with wavelet order 3.

Highpass FIR filter coefficients

A vector of filter coefficients (descending powers of z) that specifies coefficients used by all the highpass filters in the filter bank. This parameter is enabled when you set Filter to User defined. The highpass filter should be a half-band filter that passes the frequency band stopped by the filter specified in the Lowpass FIR filter coefficients parameter. The default values of this parameter specify a filter based on a Daubechies wavelet with wavelet order 3.

Wavelet order

The order of the wavelet selected in the Filter parameter. This parameter is enabled only when you set Filter to certain types of wavelets, as shown in the Specifying Filters with the Filter Parameter and Related Parameters table.

Filter order [synthesis / analysis]

The order of the wavelet for the synthesis and analysis filter stages. For example, when you set the Filter parameter to Biorthogonal and set the Filter order [synthesis / analysis] parameter to [2 / 6], the block calls the wfilters function with

Dyadic Analysis Filter Bank

input argument 'bior2.6'. This parameter is enabled only when you set Filter to certain types of wavelets, as shown in Specifying Filters with the Filter Parameter and Related Parameters on page 2-449.

Number of levels

The number of filter bank levels. An n-level asymmetric structure has $n+1$ outputs, and an n-level symmetric structure has 2^{n} outputs, as shown in the figures " n-Level Asymmetric Dyadic Analysis Filter Bank" and "n-Level Symmetric Dyadic Analysis Filter Bank". The block's icon displays the value of this parameter in the lower-left corner.

Tree structure

The structure of the filter bank: Asymmetric, or Symmetric. See the figures " n -Level Asymmetric Dyadic Analysis Filter Bank" and "n-Level Symmetric Dyadic Analysis Filter Bank".

Output

Set to Multiple ports to output each output subband on a separate port (the topmost port outputs the subband with the highest frequency band). Set to Single port to concatenate the subbands into one vector or matrix and output the concatenated subbands on a single port. For more information, see "Output Characteristics" on page 2-445.

References	Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems,
	Filter Banks, Wavelets. West Sussex, England: John Wiley \& Sons,
	1994.
	Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA: Wellesley-Cambridge Press, 1996. Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood Prentice Hall, 1993.
Cliff,	
Supporfed	- Double-precision floating point
Data	- Single-precision floating point
Types	

DWT
Dyadic Synthesis Filter Bank
Two-Channel Analysis Subband Filter

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

Purpose

Library

Description

Reconstruct signals from subbands with smaller bandwidths and slower sample rates

Filtering / Multirate Filters
dspmlti4

Note This block always outputs frame-based signals, and its inputs must be of certain sizes. To get sample-based outputs or to use input subbands that do not fit the criteria of this block, use the Two-Channel Synthesis Subband Filter block. (You can connect multiple copies of the Two-Channel Synthesis Subband Filter block to create a multilevel dyadic synthesis filter bank.)

The Dyadic Synthesis Filter Bank block reconstructs a signal decomposed by the Dyadic Analysis Filter Bank block. The block takes in subbands of a signal, and uses them to reconstruct the signal by using a series of highpass and lowpass FIR filters as illustrated in the figure "n-Level Asymmetric Dyadic Synthesis Filter Bank". The reconstructed signal has a wider bandwidth and faster sample rate than the input subbands.

You can specify the filter bank's highpass and lowpass filters by providing vectors of filter coefficients. If you install the Wavelet Toolbox product, you can also specify wavelet-based filters by selecting a wavelet from the Filter parameter.

Dyadic Synthesis Filter Bank

Note To use a dyadic synthesis filter bank to perfectly reconstruct the output of a dyadic analysis filter bank, the number of levels and tree structures of both filter banks must be the same. In addition, the filters in the synthesis filter bank must be designed to perfectly reconstruct the outputs of the analysis filter bank. Otherwise, the reconstruction is not perfect.

This block automatically computes wavelet-based perfect reconstruction filters when the wavelet selection in the Filter parameter of this block is the same as the Filter parameter setting of the corresponding Dyadic Analysis Filter Bank block. The use of wavelets requires the Wavelet Toolbox product. To learn how to design your own perfect reconstruction filters, see "References" on page 2-465.

Input Requirements

The inputs to this block are usually the outputs of a Dyadic Analysis Filter Bank block. Since the Dyadic Analysis Filter Bank block can output from either a single port or multiple ports, the Dyadic Synthesis Filter Bank block accepts inputs to either a single port or multiple ports.

The Input parameter sets whether the block accepts inputs from a single port or multiple ports, and thus determines the input requirements, as summarized in the following lists and figure.

Note Any output of a Dyadic Analysis Filter Bank block whose parameter settings match the corresponding settings of this block is a valid input to this block. For example, the setting of the Dyadic Analysis Filter Bank block parameter, Output, must be the same as this block's Input parameter (Single port or Multiple ports).

Valid Inputs for Input Set to Single Port

- Inputs must be sample-based vectors or sample-based matrices of concatenated subbands.
- Each input column contains the subbands for an independent signal.
- Upper input rows contain the high-frequency subbands, and the lower rows contain the low-frequency subbands.

Valid Inputs for Input Set to Multiple Ports

- Inputs must be a frame-based vector or frame-based matrix for each subband, each of which is input to a separate input port.
- The columns of each input contains a subband for an independent signal.
- The input to the topmost input port is the subband containing the highest frequencies, and the input to the bottommost port is the subband containing the lowest frequencies.

Dyadic Synthesis Filter Bank

Single Input Port
 (Asymmetric tree structure)

Concatenated subband input Input rate = 1
(One input matrix per second)
Other blocks treat this input as a sample-b ased signal with sample rate 1.

Valid Inputs to a 3-Level Asymmetric Dyadic Synthesis Filter Bank

For general information about the filter banks, see "Dyadic Synthesis Filter Banks".

Output Characteristics

The following table summarizes the output characteristics for both frame-based inputs, and concatenated subband inputs. For an

Dyadic Synthesis Filter Bank

illustration of why the output characteristics exist, see the figure Valid Inputs to a 3-Level Asymmetric Dyadic Synthesis Filter Bank on page 2-458.

$\left.$		Frame-Based Inputs (Input = Multiple ports)	Concatenated Subband Inputs (Input = Single port)
Output Frame Status	Outputs are always frame based regardless of the input frame status. Each output column is an independent channel, reconstructed from the corresponding channel in the inputs.		
Output Frame Rate	Same as the input frame rate.	Same as the input rate (the rate of the concatenated subband inputs).	
Output Frame Dimensions	- The output has the same number of columns as the inputs.	The output has the same number of rows and columns as the input.	
- The number of output rows			
depends on the tree structure of			
the filter bank:			
- Asymmetric - The number			
of output rows is twice the			
number of rows in the input			
to the topmost input port.			
= Symmetric - The number			
of output rows is the product			
of the number of input ports			
and the number of rows in an			
input to any input port.			$\quad \right\rvert\,$

For general information about the filter banks, see "Dyadic Synthesis Filter Banks".

Filter Bank Filters

You must specify the highpass and lowpass filters in the filter bank by setting the Filter parameter to one of the following options:

Dyadic Synthesis Filter Bank

- User defined - Allows you to explicitly specify the filters with two vectors of filter coefficients in the Lowpass FIR filter coefficients and Highpass FIR filter coefficients parameters. The block uses the same lowpass and highpass filters throughout the filter bank. The two filters should be halfband filters, where each filter passes the frequency band that the other filter stops. To use this block to perfectly reconstruct a signal decomposed by a Dyadic Analysis Filter Bank block, the filters in this block must be designed to perfectly reconstruct the outputs of the analysis filter bank. To learn how to design your own perfect reconstruction filters, see "References" on page 2-465.
- Wavelet such as Biorthogonal or Daubechies - The block uses the specified wavelet to construct the lowpass and highpass filters using the Wavelet Toolbox function wfilters. Depending on the wavelet, the block might enable either the Wavelet order or Filter order [synthesis / analysis] parameter. (The latter parameter allows you to specify different wavelet orders for the analysis and synthesis filter stages.) To use this block to reconstruct a signal decomposed by a Dyadic Analysis Filter Bank block, you must set both blocks to use the same wavelets with the same order. You must install the Wavelet Toolbox product to use wavelets.

Specifying Filters with the Filter Parameter and Related Parameters

Filter	Sample Setting for Related Filter Specification Parameters	Corresponding Wavelet Function Syntax
User-defined	Filters based on Daubechies wavelets with wavelet order 3: - Lowpass FIR filter coefficients = $\begin{array}{lll} {\left[\begin{array}{lll} 0.0352 & -0.0854 & -0.1350 \\ 0.4599 & 0.8069 & 0.3327 \end{array}\right]} \end{array}$ - Highpass FIR filter coefficients =	None

Dyadic Synthesis Filter Bank

Specifying Filters with the Filter Parameter and Related Parameters (Continued)

Filter	Sample Setting for Related Filter Specification Parameters	Corresponding Wavelet Function Syntax
	$-0.3327 \quad 0.8069-0.4599$ $-0.1350 \quad 0.0854 \quad 0.0352]$	
Haar	None	
Daubechies	Wavelet order = 4	wfilters ('haar')
Symlets	Wavelet order = 3	wfilters ('db4')
Coiflets	Wavelet order = 1	wfilters ('sym3')
Biorthogonal	Filter order [synthesis / analysis] = [3/1]	wfilters ('coif1')
Reverse Biorthogonal	Filter order [synthesis / analysis] $=[3 / 1]$	wfilters ('rbio3.1')
Discrete Meyer	None	wfilters ('dmey ')

Examples See "Examples" on page 2-450 in the Dyadic Analysis Filter Bank block reference.

Dialog Box

The parameters displayed in the block dialog vary depending on the setting of the Filter parameter. Only some of the parameters described below are visible in the dialog box at any one time.

Dyadic Synthesis Filter Bank

Note To use this block to reconstruct a signal decomposed by a Dyadic Analysis Filter Bank block, all the parameters in this block must be the same as the corresponding parameters in the Dyadic Analysis Filter Bank block (except the Lowpass FIR filter coefficients and Highpass FIR filter coefficients; see the descriptions of these parameters).

Dyadic Synthesis Filter Bank

Filter

The type of filter used to determine the high- and low-pass FIR filters in the dyadic synthesis filter bank:

- Select User defined to explicitly specify the filter coefficients in the Lowpass FIR filter coefficients and Highpass FIR filter coefficients parameters.
- Select a wavelet such as Biorthogonal or Daubechies to specify a wavelet-based filter. The block uses the Wavelet Toolbox function wfilters to construct the filters. Extra parameters such as Wavelet order or Filter order [synthesis / analysis] might become enabled. For a list of the supported wavelets, see the table Specifying Filters with the Filter Parameter and Related Parameters on page 2-460.

Lowpass FIR filter coefficients

A vector of filter coefficients (descending powers of z) that specifies coefficients used by all the lowpass filters in the filter bank. This parameter is enabled when you set Filter to User defined. The lowpass filter should be a half-band filter that passes the frequency band stopped by the filter specified in the Highpass FIR filter coefficients parameter. To perfectly reconstruct a signal decomposed by the Dyadic Analysis Filter Bank, the filters in this block must be designed to perfectly reconstruct the outputs of the analysis filter bank. Otherwise, the reconstruction is not perfect. The default values of this parameter specify a perfect reconstruction filter for the default settings of the Dyadic Analysis Filter Bank (based on a Daubechies wavelet with wavelet order 3).

Highpass FIR filter coefficients

A vector of filter coefficients (descending powers of z) that specifies coefficients used by all the highpass filters in the filter bank. This parameter is enabled when you set Filter to User defined. The highpass filter should be a half-band filter that passes the frequency band stopped by the filter specified in the Lowpass FIR filter coefficients parameter. To perfectly reconstruct a signal decomposed by the Dyadic Analysis Filter Bank, the filters in this block must be designed to perfectly reconstruct the outputs

Dyadic Synthesis Filter Bank

of the analysis filter bank. Otherwise, the reconstruction is not perfect. The default values of this parameter specify a perfect reconstruction filter for the default settings of the Dyadic Analysis Filter Bank (based on a Daubechies wavelet with wavelet order 3).

Wavelet order

The order of the wavelet selected in the Filter parameter. This parameter is enabled only when you set Filter to certain types of wavelets, as shown in the table Specifying Filters with the Filter Parameter and Related Parameters on page 2-460.

Filter order [synthesis / analysis]

The order of the wavelet for the synthesis and analysis filter stages. For example, when you set the Filter parameter to Biorthogonal and set the Filter order [synthesis / analysis] parameter to [2 / 6], the block calls the wfilters function with input argument 'bior2.6'. This parameter is enabled only when you set Filter to certain types of wavelets, as shown in Specifying Filters with the Filter Parameter and Related Parameters on page 2-460.

Number of levels

The number of filter bank levels. An n-level asymmetric structure has $n+1$ inputs, and an n-level symmetric structure has 2^{n} inputs, as shown in "n-Level Asymmetric Dyadic Synthesis Filter Bank" and "n-Level Symmetric Dyadic Synthesis Filter Bank".

Tree structure

The structure of the filter bank: Asymmetric, or Symmetric. See the figures "n-Level Asymmetric Dyadic Synthesis Filter Bank" and "n-Level Symmetric Dyadic Synthesis Filter Bank".

Input

Set to Multiple ports to accept each input subband at a separate port (the topmost port accepts the subband with the highest frequency band). Set to Single port to accept one vector or matrix of concatenated subbands at a single port. For more information, see "Input Requirements" on page 2-456.

Dyadic Synthesis Filter Bank

References	Fliege, N. J. Multirate Digital Signal Processing: Mu tir Filter Banks, Wavelets. West Sussex, England: John 1994.
	Strang, G. and T. Nguyen. Wavelets and Filter Banks Wellesley-Cambridge Press, 1996.
	Vaidyanathan, P. P. Multirate Systems and Filter Ban Cliffs, NJ: Prentice Hall, 1993.
Supported Data Types	- Double-precision floating point - Single-precision floating point
See Also	Dyadic Analysis \quad Signal Processing Blockset Filter Bank
	IDWT Signal Processing Blockset
	Two-Channel Synthesis Subband Filter

See "Multirate Filters" for related information.

Edge Detector

Purpose Detect transition from zero to nonzero value
 Library
 Signal Management / Switches and Counters dspswit3

Description

Examples

The Edge Detector block generates an impulse (the value 1) in a given output channel when the corresponding channel of the input transitions from zero to a nonzero value. Otherwise, the block generates zeros in each channel.

The output has the same dimension and sample rate as the input. When the input is frame based, the output is frame based; otherwise, the output is sample based. For frame-based input, an edge that is split across two consecutive frames (that is, a zero at the bottom of the first frame, and a nonzero value at the top of the following frame) is counted in the frame that contains the nonzero value.

In the model below, the Edge Detector block locates the edges (zero to nonzero transitions) in a two-channel frame-based input with frame size 3 . The two input channels are horizontally concatenated with the two output channels to create the four-channel workspace variable dsp_examples_yout.

Adjust the block parameters as described below. (Use the default settings for the To Workspace block.)

- Set the Signal From Workspace block parameters as follows:
- Signal $=[(-5: 5) ; 0100200030]^{\prime}$
- Sample time = 1

Edge Detector

- Samples per frame $=3$
- Set the Matrix Concatenate block parameters as follows:
- Number of inputs $=2$
- Mode = Multidimensional array
- Concatenate dimension $=2$

As shown below, the block finds edges at sample 7 in channel 1 , and at samples 2,5 , and 9 in channel 2 .

Edge Detector

Dialog Box

Supported Data Types

- Double-precision floating point
- Single-precision floating point
- Fixed point (signed and unsigned)
- Boolean - The block might output Boolean values depending on the input data type, and whether Boolean support is enabled or disabled.
- 8 -, 16-, and 32 -bit signed integers
- 8 -, 16-, and 32 -bit unsigned integers
- Enumerated

See Also

Counter
Event-Count Comparator
Signal Processing Blockset
Signal Processing Blockset

Event-Count Comparator

All inputs and outputs are multiplexed into the workspace variable yout, whose contents are shown in the figure below. The two left columns in the illustration show the inputs to the Data and Int ports, the center column shows the state of the block's internal counter, and the right column shows the block's output.

Event-Count Comparator

Dialog

Box

Event threshold

Specify the value against which to compare the number of nonzero inputs. Tunable.
Supported Data Types

- Double-precision floating point
- Single-precision floating point
- Fixed point (signed and unsigned)
- Boolean
- 8 -, 16-, and 32 -bit signed integers
- 8 -, 16-, and 32 -bit unsigned integers
- Enumerated

See Also

Counter
Edge Detector

Signal Processing Blockset
Signal Processing Blockset

Extract Diagonal

Library

Description

Dialog
Box

Supported Data Types

Purpose Extract main diagonal of input matrix
Math Functions / Matrices and Linear Algebra / Matrix Operations dspmtrx3

The Extract Diagonal block populates the 1-D output vector with the elements on the main diagonal of the M-by- N input matrix A.

$$
D=\operatorname{diag}(A) \quad \text { Equivalent MATLAB code }
$$

The output vector has length $\min (M, N)$, and is always sample based.

```
牙Block Parameters: Extract Diagonal
? \({ }^{2}\)
Extract Diagonal (mask) (link)
Extract the main diagonal of a full matrix.
```

```
OK
```


Cancel

Help Apply

- Double-precision floating point
- Single-precision floating point
- Fixed point (signed and unsigned)
- Boolean - Block outputs are always Boolean.
- 8 -, 16-, and 32 -bit signed integers
- 8-, 16-, and 32 -bit unsigned integers

See Also

Constant Diagonal Matrix
Create Diagonal Matrix

Signal Processing Blockset
Signal Processing Blockset

Extract Diagonal

Extract Triangular Matrix
diag

Signal Processing Blockset
MATLAB

Extract Triangular Matrix

Purpose	Extract lower or upper triangle from input matrices
Library	Math Functions / Matrices and Linear Algebra / Matrix Operations dspmtrx3

Description

Examples

- Upper - Copies the elements on and above the main diagonal of the input matrix to an output matrix of the same size. The first row of the output matrix is therefore identical to the first row of the input matrix. The elements below the main diagonal of the output matrix are zero.
- Lower - Copies the elements on and below the main diagonal of the input matrix to an output matrix of the same size. The first column of the output matrix is therefore identical to the first column of the input matrix. The elements above the main diagonal of the output matrix are zero.

The output has the same frame status as the input.
The Extract Triangular Matrix block creates a triangular matrix output from the upper or lower triangular elements of an M-by- N input matrix. A length- $M 1$-D vector input is treated as an M-by- 1 matrix.

The Extract parameter selects between the two components of the input:

The example below shows the extraction of upper and lower triangles from a 5 -by- 3 input matrix.

$\left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \\ 13 & 14 & 15 \end{array}\right]$		$\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 5 & 6 \\ 0 & 0 & 9 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \\ 13 & 14 & 15 \end{array}\right]$		$\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 5 & 0 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \\ 13 & 14 & 15\end{array}\right]$

Dialog Box

Block Parameters: Extract Triangular Matrix		? \times
$\left[\begin{array}{l}\text { Extract Triangular Matrix (mask) (link) } \\ \text { Extract upper or lower triangular part of input matrix. }\end{array}\right.$		
$\begin{array}{\|l} \text { Parameters } \\ \text { Extract: Lpper } \end{array}$		
QK Cancel	Help	Apply

Extract

The component of the matrix to copy to the output, upper triangle or lower triangle.

Extract Triangular Matrix

Supported Data Types

Port	Supported Data Types
A	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers
U	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Boolean - 8-, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
L	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers

Autocorrelation LPC
 Cholesky Factorization
 Constant Diagonal Matrix
 Extract Diagonal

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

Forward Substitution	Signal Processing Blockset
LDL Factorization	Signal Processing Blockset
LU Factorization	Signal Processing Blockset
tril	MATLAB
triu	MATLAB

Fast Block LMS Filter

Purpose	Compute output, error, and weights using LMS adaptive algorithm
Library	Filtering / Adaptive Filters
	dspadpt3

Description

Fast Block LMS Filter

The Fast Block LMS Filter block implements an adaptive least mean-square (LMS) filter, where the adaptation of the filter weights occurs once for every block of data samples. The block estimates the filter weights, or coefficients, needed to convert the input signal into the desired signal. Connect the signal you want to filter to the Input port. This input signal can be a sample-based scalar or a single-channel frame-based signal. Connect the signal you want to model to the Desired port. The desired signal must have the same data type, frame status, complexity, and dimensions as the input signal. The Output port outputs the filtered input signal, which can be sample or frame based. The Error port outputs the result of subtracting the output signal from the desired signal.

The block calculates the filter weights using the Block LMS Filter equations. For more information, see Block LMS Filter. The Fast Block LMS Filter block implements the convolution operation involved in the calculations of the filtered output, y, and the weight update function in the frequency domain using the FFT algorithm used in the Overlap-Save FFT Filter block. See Overlap-Save FFT Filter for more information.

Use the Filter length parameter to specify the length of the filter weights vector.

The Block size parameter determines how many samples of the input signal are acquired before the filter weights are updated. The input frame length must be a multiple of the Block size parameter.

The Step-size (mu) parameter corresponds to μ in the equations. You can either specify a step-size using the input port, Step-size, or enter a value in the Block Parameters: Block LMS Filter dialog box.

Use the Leakage factor (0 to 1) parameter to specify the leakage factor, $0<1-\mu \alpha \leq 1$, in the leaky LMS algorithm shown below.

Fast Block LMS Filter

$$
\mathbf{w}(k)=(1-\mu \alpha) \mathbf{w}(k-1)-f(\mathbf{u}(n), e(n), \mu)
$$

Enter the initial filter weights, $\mathbf{w}(0)$, as a vector or a scalar in the Initial value of filter weights text box. When you enter a scalar, the block uses the scalar value to create a vector of filter weights. This vector has length equal to the filter length and all of its values are equal to the scalar value.

When you select the Adapt port check box, an Adapt port appears on the block. When the input to this port is nonzero, the block continuously updates the filter weights. When the input to this port is zero, the filter weights remain at their current values.
When you want to reset the value of the filter weights to their initial values, use the Reset input parameter. The block resets the filter weights whenever a reset event is detected at the Reset port. The reset signal rate must be the same rate as the data signal input.

From the Reset input list, select None to disable the Reset port. To enable the Reset port, select one of the following from the Reset input list:

- Rising edge - Triggers a reset operation when the Reset input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

Fast Block LMS Filter

- Falling edge - Triggers a reset operation when the Reset input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Reset input is a Rising edge or Falling edge (as described above)
- Non-zero sample - Triggers a reset operation at each sample time that the Reset input is not zero

Fast Block LMS Filter

> Note When running simulations in the Simulink MultiTasking mode, sample-based reset signals have a one-sample latency, and frame-based reset signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a reset event, and when it applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

Select the Output filter weights check box to create a Wts port on the block. For each iteration, the block outputs the current updated filter weights from this port.

Fast Block LMS Filter

Dialog
 Box

Function Block Parameters: Fast Block LMS Filter
Fast Block LMS Filter (mask) (link) - Computes filter weights based on the Fast Block LMS algorithm for filtering of the input signal. The filter weights are updated once for every block of data that is processed. This block uses FFT for fast convolution. Select the Adapt port check box to create an Adapt port on the block. When the input to this port is nonzero, the block continuoulsy updates the filter weights. When the input to this port is zero, the filter weights remain constant. If the Reset port is enabled and a reset event occurs, the block resets the filter weights to their initial values. Parameters - Filter length: 32 Block size: 32 Specify step size via: Dialog Step size (mu): 0.1 Leakage factor (0 to 1): 1.0 Initial value of filter weights: 0 Reset port: None Adapt port

Filter length

Enter the length of the FIR filter weights vector. The sum of the block size and the filter length must be a power of 2 .

Block size

Enter the number of samples to acquire before the filter weights are updated. The input frame length must be an integer multiple of the block size. The sum of the block size and the filter length must be a power of 2 .

Specify step-size via

Select Dialog to enter a value for mu, or select Input port to specify mu using the Step-size input port.

Step-size (mu)

Enter the step-size. Tunable.

Leakage factor (0 to 1)

Enter the leakage factor, $0<1-\mu \alpha \leq 1$. Tunable.

Initial value of filter weights

Specify the initial values of the FIR filter weights.

Adapt port

Select this check box to enable the Adapt input port.

Reset input

Select this check box to enable the Reset input port.

Output filter weights

Select this check box to export the filter weights from the Wts port.

References York: John Wiley \& Sons, 1996.
 Supported
 Data Types
 - Double-precision floating point
 - Single-precision floating point

Hayes, M.H. Statistical Digital Signal Processing and Modeling. New

Fast Block LMS Filter

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point
Desired	- Must be the same as Input for floating-point signals - Must be any fixed-point data type when Input is fixed point
Step-size	- Must be the same as Input for floating-point signals - Must be any fixed-point data type when Input is fixed point
Adapt	- Double-precision floating point - Single-precision floating point - Boolean - 8 -, 16-, and 32 -bit signed integers - 8-, 16-, and 32 -bit unsigned integers
Reset	- Double-precision floating point - Single-precision floating point - Boolean - 8-, 16-, and 32 -bit signed integers - 8-, 16-, and 32 -bit unsigned integers
Output	- Must be the same as Input for floating-point signals - Must be the same as Desired for fixed-point signals

Fast Block LMS Filter

Port	Supported Data Types
Error	• Must be the same as Input for floating-point signals - Must be the same as Desired for fixed-point signals
Wts	- Must be the same as Input for floating-point signals - Obeys the Weights parameter for fixed-point signals

Purpose	Compute fast Fourier transform (FFT) of input
Library	Transforms
	dspxfrm3

Description

The FFT block computes the fast Fourier transform (FFT) of each row of a sample-based 1-by- P input vector, u, or across the first dimension (P) of an N-D input array, u. When you select the Inherit FFT length from input dimensions check box, P must be an integer power of two, and the FFT length, M, is set equal to P. If you do not select the check box, P can be any length, and the value of the FFT length parameter must be a positive integer power of two. For user-specified FFT lengths, when M does not equal P, zero padding or modulo- M data wrapping occurs before the FFT operation, as per Orfanidis [1]:

$$
\begin{aligned}
& y=f f t(u, M) \quad \% P \leq M \\
& y(:, l)=f f t(\text { datawrap }(u(:, l), M)) \quad \% P>M ; l=1, \ldots, N
\end{aligned}
$$

When the input length, P, is greater than the FFT length, M, you may see magnitude increases in your FFT output. These magnitude increases occur because the FFT block uses modulo- M data wrapping to preserve all available input samples.

To avoid such magnitude increases, you can truncate the length of your input sample, P, to the FFT length, M. To do so, place a Pad block before the FFT block in your model.

The k th entry of the l th output channel, $y(k, l)$, equals the k th point of the M-point discrete Fourier transform (DFT) of the l th input channel:

$$
y(k, l)=\sum_{p=1}^{P} u(p, l) e^{-j 2 \pi(p-1)(k-1) / M} \quad k=1, \ldots, M
$$

This block supports real and complex floating-point and fixed-point inputs.

Input and Output Characteristics

The following table describes valid inputs to the FFT block, their corresponding outputs, and the dimension along which the block computes the DFT.

- Valid inputs to the FFT block. Inputs can be real- or complex-valued, and must be in linear order.
- The dimension along which the block computes the DFT.
- The corresponding block output characteristics. The output port rate must equal the input port rate.

Valid Block Inputs	Dimension Along Which Block Computes DFT	Corresponding Block Output Characteristics
N-D array	First dimension	- Sample based. - Complex valued. - N-D array with the size of the first dimension equal to the FFT length, M, and all other dimensions the same size as the input. - Each output column contains the M-point DFT of the corresponding input channel in linear or bit-reversed order.

Valid Block Inputs	Dimension Along Which Block Computes DFT	Corresponding Block Output Characteristics
Sample-based 1-by-P row vector	Row	• Sample based. - Complex valued. - 1-by- M row vector. - Each output row contains the M-point DFT of the corresponding input channel in linear or bit-reversed order.
		Unoriented, length- M, complex-valued 1-D output vector containing M-point DFT of input in linear or bit-reversed order.
Unoriented length-P 1-D	Vector	

Selecting the Twiddle Factor Computation Method

The Twiddle factor computation parameter determines how the block computes the necessary sine and cosine terms to calculate the term $e^{-j 2 \pi(p-1)(k-1) / M}$, shown in the first equation of this block reference page.

The block only supports Table lookup mode for fixed-point signals.
The Twiddle factor computation parameter has two settings, each with its advantages and disadvantages, as described in the following table.

Twiddle Factor Computation Parameter Setting	Sine and Cosine Computation Method	Effect on Block Performance
Table lookup	The block computes and stores the trigonometric values before the simulation starts and retrieves them during the simulation. When you generate code from the block, the processor running the generated code stores the trigonometric values computed by the block, and retrieves the values during code execution.	The block usually runs much more quickly, but requires extra memory for storing the precomputed trigonometric values. You can optimize the table for memory consumption or speed, as described in "Optimizing the Table of Trigonometric Values" on page 2-490.
Trigonometric fcn	The block computes sine and cosine values during the simulation. When you generate code from the block, the processor running the generated code computes the sine and cosine values while the code runs.	The block usually runs more slowly, but does not need extra data memory. For code generation, the block requires a support library to emulate the trigonometric functions, increasing the size of the generated code.

Optimizing the Table of Trigonometric Values

When you set the Twiddle factor computation parameter to Table lookup, you also need to set the Optimize table for parameter.

This parameter optimizes the table of trigonometric values for speed or memory by varying the number of table entries as summarized in the following table.

Optimize Table for Parameter Setting	Number of Table Entries for N-Point FFT	Memory Required for Single-Precision, 5 12-Point FFT
Speed	$3 N / 4-$ floating point N - fixed point	$\left(\frac{3 \times 512}{4}\right.$ table entries $) \times\left(4 \frac{\text { bytes }}{\text { table entry }}\right)$ $=1536$ bytes
Memory	N/4— floating point Not supported for fixed point	$\left(\frac{512}{4}\right.$ tableentries $) \times\left(4 \frac{\text { bytes }}{\text { tableentry }}\right)$ $=512$ bytes

Ordering Output Column Entries

You can set the Output in bit-reversed order parameter to specify the ordering of the column elements of the block output. If you select the Output in bit-reversed order check box, the output appears in bit-reversed order. If you clear the Output in bit-reversed order check box, the output appears in linear order.

Abstract

Note The FFT block calculates its output in bit-reversed order. Linearly ordering the FFT block output requires an extra bit-reversal operation. Thus, in many situations, you can increase the speed of the FFT block by selecting the Output in bit-reversed order check box.

For more information ordering of the output, see "Linear and Bit-Reversed Output Order".

Algorithms Used for FFT Computation

Depending on whether the block's input is real- or complex-valued and whether you want the output in linear or bit-reversed order, the block uses one or more of the following algorithms as summarized in the following table:

- Bit-reversal operation
- Double-signal algorithm
- Half-length algorithm
- Radix-2 decimation-in-time (DIT) algorithm
- Radix-2 decimation-in-frequency (DIF) algorithm

Complexity of Input	Output Ordering	Algorithms Used for FFT Computation
Complex	Linear	Bit-reversal operation and radix-2 DIT
Complex	Bit-reversed	Radix-2 DIF
Real	Linear	Bit-reversal operation and radix-2 DIT in conjunction with the half-length and double-signal algorithms
Real	Bit-reversed	Radix-2 DIF in conjunction with the half-length and double-signal algorithms

The efficiency of the FFT algorithm can be enhanced for real input signals by forming complex-valued sequences from the real-valued
sequences prior to the computation of the DFT. When there are $2 N+1$ real input channels, the FFT block forms these complex-valued sequences by applying the double-signal algorithm to the first $2 N$ input channels, and the half-length algorithm to the last odd-numbered channel.

For real input signals with fixed-point data types, it is possible to see different numerical results in the output of the last odd numbered channel, even when all input channels are identical. This numerical difference results from differences in the double-signal algorithm and the half-length algorithm.

You can eliminate this numerical difference in two ways:

- Using full precision arithmetic for fixed-point input signals
- Changing the input data type to floating point

For more information on the double-signal and half-length algorithms, see Proakis [2]. "Efficient Computation of the DFT of Two Real Sequences" on page 475 describes the double signal algorithm. "Efficient Computation of the DFT of a 2 N -Point Real Sequence" on page 476 describes the half-length algorithm.

Fixed-Point Data Types

The following diagrams show the data types used within the FFT block for fixed-point signals. You can set the sine table, accumulator, product output, and output data types displayed in the diagrams in the FFT block dialog as discussed in "Dialog Box" on page 2-494.

The block first casts inputs to the FFT block to the output data type and stores them in the output buffer. Each butterfly stage then processes signals in the accumulator data type, and the block then casts the final output of the butterfly back into the output data type. The block multiplies in a twiddle factor before each butterfly stage in a decimation-in-time FFT, and after each butterfly stage in a decimation-in-frequency FFT.

Decimation-irrTine FFT

--twiddle mutiplixation- butterly stoge-_

DecinuatioririrFrequency FFT

\dagger butterly stoge- | widde multiplication-

Butterily Stage Data Types

Iwidde Multiplication Data Types

The output of the multiplier appears in the accumulator data type because both of the inputs to the multiplier are complex. For details on the complex multiplication performed, see "Multiplication Data Types".

Examples

See the section on "Transforming Time-Domain Data into the Frequency Domain" in the Signal Processing Blockset User's Guide.

Dialog Box

The Main pane of the FFT block dialog appears as follows.

柬 Function Block Parameters: FFT

-FFT
Outputs the complex fast Fourier transform (FFT) of a real or complex input by computing radix-2 decimation-in-time (DIT) or decimation-in-frequency (DIF), depending on block options. Uses half-length and double-signal algorithms for real inputs where possible.

Computes the FFT along the vector dimension for sample-based vector inputs. Computes the FFT along each column for all other inputs. When the "Inherit FFT length from input dimensions" check box is selected, the input must have a powerof -2 width.

Main \mid Fixed-point	
Twarameters	
Optimize table factor computation:	Speed
Table lookup	
Г Output in bit-reversed order	
∇	
Divide butterfly outputs by two	

Twiddle factor computation

Specify the computation method of the term $e^{-j 2 \pi(p-1)(k-1) / M}$, shown in the first equation of this block reference page.

In Table lookup mode, the block computes and stores the sine and cosine values before the simulation starts.

In Trigonometric fon mode, the block computes the sine and cosine values during the simulation. See "Selecting the Twiddle Factor Computation Method" on page 2-489.

This parameter must be set to Table lookup for fixed-point signals.

Optimize table for

Select the optimization of the table of sine and cosine values for Speed or Memory. This parameter becomes available only when you set the Twiddle factor computation parameter to Table lookup. See "Selecting the Twiddle Factor Computation Method" on page 2-489.

This parameter must be set to Speed for fixed-point signals.

Output in bit-reversed order

Designate the order of the output channel elements relative to the ordering of the input elements. When you select this check box, the output channel elements appear in bit-reversed order relative to the input ordering. Otherwise, the output column elements appear in linear order relative to the input ordering.

Linearly ordering the output requires extra data sorting manipulation, so in some situations it might be better to output in bit-reversed order.

Divide butterfly outputs by two

When you select this parameter, the output of each butterfly of the FFT is divided by two. When you do not select this parameter, the block does not scale the output.

Inherit FFT length from input dimensions

Select to inherit the FFT length from the input dimensions. When you select this parameter, the input length P must be a power of two. When you do not select this parameter, the FFT length parameter becomes available.

FFT length

Specify a power-of-two FFT length. This parameter becomes available only when you do not select the Inherit FFT length from input dimensions parameter.

The Fixed-point pane of the FFT block dialog appears as follows.
-FFT

Outputs the complex fast Fourier transform (FFT) of a real or complex input by computing radix-2 decimation-in-time (DIT) or decimation-in-frequency (DIF), depending on block options. Uses half-length and double-signal algorithms for real inputs where possible.

Computes the FFT along the vector dimension for sample-based vector inputs. Computes the FFT along each column for all other inputs. When the "Inherit FFT length from input dimensions" check box is selected, the input must have a powerof -2 width.

Main Fixed-point

Settings on this pane only apply when block inputs are fixed-point signals.

Fixed-point operational parameters
Rounding mode: Floor \quad Overflow mode: Wrap

Fixed-point data types
Mode
Sine table Same word length as input
Product output Inherit via internal rule
Accumulator
Inherit via internal rule
Output
Inherit via internal rule
「 Lock scaling against changes by the autoscaling tool
\square Cancel Help Apply

Rounding mode

Select the rounding mode for fixed-point operations. The sine table values do not obey this parameter; instead, they always round to Nearest.

Overflow mode

Select the overflow mode for fixed-point operations. The sine table values do not obey this parameter; instead, they are always saturated.

Sine table

Choose how you specify the word length of the values of the sine table. The fraction length of the sine table values always equals the word length minus one:

- When you select Same word length as input, the word length of the sine table values match that of the input to the block.
- When you select Specify word length, you can enter the word length of the sine table values, in bits.

The sine table values do not obey the Rounding mode and Overflow mode parameters; instead, they are always saturated and rounded to Nearest.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. See "Fixed-Point Data Types" on page 2-46 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block:

- When you select Inherit via internal rule, the block calculates the product output word length and fraction length automatically. For information about how the product output word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to specify how you would like to designate the accumulator word and fraction lengths. See "Fixed-Point Data Types" on page 2-46 and "Multiplication Data Types" for illustrations depicting the use of the accumulator data type in this block:

- When you select Inherit via internal rule, the block calculates the accumulator word length and fraction length automatically. For information about how the accumulator word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".
- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you specify the output word length and fraction length:

- When you select Inherit via internal rule, the block calculates the output word length and fraction length
automatically. The internal rule first calculates an ideal output word length and fraction length using the following equations:

$$
\begin{aligned}
& W L_{\text {ideal output }}=W L_{\text {input }}+\text { floor }\left(\log _{2}(F F T \text { length }-1)\right)+1 \\
& F L_{\text {ideal output }}=F L_{\text {input }}
\end{aligned}
$$

Using these ideal results, the internal rule then selects word lengths and fraction lengths that are appropriate for your hardware. For more information, see "Inherit via Internal Rule".

- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling feature of the Fixed-Point Tool. See the fxptdlg reference page for more information.

References [1] Orfanidis, S. J. Introduction to Signal Processing. Upper Saddle

 River, NJ: Prentice Hall, 1996, p. 497.[2] Proakis, John G. and Dimitris G. Manolakis. Digital Signal Processing, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 1996.

Supported Data Types

Port	Supported Data Types
Input	• Double-precision floating point
	• Single-precision floating point
	• Fixed point
	• 8 -, 16-, and 32-bit signed integers
	• 8-, 16-, and 32-bit unsigned integers
Output	• Double-precision floating point
	- Single-precision floating point
	• Fixed point (signed only)
	• 8-, 16 -, and 32 -bit signed integers

See Also

DCT
IFFT
Pad
fft
ifft
bitrevorder

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
MATLAB
MATLAB
Signal Processing Toolbox

Filter Realization Wizard

Purpose

Library Filtering / Filter Designs
dsparch4

Description

 and Delay blocks

Construct filter realizations using Digital Filter block or Sum, Gain,

Note Use this block to implement fixed-point or floating-point digital filters using Sum, Gain, and Delay blocks or the Digital Filter block. You can either design a filter by using the block's filter design and analysis parameters, or import the coefficients of a filter you have designed elsewhere.

The following blocks also implement digital filters, but serve slightly different purposes:

- Digital Filter - Use to implement floating-point or fixed-point filters that you have already designed
- Digital Filter Design - Use to design, analyze, and then implement floating-point filters.

The Filter Realization Wizard is a tool for automatically implementing a digital filter. You must specify a filter, its structure, and the data types for the filter's inputs, outputs, and computations. The filter can support double-precision, single-precision, or fixed-point data types.

The Filter Realization Wizard can implement a digital filter in one of two ways. It can use a Digital Filter block, or it can create a subsystem block that implements the specified filter using Sum, Gain, and Delay blocks. If the Filter Realization Wizard creates a Digital Filter block, double-click the block to open the Block Parameters: Filter dialog box. If it creates a subsystem, double-click the subsystem block to see the filter implementation as shown in the figure below.

The subsystem block applies the specified filter to any sample-based input signal, or any frame-based row vector signal, and outputs the result. For more information about filter implementation, see "Specifying the Filter Implementation" on page 2-506.

The parameters of the Filter Realization Wizard are a part of a larger GUI, the Filter Design and Analysis Tool (fdatool), from the Signal Processing Toolbox product. You can use the tools in FDATool to design and analyze your filter, and then use the Filter Realization Wizard parameters to implement the filter in your models.

Sections of This Reference Page

- "Valid Inputs and Corresponding Outputs" on page 2-504
- "Specifying the Filter and Its Data Type Support" on page 2-504
- "Supported Filter Structures" on page 2-506
- "Specifying the Filter Implementation" on page 2-506
- "Corresponding Method for dfilt" on page 2-508
- "Dialog Box" on page 2-509

Filter Realization Wizard

- "References" on page 2-511
- "Supported Data Types" on page 2-511
- "See Also" on page 2-511

Valid Inputs and Corresponding Outputs

When the Filter Realization Wizard implements the specified filter by creating a new subsystem block, the block applies the specified filter to an input signal and outputs the result.

Valid Inputs

The subsystem block accepts inputs that are

- Sample-based vectors and matrices
- Frame-based row vectors (nonrecursive structures only)

Corresponding Outputs

The output of the subsystem block has the same dimensions and frame status as the input.

What Is Considered an Independent Channel

The subsystem block treats each element of a vector or matrix as an independent channel.

Specifying the Filter and Its Data Type Support

To specify a purely double-precision filter, you can either design a filter using the Design Filter panel, or import a filter using the Import Filter panel. (You can import dfilt filter objects as well as vectors of filter coefficients designed using Signal Processing Toolbox functions and Filter Design Toolbox functions.)

You can also specify a fixed-point filter or a single-precision filter. You can specify such filters by using the Set Quantization Parameters panel, which requires the Filter Design Toolbox product.

Filter Realization Wizard

Note Running a model containing implementations of fixed-point filters requires the Simulink Fixed Point product, but you can still edit models containing such filter implementations without it. See the Simulink Fixed Point documentation for more information.

See the following topics to learn how to use the panels to specify your filter:

- For more information on the Design Filter panel, see "FDATool: A Filter Design and Analysis GUI" in the Signal Processing Toolbox documentation.
- For more information on the Import Filter panel, see "Importing a Filter Design" in the Signal Processing Toolbox documentation.
- For more information on the Set Quantization Parameters panel, see "Switching FDATool to Quantization Mode" in the Filter Design Toolbox documentation.

To open a panel, click the appropriate button in the lower-left corner of FDATool.

Filter Realization Wizard

Supported Filter Structures

The Filter Realization Wizard supports the following structures:

- Direct form I
- Direct form I, second-order sections
- Direct form I transposed
- Direct form I transposed, second-order sections
- Direct form II
- Direct form II, second-order sections
- Direct form II transposed
- Direct form II transposed, second-order sections
- Direct form FIR
- Direct form FIR transposed
- Direct form symmetric FIR
- Direct form antisymmetric FIR
- Lattice all-pass
- Lattice AR
- Lattice ARMA
- Lattice MA for maximum phase
- Lattice MA for minimum phase
- Cascade
- Parallel

Specifying the Filter Implementation

You can determine how the Filter Realization Wizard models the specified filter using the Build model using basic elements check box. When you select this check box, the Filter Realization Wizard

Filter Realization Wizard

creates a subsystem block that implements your filter using Sum, Gain, and Delay blocks. When you clear this check box, the Filter Realization Wizard uses a Digital Filter block to implement your filter. The Build model using basic elements check box is only available when your filter can be implemented using a Digital Filter block.

If you have Signal Processing Blockset software, Signal Processing Toolbox software, and Filter Design Toolbox software installed on your system, the Filter Realization Wizard can generate a subsystem that represents either a double-precision or fixed-point filter. You must install the Simulink Fixed Point product to simulate a fixed-point filter. You can still edit the blocks used to implement the filter without installing the Simulink Fixed Point product.

Filter Realization Wizard

Double presision filter implemented with Sum, Gain, and Delay bloks

Fixed-point filter implemented with Sum, Gain, Delay, and Comersion blods

Implementations of Double-Precision and Fixed-Point Filters

Corresponding Method for dfilt

The Signal Processing Toolbox dfilt (digital filter) object in has a method, realizemdl, that allows you to access the capabilities of the Filter Realization Wizard from the command line.

For more information about the realizemdl method, see the following:

- The topic on "Methods" in the dfilt reference page in the Signal Processing Toolbox documentation
- The realizemdl reference page in the Filter Design Toolbox documentation

Filter Realization Wizard

Dialog
Box

> Note The following parameters for the Filter Realization Wizard are in the Realize Model pane of the Filter Design and Analysis Tool (FDATool) GUI. To open different panels of FDATool, click the different buttons at the lower-left corner. For more information about relevant panels, see "Specifying the Filter and Its Data Type Support" on page 2-504.

Filter Realization Wizard

Destination

Specify where the new filter block should be created. This can be in a new model or in the current (most recently selected) model.

Block Name

Enter the name of the new filter block.

Overwrite generated block "Filter" block

When selected, the block overwrites any filter block in the current model with the name specified in the Block Name parameter. This parameter is enabled when the Destination parameter is set to Current.

Build model using basic elements

Select this check box to implement your filter using Sum, Gain, and Delay blocks. Clear this check box to implement your filter using the Digital Filter block. This parameter is only available when your filter can be modeled using the Digital Filter block.

Note that when your filter is implemented using Sum, Gain, and Delay blocks, inputs to the filter must be sample based.

Optimize for zero gains

When selected, the block removes zero-gain paths from the filter structure. For an example, see "Optimizing the Filter Structure".

Optimize for unity gains

When selected, the block substitutes gains equal to 1 with a wire (short circuit). For an example, see "Optimizing the Filter Structure".

Optimize for negative gains

When selected, the block substitutes gains equal to -1 with a wire (short circuit), and changes the corresponding sums to subtractions. For an example, see "Optimizing the Filter Structure".

Filter Realization Wizard

Optimize delay chains

When selected, the block substitutes any delay chains made up of n unit delays with a single delay by n. For an example, see "Optimizing the Filter Structure".

Realize Model

Click to create a subsystem block that implements the specified filter using Sum, Gain, and Delay blocks. To see the filter implementation, double-click the subsystem block. The subsystem block applies the specified filter to any sample-based input signal or frame-based row vector signal, and outputs the result.

Note For more information about relevant parameters in other panels of FDATool, see "Specifying the Filter and Its Data Type Support" on page 2-504.

References	Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.
	Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.
Supported	• Double-precision floating point
Data	- Single-precision floating point — Supported only when you install the
Types	following products: Filter Design Toolbox and Simulink Fixed Point
	- Fixed point (signed and unsigned) — Supported only when you
	install the following products: Filter Design Toolbox, "Simulink
	Fixed Point", and Fixed-Point Toolbox

realizemdl	Filter Design Toolbox
dfilt	Signal Processing Toolbox
filter	Signal Processing Toolbox

- "Filters" - Examples of when and how to use Signal Processing Blockset filtering blocks
- "Choosing Between Filter Design Blocks"

Filter and downsample input signals
Filtering / Multirate Filters
dspmlti4
The FIR Decimation block resamples the discrete-time input at a rate K times slower than the input sample rate, where the integer K is specified by the Decimation factor parameter. This process consists of two steps:

- The block filters the input data using a direct-form FIR filter.
- The block downsamples the filtered data to a lower rate by discarding $K-1$ consecutive samples following every sample retained.

The FIR Decimation block implements the above FIR filtering and downsampling steps together using a polyphase filter structure, which is more efficient than straightforward filter-then-decimate algorithms. See Fliege [1] for more information.

The FIR filter coefficients parameter specifies the numerator coefficients of the FIR filter transfer function $H(z)$.

$$
H(z)=B(z)=b_{1}+b_{2} z^{-1}+\ldots+b_{m} z^{-(m-1)}
$$

The length $-m$ coefficient vector, $[b(1) b(2) \ldots b(m)]$, can be generated by one of the filter design functions in Signal Processing Toolbox software, such as the fir 1 function used in Example 1 below. The filter should be lowpass with normalized cutoff frequency no greater than $1 / K$. All filter states are internally initialized to zero.
The FIR Decimation block supports real and complex floating-point and fixed-point inputs, except for complex unsigned fixed-point inputs. This block supports triggered subsystems when you select Maintain input frame rate for the Framing parameter.

FIR Decimation

Sample-Based Operation

An M-by- N sample-based matrix input is treated as $M^{*} N$ independent channels, and the block decimates each channel over time. The output sample period is K times longer than the input sample period ($T_{s o}=$ $K T_{s i}$), and the input and output sizes are identical.

Frame-Based Operation

An M_{i}-by- N frame-based matrix input is treated as N independent channels, and the block decimates each channel over time. The Framing parameter determines how the block adjusts the rate at the output to accommodate the reduced number of samples. There are two available options:

- Maintain input frame size

The block generates the output at the decimated rate by using a proportionally longer frame period at the output port than at the input port. For decimation by a factor of K, the output frame period is K times longer than the input frame period ($T_{f o}=K T_{f i}$), but the input and output frame sizes are equal.

The following model shows a single-channel input with a frame period of 1 second (Sample time $=1 / 64$ and Samples per frame $=$ 64 in the Signal From Workspace block) being decimated by a factor of 4 to a frame period of 4 seconds. The input and output frame sizes are identical.

FIR Decimation

The block generates the output at the decimated rate by using a proportionally smaller frame size than the input. For decimation by a factor of K, the output frame size is K times smaller than the input frame size $\left(M_{o}=M_{i} / K\right)$, but the input and output frame rates are equal. The input frame size, M_{i}, must be a multiple of the decimation factor, K.

The following model shows a single-channel input of frame size 64 being decimated by a factor of 4 to a frame size of 16 . The block's input and output frame rates are identical.

Latency

The FIR Decimation block has zero-tasking latency for all single-tasking and multitasking cases, except one:

Sample-Based Latency	Frame-Based Latency - Maintain input frame rate	Frame-Based Latency - Maintain input frame size
None	None	One frame $\left(M_{i}\right.$ samples $)$

Zero-tasking latency means that the block propagates the first filtered input sample (received at $t=0$) as the first output sample, followed by filtered input samples $K+1,2 K+1$, and so on.

In cases of one-frame latency, the value of the first M_{i} output rows is defined by the Output buffer initial conditions parameter, where M_{i}

FIR Decimation

is the input frame size. The default value of the Output buffer initial conditions parameter is 0 , but you can enter a matrix containing one value for each channel, or a scalar to be applied to all signal channels. The first filtered input sample (first filtered row of the input matrix) appears in the output as sample $M_{i}+1$, followed by filtered input samples $K+1,2 K+1$, and so on.

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

Fixed-Point Data Types

The following diagram shows the data types used within the FIR Decimation block for fixed-point signals.

You can set the coefficient, product output, accumulator, and output data types in the block dialog as discussed in "Dialog Box" on page $2-519$. This diagram shows that data is stored in the input buffer in the same data type and scaling as the input. Filtered data is stored in the output buffer in the output data type and scaling that you set in the block dialog. Any initial conditions are also stored in the output buffer in the output data type and scaling you set in the block dialog.

The output of the multiplier is in the product output data type when at least one of the inputs to the multiplier is real. When both of the
inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, see "Multiplication Data Types".

Examples

Example 1

Construct the following frame-based model.

Adjust the block parameters as follows:

- Configure the Signal From Workspace block to generate a two-channel signal with frame size of 4 and sample period of 0.25 . This represents an output frame period of $1\left(0.25^{*} 4\right)$. The first channel should contain the positive ramp signal $1,2, \ldots, 100$, and the second channel should contain the negative ramp signal $-1,-2$, ..., -100 .
- Signal $=\left[(1: 100)^{\prime}(-1:-1:-100)^{\prime}\right]$
- Sample time $=0.25$
- Samples per frame $=4$
- Configure the FIR Decimation block to decimate the two-channel input by decreasing the output frame rate by a factor of 2 relative to the input frame rate. Use a third-order filter with normalized cutoff frequency, $f_{n 0}$, of 0.25 . (Note that $f_{n 0}$ satisfies $f_{n 0} \leq 1 / K$.)
- FIR filter coefficients $=$ fir1 $(3,0.25)$
- Downsample factor $=2$

FIR Decimation

- Framing = Maintain input frame size

The filter coefficient vector generated by fir1 $(3,0.25)$ is
$\left[\begin{array}{llll}0.0386 & 0.4614 & 0.4614 & 0.0386\end{array}\right]$
or, equivalently,

$$
H(z)=B(z)=0.0386+0.04614 z^{-1}+0.04614 z^{-2}+0.0386 z^{-3}
$$

- Configure the Probe blocks by clearing the Probe width, Probe complex signal, and Probe signal dimensions check boxes (if desired).

This model is multirate because there are at least two distinct sample rates, as shown by the two Probe blocks. To run this model in the Simulink multitasking mode, make the following settings in the Solver pane of the Configuration Parameters dialog box:

- From the Type list, select Fixed-step.
- From the Solver list, select Discrete (no continuous states).
- From the Tasking mode for periodic sample times list, select MultiTasking.
- Set the Stop time to 30 .

Run the model and look at the output, yout. The first few samples of each channel are shown below.

```
yout =
    0 0
    0 0
    0 0
    0 0
    0.0386 -0.0386
    1.5000 -1.5000
    3.5000 -3.5000
```


FIR Decimation

5.5000	-5.5000
7.5000	-7.5000
9.5000	-9.5000
11.5000	-11.5000

Since this is a frame-based multirate model, the first four $\left(M_{i}\right)$ output rows are zero. The first filtered input matrix row appears in the output as sample 5 (that is, sample $M_{\mathrm{i}}+1$).

Example 2

The doc_polyphasedec model illustrates the underlying polyphase implementations of the FIR Decimation block. Run the model and view the results on the scope. The output of the FIR Decimation block is the same as the output of the Polyphase Decimation Filter block.

Example 3

The doc_mrf_nlp model illustrates the use of the FIR Decimation block in a number of multistage multirate filters.

Dialog Box

Coefficient Source

The FIR Decimation block can operate in two different modes. Select the mode in the Coefficient source group box. If you select

- Dialog parameters, you enter information about the filter such as structure and coefficients in the block mask.
- Multirate filter object (MFILT), you specify the filter using a Filter Design Toolbox mfilt object.

Different items appear on the FIR Decimation block dialog depending on whether you select Dialog parameters or Multirate filter object (MFILT) in the Coefficient source group box. See the following sections for details:

- "Specify Filter Characteristics in Dialog" on page 2-520
- "Specify Multirate Filter Object" on page 2-526

FIR Decimation

Specify Filter Characteristics in Dialog

The Main pane of the FIR Decimation block dialog appears as follows when Dialog parameters is selected in the Coefficient source group box.

```
Function Block Parameters: FIR Decimation

\section*{FIR Decimation}
```

Apply an FIR filter to the input signal, then downsample by an integer value factor. You can define the filter using mask dialog parameters, or by a multirate FIR decimation filter object (mfill.firdecim or mfilt. firtdecim) from the Filter Design Toolbox.
The filter is implemented using an efficient polyphase FIR decimation structure. In some cases, this block has tasking latency. In those cases, an initial output can be specified.

```


\section*{FIR filter coefficients}

Specify the lowpass FIR filter coefficients, in descending powers of \(z\).

\section*{Decimation factor}

Specify the integer factor, \(K\), by which to decrease the sample rate of the input sequence.

\section*{Filter Structure}

Choose whether to implement a Direct form or Direct form transposed filter.

\section*{Framing}

For frame-based operation, specify the method by which to implement the decimation; reduce the output frame rate, or reduce the output frame size. This parameter cannot be set to Maintain input frame rate for sample-based signals.

\section*{Output buffer initial conditions}

For the case of one-frame latency, this parameter specifies the output at the output port until the first filtered input sample is available. The default value of this parameter is 0 , but you can enter a matrix containing one value for each channel, or a scalar to be applied to all signal channels.

\section*{View filter response}

This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox product and displays the filter response of the filter defined in the block. For more information on FVTool, see the Signal Processing Toolbox documentation.

> Note This button is only available when the Filter Design Toolbox product is installed. If you specify a filter in the Multirate filter variable parameter, you must apply the filter by clicking the Apply button before using the View filter response button.

\section*{FIR Decimation}

The Fixed point pane of the FIR Decimation block dialog appears as follows when Dialog parameters is specified in the Coefficient source group box.


\section*{Rounding mode}

Select the rounding mode for fixed-point operations. The filter coefficients do not obey this parameter; they always round to Nearest.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations. The filter coefficients do not obey this parameter; they are always saturated.

\section*{Coefficients}

Choose how you specify the word length and the fraction length of the filter coefficients:
- When you select Same word length as input, the word length of the filter coefficients match that of the input to the block. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Specify word length, you can enter the word length of the coefficients, in bits. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Binary point scaling, you can enter the word length and the fraction length of the coefficients, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the coefficients. This block requires power-of-two slope and a bias of zero.

The filter coefficients do not obey the Rounding mode and the Overflow mode parameters; they are always saturated and rounded to Nearest.

\section*{Product output}

Use this parameter to specify how you would like to designate the product output word and fraction lengths. See "Fixed-Point

\section*{FIR Decimation}

Data Types" on page 2-516 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block:
- When you select Inherit via internal rule, the product output word length and fraction length are calculated automatically. For information about how the product output word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

\section*{Accumulator}


As depicted in this graphic, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as each element of the input is added to

\section*{FIR Decimation}
it. Use this parameter to specify how you would like to designate this accumulator word and fraction lengths.

You also use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the block. See "Multiplication Data Types" for more information.
- When you select Inherit via internal rule, the accumulator word length and fraction length are calculated automatically. For information about how the accumulator word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".
- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

\section*{Output}

Choose how you specify the output word length and fraction length:
- When you select Same as accumulator, these characteristics match those of the accumulator.

A special case occurs when Inherit via internal rule is specified for Accumulator, and block inputs and coefficients are complex. In that case, the output word length is one less than the accumulator word length.
- When you select Same as product output, these characteristics match those of the product output.

\section*{FIR Decimation}
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

\section*{Lock scaling against changes by the autoscaling tool}

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

\section*{Specify Multirate Filter Object}

The Main pane of the FIR Decimation block dialog appears as follows when Multirate filter object (MFILT) is specified in the Coefficient source group box.

FIR Decimation
Apply an FIR filter to the input signal, then downsample by an integer value factor. You can define the filter using mask dialog parameters, or by a multirate FIR decimation filter object (mfilt.firdecim or mfilt. firtdecim) from the Filter Design Toolbox.

The filter is implemented using an efficient polyphase FIR decimation structure. In some cases, this block has tasking latency. In those cases, an initial output can be specified.
-Coefficient source
\(C\) Dialog parameters
(- Multirate filter object (MFILT)

\section*{\begin{tabular}{l|l} 
Main & Fixed-point
\end{tabular}}

Parameters
Multirate filter variable: Hm_firdecim
Framing: Maintain input frame size
View filter response


\section*{Multirate filter variable}

Specify the multirate filter object (mfilt) that you would like the block to implement. You can do this in one of three ways:

\section*{FIR Decimation}
- You can fully specify the mfilt object in the block mask.
- You can enter the variable name of a mfilt object that is defined in any workspace.
- You can enter a variable name for a mfilt object that is not yet defined, as shown in the default value.

For more information on creating mfilt objects, see the mfilt function reference page in the Filter Design Toolbox documentation.

\section*{Framing}

For frame-based operation, specify the method by which to implement the decimation; reduce the output frame rate, or reduce the output frame size. This parameter cannot be set to Maintain input frame rate for sample-based signals.

\section*{View filter response}

This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox product and displays the filter response of the mfilt object specified in the Multirate filter variable parameter. For more information on FVTool, see the Signal Processing Toolbox documentation.

Note This button is only available when the Filter Design Toolbox product is installed. If you specify a filter in the Multirate filter variable parameter, you must apply the filter by clicking the Apply button before using the View filter response button.

The Fixed-point pane of the FIR Decimation block dialog appears as follows when Multirate filter object (MFILT) is specified in the Coefficient source group box.

FIR Decimation
Apply an FIR filter to the input signal, then downsample by an integer value factor. You can define the filter using mask dialog parameters, or by a multirate FIR decimation filter object (mfilt.firdecim or mfilt. firtdecim) from the Filter Design Toolbox.

The filter is implemented using an efficient polyphase FIR decimation structure. In some cases, this block has tasking latency. In those cases, an initial output can be specified.
- Coefficient source
\(C\) Dialog parameters
© Multirate filter object (MFILT)

\section*{\begin{tabular}{l|l} 
Main & Fixed-point
\end{tabular}}

Settings on this pane only apply when block inputs are fixed-point signals.
-Fixed-point operational parameters
Rounding mode: Floor Overflow mode: Wrap

Fixed-point data types

\section*{Mode}

Coefficients Same word length as input
Product output Same as input Accumulator Same as product output Output Same as accumulator


The fixed-point settings of the filter object specified on the Main pane are displayed on the Fixed-point pane. You cannot change these settings directly on the block mask. To change the fixed-point settings you must edit the filter object directly.

\section*{FIR Decimation}

For more information on multirate filter objects, see the mfilt function reference page in the Filter Design Toolbox documentation.

\section*{References}
[1] Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets. West Sussex, England: John Wiley \& Sons, 1994.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point \\
& • 8-, 16-, and 32 -bit signed integers \\
& • 8-, 16-, and 32-bit unsigned integers \\
\hline Output & • Double-precision floating point \\
& - Single-precision floating point \\
& • Fixed point \\
& • 8-, 16-, and 32 -bit signed integers \\
& • 8-, 16-, and 32 -bit unsigned integers \\
\hline
\end{tabular}
See Also \begin{tabular}{lll} 
Downsample & Signal Processing Blockset \\
FIR Interpolation & Signal Processing Blockset \\
FIR Rate Conversion & Signal Processing Blockset \\
decimate & Signal Processing Toolbox \\
fir1 & Signal Processing Toolbox \\
fir2 & Signal Processing Toolbox \\
& firls & Signal Processing Toolbox
\end{tabular}

\section*{FIR Interpolation}

\section*{Purpose}

Upsample and filter input signals

\section*{Library}

Description


Filtering / Multirate Filters
dspmlti4 of two steps:

The FIR Interpolation block resamples the discrete-time input at a rate \(L\) times faster than the input sample rate, where the integer \(L\) is specified by the Interpolation factor parameter. This process consists
- The block upsamples the input to a higher rate by inserting \(L\)-1 zeros between samples.
- The block filters the upsampled data with a direct-form FIR filter.

The FIR Interpolation block implements the above upsampling and FIR filtering steps together using a polyphase filter structure, which is more efficient than straightforward upsample-then-filter algorithms. See N.J. Fliege, Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets for more information.

The FIR filter coefficients parameter specifies the numerator coefficients of the FIR filter transfer function \(H(z)\).
\[
H(z)=B(z)=b_{1}+b_{2} z^{-1}+\ldots+b_{m} z^{-(m-1)}
\]

The coefficient vector, \([\mathrm{b}(1) \mathrm{b}(2) \ldots \mathrm{b}(\mathrm{m})]\), can be generated by one of the Signal Processing Toolbox filter design functions (such as fir1), and should have a length greater than the interpolation factor ( \(m>\mathrm{L}\) ). The filter should be lowpass with normalized cutoff frequency no greater than \(1 / L\). All filter states are internally initialized to zero.
The FIR Interpolation block supports real and complex floating-point and fixed-point inputs except for complex unsigned fixed-point inputs. This block supports triggered subsystems when you select Maintain input frame rate for the Framing parameter.

\section*{FIR Interpolation}

\section*{Sample-Based Operation}

An \(M\)-by- \(N\) sample-based matrix input is treated as \(M^{*} N\) independent channels, and the block interpolates each channel over time. The output sample period is \(L\) times shorter than the input sample period ( \(T_{s o}=\) \(\left.T_{s i} / L\right)\), and the input and output sizes are identical.

\section*{Frame-Based Operation}

An \(M_{i}\)-by- \(N\) frame-based matrix input is treated as \(N\) independent channels, and the block interpolates each channel over time. The Framing parameter determines how the block adjusts the rate at the output to accommodate the added samples. There are two available options:
- Maintain input frame size

The block generates the output at the interpolated rate by using a proportionally shorter frame period at the output port than at the input port. For interpolation by a factor of \(L\), the output frame period is \(L\) times shorter than the input frame period \(\left(T_{f o}=T_{f i} / L\right)\), but the input and output frame sizes are equal.

The example below shows a single-channel input with a frame period of 1 second (Sample time \(=1 / 64\) and Samples per frame \(=64\) in the Signal From Workspace block) being interpolated by a factor of 4 to a frame period of 0.25 second. The input and output frame sizes are identical.


\section*{FIR Interpolation}

The block generates the output at the interpolated rate by using a proportionally larger frame size than the input. For interpolation by a factor of \(L\), the output frame size is \(L\) times larger than the input frame size \(\left(M_{o}=M_{i}{ }^{*} L\right)\), but the input and output frame rates are equal.

The example below shows a single-channel input of frame size 16 being interpolated by a factor of 4 to a frame size of 64 . The block's input and output frame rates are identical.


\section*{Zero Latency}

The FIR Interpolation block has zero-tasking latency for all single-rate operations. The block is single rate for the particular combinations of sampling mode and parameter settings shown in the table below.
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Sampling \\
Mode
\end{tabular} & Parameter Settings \\
\hline Sample based & Interpolation factor parameter, \(L\), is 1. \\
\hline Frame based & \begin{tabular}{l} 
Interpolation factor parameter, \(L\), is 1, or \\
Framing parameter is Maintain input frame \\
rate.
\end{tabular} \\
\hline
\end{tabular}

Note that in sample-based mode, single-rate operation occurs only in the trivial case of factor-of-1 interpolation.
The block also has zero latency for sample-based multirate operations in the Simulink single-tasking mode. Zero-tasking latency means that

\section*{FIR Interpolation}
the block propagates the first filtered input (received at \(t=0\) ) as the first input sample, followed by \(L\) - 1 interpolated values, the second filtered input sample, and so on.

\section*{Nonzero Latency}

The FIR Interpolation block is multirate for all settings other than those in the previous table. The amount of latency for multirate operation depends on the Simulink tasking mode and the block's sampling mode, as shown in the following table.
\begin{tabular}{l|l|l}
\hline Multirate... & \begin{tabular}{l} 
Sample-Based \\
Latency
\end{tabular} & \begin{tabular}{l} 
Frame-Based \\
Latency
\end{tabular} \\
\hline Single-tasking & None & None \\
\hline Multitasking & L samples & \begin{tabular}{l}
\(L\) frames \(\left(M_{i}\right.\) samples \\
per frame \()\)
\end{tabular} \\
\hline
\end{tabular}

When the block exhibits latency, the default initial condition is zero. Alternatively, you can use the Output buffer initial conditions parameter to specify a matrix of initial conditions containing one value for each channel, or a scalar to be applied as the initial condition for all signal channels. The Output buffer initial conditions parameter is divided by the Interpolation factor and output at the output port until the first filtered input sample is available.

In sample-based cases, the scaled initial conditions appear at the start of each channel, followed immediately by the first filtered input sample, \(L-1\) interpolated values, and so on.

In frame-based cases, with the default initial condition, the first \(M_{i} L\) output rows contain zeros, where \(M_{i}\) is the input frame size. The first filtered input sample (first filtered row of the input matrix) appears in the output as sample \(M_{i} L+1\), followed by \(L-1\) interpolated values, the second filtered input sample, and so on. See the following example for an illustration of this case.

\section*{FIR Interpolation}

> Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

\section*{Fixed-Point Data Types}

The following diagram shows the data types used within the FIR Interpolation block for fixed-point signals.


You can set the coefficient, product output, accumulator, and output data types in the block dialog as discussed in "Dialog Box" on page \(2-538\). The diagram shows that input data is stored in the input buffer in the same data type and scaling as the input. Filtered data is stored in the output buffer in the output data type and scaling that you set in the block dialog. Any initial conditions are also stored in the output buffer in the output data type and scaling you set in the block dialog.

The output of the multiplier is in the product output data type when at least one of the inputs to the multiplier is real. When both of the inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, see "Multiplication Data Types".

\section*{Examples Example 1}

Construct the frame-based model shown below.

\section*{FIR Interpolation}


Adjust the block parameters as follows:
- Configure the Signal From Workspace block to generate a two-channel signal with frame size of 4 and sample period of 0.25 . This represents an output frame period of \(1\left(0.25^{*} 4\right)\). The first channel should contain the positive ramp signal \(1,2, \ldots, 100\), and the second channel should contain the negative ramp signal \(-1,-2\), ..., -100.
- Signal \(=\left[(1: 100)^{\prime}(-1:-1:-100)^{\prime}\right]\)
- Sample time \(=0.25\)
- Samples per frame \(=4\)
- Configure the FIR Interpolation block to interpolate the two-channel input by increasing the output frame rate by a factor of 2 relative to the input frame rate. Use a third-order filter ( \(m=3\) ) with normalized cutoff frequency, \(f_{n 0}\), of 0.25 . (Note that \(f_{n 0}\) and \(m\) satisfy \(f_{n 0} \leq 1 / L\) and \(m>L\).)
- FIR filter coefficients \(=\) fir1 \((3,0.25)\)
- Interpolation factor \(=2\)
- Framing = Maintain input frame size

The filter coefficient vector generated by fir1 \((3,0.25)\) is
\(\left[\begin{array}{llll}0.0386 & 0.4614 & 0.4614 & 0.0386\end{array}\right]\)
or, equivalently,
\[
H(z)=B(z)=0.0386+0.04614 z^{-1}+0.04614 z^{-2}+0.0386 z^{-3}
\]
- Configure the Probe blocks by clearing the Probe width, Probe complex signal, and Probe signal dimensions check boxes (if desired).

This model is multirate because there are at least two distinct sample rates, as shown by the two Probe blocks. To run this model in the Simulink multitasking mode, open the Configuration Parameters dialog box. In the Select pane, click Solver. From the Type list, select Fixed-step, and from the Solver list, select Discrete (no continuous states). From the Tasking mode for periodic sample times list, select MultiTasking. Also set the Stop time to 30 .
Run the model and look at the output, yout. The first few samples of each channel are shown below.
\begin{tabular}{rr} 
dsp_examples_yout \(=\) \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0.0386 & -0.0386 \\
0.4614 & -0.4614 \\
0.5386 & -0.5386 \\
0.9614 & -0.9614 \\
1.0386 & -1.0386
\end{tabular}

Since we ran this frame-based multirate model in multitasking mode, the first eight \(\left(M_{i} L\right)\) output rows are zero. The first filtered input matrix row appears in the output as sample 9 (that is, sample \(M_{i} L+1\) ). Every other row is an interpolated value.

\section*{FIR Interpolation}

\section*{Example 2}

The doc_polyphaseinterp model illustrates the underlying polyphase implementations of the FIR Interpolation block. Run the model and view the results on the scope. The output of the FIR Interpolation block is the same as the output of the Polyphase Interpolation Filter block.

\section*{Example 3}

The doc_mrf_nlp model illustrates the use of the FIR Interpolation block in a number of multistage multirate filters.

\section*{Dialog}

Box

\section*{Coefficient Source}

The FIR Interpolation block can operate in two different modes. Select the mode in the Coefficient source group box. If you select
- Dialog parameters, you enter information about the filter such as structure and coefficients in the block mask.
- Multirate filter object (MFILT), you specify the filter using a Filter Design Toolbox mfilt object.

Different items appear on the FIR Interpolation block dialog depending on whether you select Dialog parameters or Multirate filter object (MFILT) in the Coefficient source group box. See the following sections for details:
- "Specify Filter Characteristics in Dialog" on page 2-538
- "Specify Multirate Filter Object" on page 2-545

\section*{Specify Filter Characteristics in Dialog}

The Main pane of the FIR Interpolation block dialog appears as follows when Dialog parameters is selected in the Coefficient source group box.

\section*{FIR Interpolation}

Function Block Parameters: FIR Interpolation
FIR Interpolation
Upsample input signal by an integer value factor, then apply an FIR filter. You can define the filter using mask dialog parameters, or by a multirate FIR interpolation filter object (mfill.firinterp) from the Filter Design Toolbox.

The filter is implemented using a polyphase interpolation structure. The filter coefficients are scaled by the interpolation factor. There will be latency when this block is run in multirate, multitasking mode. For this case, an initial condition can be specified for the output buffer.

Coefficient source
c Dialog parameters
C Multirate filter object (MFILT)

\section*{\begin{tabular}{l|l} 
Main & Fixed-point
\end{tabular}}

Parameters
\begin{tabular}{l} 
FIR filter coefficient: \(\sqrt[\text { fir1 } 1(15,1 / 4)]{ }\) \\
Interpolation factor: 3 \\
Framing: \begin{tabular}{l} 
Maintain input frame size \\
Output buffer initial conditions: 0 \\
View filter response ... \\
\hline
\end{tabular} \\
\hline
\end{tabular}


\section*{FIR filter coefficients}

Specify the FIR filter coefficients, in descending powers of \(z\).

\section*{FIR Interpolation}

\section*{Interpolation factor}

Specify the integer factor, \(L\), by which to increase the sample rate of the input sequence.

\section*{Framing}

For frame-based operation, specify the method by which to implement the interpolation: increase the output frame rate, or increase the output frame size. This parameter cannot be set to Maintain input frame rate for sample-based signals.

\section*{Output buffer initial conditions}

In cases of nonzero latency, the block divides this parameter by the Interpolation factor and outputs the results at the output port until the first filtered input sample is available. The default initial condition value is 0 , but you can enter a matrix containing one value for each channel, or a scalar to be applied to all signal channels.

Output buffer initial conditions are stored in the output data type and scaling.

\section*{View filter response}

This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox product and displays the filter response of the filter defined in the block. For more information on FVTool, see the Signal Processing Toolbox documentation.

Note This button is only available when the Filter Design Toolbox product is installed. If you specify a filter in the Multirate filter variable parameter, you must apply the filter by clicking the Apply button before using the View filter response button.

\section*{FIR Interpolation}

The Fixed point pane of the FIR Interpolation block dialog appears as follows when Dialog parameters is specified in the Coefficient source group box.


\section*{FIR Interpolation}

\section*{Rounding mode}

Select the rounding mode for fixed-point operations. The filter coefficients do not obey this parameter; they always round to Nearest.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations. The filter coefficients do not obey this parameter; they are always saturated.

\section*{Coefficients}

Choose how you specify the word length and fraction length of the filter coefficients:
- When you select Same word length as input, the word length of the filter coefficients match that of the input to the block. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Specify word length, you can enter the word length of the coefficients, in bits. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Binary point scaling, you can enter the word length and the fraction length of the coefficients, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the coefficients. This block requires power-of-two slope and a bias of zero.

The filter coefficients do not obey the Rounding mode and the Overflow mode parameters; they are always saturated and rounded to Nearest.

\section*{Product output}

Use this parameter to specify how you would like to designate the product output word and fraction lengths. See "Fixed-Point

\section*{FIR Interpolation}

Data Types" on page 2-535 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block:
- When you select Inherit via internal rule, the product output word length and fraction length are calculated automatically. For information about how the product output word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

\section*{Accumulator}


As depicted above, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as each element of the input is added to

\section*{FIR Interpolation}
it. Use this parameter to specify how you would like to designate this accumulator word and fraction lengths.

You also use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the block. See "Multiplication Data Types" for more information:
- When you select Inherit via internal rule, the accumulator word length and fraction length are calculated automatically. For information about how the accumulator word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".
- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

\section*{Output}

Choose how you specify the output word length and fraction length:
- When you select Same as accumulator, these characteristics match those of the accumulator.

A special case occurs when Inherit via internal rule is specified for Accumulator, and block inputs and coefficients are complex. In that case, the output word length be one less than the accumulator word length.
- When you select Same as product output, these characteristics match those of the product output.

\section*{FIR Interpolation}
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

\section*{Lock scaling against changes by the autoscaling tool}

Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

\section*{Specify Multirate Filter Object}

The Main pane of the FIR Interpolation block dialog appears as follows when Multirate filter object (MFILT) is specified in the Coefficient source group box.

\section*{FIR Interpolation}


\section*{Multirate filter variable}

Specify the multirate filter object (mfilt) that you would like the block to implement. You can do this in one of three ways:

\section*{FIR Interpolation}
- You can fully specify the mfilt object in the block mask.
- You can enter the variable name of a mfilt object that is defined in any workspace.
- You can enter a variable name for a mfilt object that is not yet defined, as shown in the default value.
For more information on creating mfilt objects, see the mfilt function reference page in the Filter Design Toolbox documentation.

\section*{Framing}

For frame-based operation, specify the method by which to implement the interpolation: increase the output frame rate, or increase the output frame size. This parameter cannot be set to Maintain input frame rate for sample-based signals.

\section*{View filter response}

This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox product and displays the filter response of the mfilt object specified in the Multirate filter variable parameter. For more information on FVTool, see the Signal Processing Toolbox documentation.

Note This button is only available when the Filter Design Toolbox product is installed. If you specify a filter in the Multirate filter variable parameter, you must apply the filter by clicking the Apply button before using the View filter response button.

The Fixed-point pane of the FIR Interpolation block dialog appears as follows when Multirate filter object (MFILT) is specified in the Coefficient source group box.

\section*{FIR Interpolation}


The fixed-point settings of the filter object specified on the Main pane are displayed on the Fixed-point pane. You cannot change these settings directly on the block mask. To change the fixed-point settings you must edit the filter object directly.

\section*{FIR Interpolation}

For more information on multirate filter objects, see the mfilt function reference page in the Filter Design Toolbox documentation.

\section*{References}

Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets. West Sussex, England: John Wiley \& Sons, 1994.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& - Single-precision floating point \\
& • Fixed point \\
& • 8-, 16-, and 32-bit signed integers \\
& • 8-, 16-, and 32-bit unsigned integers \\
\hline Output & • Double-precision floating point \\
& - Single-precision floating point \\
& - Fixed point \\
& • 8-, 16-, and 32-bit signed integers \\
& • 8-, 16-, and 32-bit unsigned integers \\
\hline
\end{tabular}

\section*{See Also}

FIR Decimation
FIR Rate Conversion
Upsample
fir1
fir2
firls
interp

\author{
Signal Processing Blockset \\ Signal Processing Blockset \\ Signal Processing Blockset \\ Signal Processing Toolbox \\ Signal Processing Toolbox \\ Signal Processing Toolbox \\ Signal Processing Toolbox
}

\section*{FIR Rate Conversion}
\begin{tabular}{ll} 
Purpose & Upsample, filter, and downsample input signals \\
Library & Filtering / Multirate Filters \\
& dspmlti4
\end{tabular}

\section*{Description}
\(x[2 n / 3]\)
(Frm)

The FIR Rate Conversion block resamples the discrete-time input to a period \(K / L\) times the input sample period, where the integer \(K\) is specified by the Decimation factor parameter and the integer \(L\) is specified by the Interpolation factor parameter. The resampling process consists of the following steps:

1 The block upsamples the input to a higher rate by inserting \(L\)-1 zeros between input samples.

2 The upsampled data is passed through a direct-form II transpose FIR filter.

3 The block downsamples the filtered data to a lower rate by discarding \(K-1\) consecutive samples following each sample retained.
\(K\) and \(L\) must be relatively prime integers; that is, the ratio \(K / L\) cannot be reducible to a ratio of smaller integers. The FIR Rate Conversion block implements the above three steps together using a polyphase filter structure, which is more efficient than straightforward upsample-filter-decimate algorithms. See Orfanidis [1] for more information.

The FIR filter coefficients parameter specifies the numerator coefficients of the FIR filter transfer function \(H(z)\).
\[
H(z)=B(z)=b_{1}+b_{2} z^{-1}+\ldots+b_{m} z^{-(m-1)}
\]

The coefficient vector, \([b(1) b(2) \ldots \quad b(m)]\), can be generated by one of the Signal Processing Toolbox filter design functions (such as fir1), and should have a length greater than the interpolation factor ( \(m>L\) ). The filter should be lowpass with normalized cutoff frequency

\section*{FIR Rate Conversion}
no greater than \(\min (1 / L, 1 / K)\). All filter states are internally initialized to zero.

The FIR Rate Conversion block supports real and complex floating-point and fixed-point inputs except for complex unsigned fixed-point inputs.

\section*{Frame-Based Operation}

This block accepts only frame-based inputs. An \(M_{i}\)-by- \(N\) frame-based matrix input is treated as \(N\) independent channels, and the block resamples each channel independently over time.

The Interpolation factor, \(L\), and Decimation factor, \(K\), must satisfy the relation
\[
\frac{K}{L}=\frac{M_{i}}{M_{o}}
\]
for an integer output frame size \(M_{o}\). The simplest way to satisfy this requirement is to let the Decimation factor equal the input frame size, \(M_{i}\). The output frame size, \(M_{o}\), is then equal to the Interpolation factor. This change in the frame size, from \(M_{i}\) to \(M_{o}\), produces the desired rate conversion while leaving the output frame period the same as the input \(\left(T_{f o}=T_{f i}\right)\).

\section*{FIR Rate Conversion}


\section*{Latency}

The FIR Rate Conversion block has no tasking latency. The block propagates the first filtered input (received at \(t=0\) ) as the first output sample.

\section*{Fixed-Point Data Types}

The following diagram shows the data types used within the FIR Rate Conversion block for fixed-point signals.


\section*{FIR Rate Conversion}

You can set the coefficient, product output, accumulator, and output data types in the block dialog as discussed in "Dialog Box" on page \(2-554\). The diagram shows that input data is stored in the input buffer in the same data type and scaling as the input. Filtered data is stored in the output buffer in the output data type and scaling that you set in the block dialog. Any initial conditions are also stored in the output buffer in the output data type and scaling you set in the block dialog.

The output of the multiplier is in the product output data type when at least one of the inputs to the multiplier is real. When both of the inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, see "Multiplication Data Types".

\section*{Examples}

\section*{Diagnostics}

The doc_audio_src model provides a simple illustration of one way to convert a speech signal from one sample rate to another. In this model, the data is first sampled at \(22,050 \mathrm{~Hz}\) and then resampled at 8000 Hz . If you listen to the output, you can hear that the high frequency content has been removed from the signal, although the speech sounds basically the same.

An error is generated when the relation between \(K\) and \(L\) shown above is not satisfied.
```

(Input port width)/(Output port width) must equal the
(Decimation factor)/(Interpolation factor).

```

A warning is generated when \(L\) and \(K\) are not relatively prime; that is, when the ratio \(L / K\) can be reduced to a ratio of smaller integers.
```

Warning: Integer conversion factors are not relatively prime
in block 'modelname/FIR Rate Conversion
(Frame)'. Converting ratio L/M to l/m.

```

The block scales the ratio to be relatively prime and continues the simulation.

\section*{FIR Rate Conversion}

\section*{Dialog}

Box

\section*{Coefficient Source}

The FIR Rate Conversion block can operate in two different modes. Select the mode in the Coefficient source group box. If you select
- Dialog parameters, you enter information about the filter such as structure and coefficients in the block mask.
- Multirate filter object (MFILT), you specify the filter using a Filter Design Toolbox mfilt object.

Different items appear on the FIR Rate Conversion block dialog depending on whether you select Dialog parameters or Multirate filter object (MFILT) in the Coefficient source group box. See the following sections for details:
- "Specify Filter Characteristics in Dialog" on page 2-554
- "Specify Multirate Filter Object" on page 2-561

\section*{Specify Filter Characteristics in Dialog}

The Main pane of the FIR Rate Conversion block dialog appears as follows when Dialog parameters is selected in the Coefficient source group box.

\section*{FIR Rate Conversion}

FIR Rate Conversion
Upsample input signal by an integer factor, apply an FIR filter and downsample by another integer factor. You can define the filter using mask dialog parameters, or by a multirate FIR sample rate conversion filter object (mfilt.firsc) from the Filter Design Toolbox.

The filter is implemented using an efficient polyphase structure. Only frame-based processing is supported. The filter coefficients are scaled by the upsample factor. For some combinations of upsample and downsample factors there will be a delay in the output due to causality in the polyphase network.

\section*{- Coefficient source}
c Dialog parameters
C Multirate filter object (MFILT)

\section*{Main \\ Fixed-point}

Parameters
Interpolation factor: 3
FIR filter coefficients: \(\operatorname{Firpm}\left(70,[0.28 .321]\left[\begin{array}{lll}1 & 1 & 0\end{array} 0\right]\right)\)
Decimation factor: 2
View filter response


\section*{FIR Rate Conversion}

\section*{Interpolation factor}

Specify the integer factor, \(L\), by which to upsample the signal before filtering.

FIR filter coefficients
Specify the FIR filter coefficients in descending powers of \(z\).

\section*{Decimation factor}

Specify the integer factor, \(K\), by which to downsample the signal after filtering.

\section*{View filter response}

This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox product and displays the filter response of the filter defined in the block. For more information on FVTool, see the Signal Processing Toolbox documentation.

Note This button is only available when the Filter Design Toolbox product is installed. If you specify a filter in the Multirate filter variable parameter, you must apply the filter by clicking the Apply button before using the View filter response button.

The Fixed point pane of the FIR Rate Conversion block dialog appears as follows when Dialog parameters is specified in the Coefficient source group box.

\section*{FIR Rate Conversion}

\section*{FIR Rate Conversion}

Upsample input signal by an integer factor, apply an FIR filter and downsample by another integer factor. You can define the filter using mask dialog parameters, or by a multirate FIR sample rate conversion filter object (mfilt.firsc) from the Filter Design Toolbox.

The filter is implemented using an efficient polyphase structure. Only frame-based processing is supported. The filter coefficients are scaled by the upsample factor. For some combinations of upsample and downsample factors there will be a delay in the output due to causality in the polyphase network.

\section*{- Coefficient source}
c Dialog parameters
C Multirate filter object (MFILT)

\section*{\begin{tabular}{l|l} 
Main & Fixed-point
\end{tabular}}

Settings on this pane only apply when block inputs are fixed-point signals.
-Fixed-point operational parameters

Fixed-point data types
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{Mode} \\
\hline Coefficients & Same word length as input & \(\checkmark\) \\
\hline Product output & Inherit via internal rule & \(\checkmark\) \\
\hline Accumulator & Inherit via internal rule & \(\checkmark\) \\
\hline Output & Same as accumulator & \(\checkmark\) \\
\hline
\end{tabular}

Г Lock scaling against changes by the autoscaling tool


\section*{FIR Rate Conversion}

\section*{Rounding mode}

Select the rounding mode for fixed-point operations. The filter coefficients do not obey this parameter; they always round to Nearest.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations. The filter coefficients do not obey this parameter; they are always saturated.

\section*{Coefficients}

Choose how you specify the word length and fraction length of the filter coefficients.
- When you select Same word length as input, the word length of the filter coefficients match that of the input to the block. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Specify word length, you can enter the word length of the coefficients, in bits. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Binary point scaling, you can enter the word length and the fraction length of the coefficients, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the coefficients. This block requires power-of-two slope and a bias of zero.
- The coefficients do not obey the Rounding mode and the Overflow mode parameters; they are always saturated and rounded to Nearest.

\section*{Product output}

Use this parameter to specify how you would like to designate the product output word and fraction lengths. See "Fixed-Point Data Types" on page 2-516 and "Multiplication Data Types" for

\section*{FIR Rate Conversion}
illustrations depicting the use of the product output data type in this block.
- When you select Inherit via internal rule, the product output word length and fraction length are calculated automatically. For information about how the product output word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

\section*{Accumulator}


As depicted above, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as each element of the input is added to it. Use this parameter to specify how you would like to designate this accumulator word and fraction lengths.

\section*{FIR Rate Conversion}

You also use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the block. See "Multiplication Data Types" for more information.
- When you select Inherit via internal rule, the accumulator word length and fraction length are calculated automatically. For information about how the accumulator word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".
- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

\section*{Output}

Choose how you specify the output word length and fraction length:
- When you select Same as accumulator, these characteristics match those of the accumulator.

A special case occurs when Inherit via internal rule is specified for Accumulator, and block inputs and coefficients are complex. In that case, the output word length is one less than the accumulator word length.
- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as input, these characteristics match those of the input to the block.

\section*{FIR Rate Conversion}
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

\section*{Lock scaling against changes by the autoscaling tool}

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

\section*{Specify Multirate Filter Object}

The Main pane of the FIR Rate Conversion block dialog appears as follows when Multirate filter object (MFILT) is specified in the Coefficient source group box.

\section*{FIR Rate Conversion}
\[
\begin{aligned}
& \text { Function Block Parameters: FIR Rate Conversion } \\
& \text { FIR Rate Conversion - } \\
& \text { Upsample input signal by an integer factor, apply an FIR filter and downsample by } \\
& \text { another integer factor. You can define the filter using mask dialog parameters, or by a } \\
& \text { multirate FIR sample rate conversion filter object (mfill. firsic) from the Filter Design } \\
& \text { Toolbox. } \\
& \text { The filter is implemented using an efficient polyphase structure. Only frame-based } \\
& \text { processing is supported. The filter coefficients are scaled by the upsample factor. For } \\
& \text { some combinations of upsample and downsample factors there will be a delay in the } \\
& \text { output due to causality in the polyphase network. }
\end{aligned}
\]
-Coefficient source
\(\bigcirc\) Dialog parameters
(- Multirate filter object (MFILT)

\section*{Main \\ Fixed-point}

Parameters
Multirate filter variable: Hm_firsic
View filter response


\section*{FIR Rate Conversion}

\section*{Multirate filter variable}

Specify the multirate filter object (mfilt) that you would like the block to implement. You can do this in one of three ways:
- You can fully specify the mfilt object in the block mask.
- You can enter the variable name of a mfilt object that is defined in any workspace.
- You can enter a variable name for a mfilt object that is not yet defined, as shown in the default value.
For more information on creating mfilt objects, see the mfilt function reference page in the Filter Design Toolbox documentation.

\section*{View filter response}

This button opens the Filter Visualization Tool (fvtool) from the Signal Processing Toolbox product and displays the filter response of the mfilt object specified in the Multirate filter variable parameter. For more information on FVTool, see the Signal Processing Toolbox documentation.

> Note This button is only available when the Filter Design Toolbox product is installed. If you specify a filter in the Multirate filter variable parameter, you must apply the filter by clicking the Apply button before using the View filter response button.

The Fixed-point pane of the FIR Rate Conversion block dialog appears as follows when Multirate filter object (MFILT) is specified in the Coefficient source group box.

\section*{FIR Rate Conversion}
```

Gunction Block Parameters: FIR Rate Conversion
FIR Rate Conversion
Upsample input signal by an integer factor, apply an FIR filter and downsample by another integer factor. You can define the filter using mask dialog parameters, or by a multirate FIR sample rate conversion filter object (mfilt.firsic) from the Filter Design Toolbox.
The filter is implemented using an efficient polyphase structure. Only frame-based processing is supported. The filter coefficients are scaled by the upsample factor. For some combinations of upsample and downsample factors there will be a delay in the output due to causality in the polyphase network.

```
```

Coefficient source
\bigcirc Dialog parameters

- Multirate filter object (MFILT)

```



The fixed-point settings of the filter object specified on the Main pane are displayed on the Fixed-point pane. You cannot change these

\section*{FIR Rate Conversion}

\section*{References}

Supported Data Types
settings directly on the block mask. To change the fixed-point settings you must edit the filter object directly.

For more information on multirate filter objects, see the mfilt function reference page in the Filter Design Toolbox documentation.
[1] Orfanidis, S. J. Introduction to Signal Processing. Prentice Hall, 1996.
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point \\
& \(\bullet 8-, 16-\), and 32 -bit signed integers \\
& • 8-, 16-, and 32-bit unsigned integers \\
\hline Output & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point \\
& • 8-, 16-, and 32 -bit signed integers \\
& • 8-, 16-, and 32-bit unsigned integers \\
\hline
\end{tabular}

\section*{See Also}

Downsample
FIR Decimation
FIR Interpolation
Upsample
fir1
fir2

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox
Signal Processing Toolbox

\section*{FIR Rate Conversion}
\begin{tabular}{ll} 
firls & Signal Processing Toolbox \\
upfirdn & Signal Processing Toolbox
\end{tabular}

See the following sections for related information:
- "Converting Sample and Frame Rates"
- "Multirate Filters"

\section*{Purpose}

Flip input vertically or horizontally

\section*{Library}

Signal Management / Indexing
dspindex
Description
 as the input.

The Flip block vertically or horizontally reverses the \(M\)-by- \(N\) input matrix, \(u\). The output always has the same dimension and frame status

When you select Columns from the Flip along menu, the block vertically flips the input so that the first row of the input is the last row of the output.
\[
y=\text { flipud }(u) \quad \% \text { Equivalent MATLAB code }
\]

For convenience, length-M 1-D vector inputs are treated as \(M\)-by-1 column vectors for vertical flipping.

When you select Rows from the Flip along menu, the block horizontally flips the input so that the first column of the input is the last column of the output.
```

y = fliplr(u) % Equivalent MATLAB code

```

For convenience, length- \(N\) 1-D vector inputs are treated as 1-by- \(N\) row vectors for horizontal flipping. The output always has the same dimension and frame status as the input.

This block supports Simulink virtual buses.

\section*{Dialog \\ Box}


\section*{Flip along}

The dimension along which to flip the input. Columns specifies vertical flipping, while Rows specifies horizontal flipping.

Supported
Data
Types
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point (signed and unsigned) \\
& - Boolean \\
& • 8-, 16-, and 32 -bit signed integers \\
& • 8-, 16-, and 32 -bit unsigned integers \\
& • Enumerated \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Output & • Double-precision floating point \\
& • Single-precision floating point \\
& - Fixed point (signed and unsigned) \\
& - Boolean \\
& • \(8-, 16-\)-, and 32 -bit signed integers \\
& • 8-, 16-, and 32 -bit unsigned integers \\
& • Enumerated \\
\hline
\end{tabular}

\section*{See Also}
\begin{tabular}{ll} 
Selector & Simulink \\
Transpose & Signal Processing Blockset \\
Variable Selector & Signal Processing Blockset \\
flipud & MATLAB \\
fliplr & MATLAB
\end{tabular}

Purpose
Library

Description


Solve \(L X=B\) for \(X\) when \(L\) is lower triangular matrix
Math Functions / Matrices and Linear Algebra / Linear System Solvers dspsolvers

The Forward Substitution block solves the linear system \(L X=B\) by simple forward substitution of variables, where:
- \(L\) is the lower triangular \(M\)-by- \(M\) matrix input to the L port.
- \(B\) is the \(M\)-by- \(N\) matrix input to the B port.

The sample-based output is the \(M\)-by- \(N\) matrix \(X\) that is the solution of the equations. The block does not check the rank of the inputs.

The block only uses the elements in the lower triangle of input \(L\) and ignores the upper elements. When you select Input \(L\) is unit-lower triangular, the block replaces the elements on the diagonal of \(L\) with 1 s . This is useful when matrix \(L\) is the result of another operation, such as an LDL decomposition, that uses the diagonal elements to represent the \(D\) matrix.

The block treats a length- \(M\) vector input at port B as an \(M\)-by- 1 matrix.

\section*{Fixed-Point Data Types}

The following diagram shows the data types used within the Forward Substitution block for fixed-point signals.

\section*{When input L is not unit-lower triangular:}


\section*{Forward Substitution}

\section*{When input L is unit-lower triangular:}


You can set the product output, accumulator, and output data types in the block dialog box, as discussed in the following section.

The output of the multiplier is in the product output data type when the input is real. When the input is complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, see "Multiplication Data Types".

Dialog Box

The Main pane of the Forward Substitution block dialog box appears as follows.


\section*{Input \(L\) is unit-lower triangular}

Select to replace the elements on the diagonal of \(L\) with 1 s .
Diagonal of complex input \(L\) is real
Select to optimize simulation speed when the diagonal elements of complex input \(L\) are real. This parameter is only visible when Input \(L\) is unit-upper triangular is not selected.

\footnotetext{
Note When L is a complex fixed-point signal, you must select either Input \(L\) is unit-lower triangular or Diagonal of complex input \(\mathbf{L}\) is real. In such a case, the block ignores any imaginary part of the diagonal of \(L\).
}

The Data type attributes pane of the Forward Substitution block dialog box appears as follows.
Forward Substitution

Solve \(L X=B\) where \(L\) is a lower (or unit-lower) triangular matrix. \(L\) must be square. \(B\) must have the same number of rows as L .

Main Data type attributes
Fixed-point operational parameters
Rounding mode: Floor \(\quad \square\) Overflow mode: Wrap

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the block input is floating point, all block data types match the input.



> Note Floating-point inheritance takes precedence over the data type settings defined on this pane. When inputs are floating point, the block ignores these settings, and all internal data types are floating point.

\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Product output data type}

Specify the product output data type. See "Fixed-Point Data Types" on page 2-570 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set it to:
- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt(1, 16, 0)

Click the Show data type assistant button \(\quad \gg \quad\) to display the Data Type Assistant, which helps you set the Product output data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

\section*{Accumulator data type}

Specify the accumulator data type. See "Fixed-Point Data Types" on page 2-570 for illustrations depicting the use of the accumulator data type in this block. You can set it to:
- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button \(\quad \ggg\) to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

\section*{Output data type}

Specify the output data type. See "Fixed-Point Data Types" on page 2-570 for illustrations depicting the use of the output data type in this block. You can set it to:
- A rule that inherits a data type, for example, Inherit: Same as first input
- An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button \(\quad \ggg\) to display the Data Type Assistant, which helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in Simulink User's Guide for more information.

\section*{Minimum}

Specify the minimum value that the block should output. The default value, [ ], is equivalent to - Inf. Simulink software uses this value to perform:
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

\section*{Maximum}

Specify the maximum value that the block should output. The default value, [ ], is equivalent to Inf. Simulink software uses this value to perform:
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

\section*{Lock scaling against changes by the autoscaling tool}

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

\section*{Forward Substitution}

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline L & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point (signed only) \\
• 8-, 16-, and 32-bit signed integers
\end{tabular}

\section*{See Also}
\begin{tabular}{ll}
\begin{tabular}{l} 
Backward \\
Substitution
\end{tabular} & Signal Processing Blockset \\
Cholesky Solver & Signal Processing Blockset \\
LDL Solver & Signal Processing Blockset \\
Levinson-Durbin & Signal Processing Blockset
\end{tabular}

\author{
LU Solver \\ QR Solver \\ Signal Processing Blockset
}

See "Linear System Solvers" for related information.

\section*{Frame Conversion}
\begin{tabular}{ll} 
Purpose & Specify sampling mode of output signal \\
Library & \begin{tabular}{l} 
Signal Management / Signal Attributes \\
dspsigattribs
\end{tabular}
\end{tabular}

\section*{Description}


The Frame Conversion block passes the input through to the output and sets the output sampling mode to the value of the Sampling mode of output signal parameter, which can be either Frame-based or Sample-based. The output sampling mode can also be inherited from the signal at the Ref (reference) input port, which you make visible by selecting the Inherit output sampling mode from <Ref> input port check box.

The Frame Conversion block does not make any changes to the input signal other than the sampling mode. In particular, the block does not rebuffer or resize 2-D inputs. Because 1-D vectors cannot be frame based, when the input is a length-M 1-D vector and the block is in Frame-based mode, the output is a frame-based \(M\)-by- 1 matrix - that is, a single channel.


\section*{Inherit output sampling mode from \(<\) Ref \(>\) input port}

Select to enable the Ref port from which the block inherits the output sampling mode.

\section*{Sampling mode of output signal}

Specify the sampling mode of the output signal, Frame-based or Sample-based.

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline In & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed only) \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8-, 16-, and 32 -bit unsigned integers \\
- Enumerated
\end{tabular} \\
\hline Ref & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed only) \\
- Boolean \\
- 8 -, 16 -, and 32 -bit signed integers \\
- 8-, 16-, and 32 -bit unsigned integers \\
- Enumerated
\end{tabular} \\
\hline Output & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed only) \\
- Boolean \\
- 8-, 16-, and 32 -bit signed integers \\
- 8-, 16-, and 32 -bit unsigned integers \\
- Enumerated
\end{tabular} \\
\hline
\end{tabular}

\section*{Frame Conversion}

\section*{See Also}

\author{
Buffer \\ Check Signal Attributes \\ Convert 1-D to 2-D \\ Convert 2-D to 1-D \\ Inherit Complexity \\ Unbuffer \\ Probe \\ Reshape \\ Signal Specification
}

Signal Processing Blockset
Simulink
Simulink
Simulink

\section*{Purpose}

Specify frame status of output as sample based or frame based

\section*{Library}
dspobslib

\section*{Description}

Frame-
based
Note The Frame Status Conversion block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Frame Conversion block.

The Frame Status Conversion block passes the input through to the output, and sets the output frame status to the Output signal parameter, which can be either Frame-based or Sample-based. The output frame status can also be inherited from the signal at the Ref (reference) input port, which is made visible by selecting the Inherit output frame status from Ref input port check box.
When the Output signal parameter setting or the inherited signal's frame status differs from the input frame status, the block changes the input frame status accordingly, but does not otherwise alter the signal. In particular, the block does not rebuffer or resize 2 -D inputs. Because \(1-\mathrm{D}\) vectors cannot be frame based, when the input is a length-M 1-D vector, and the Output signal parameter is set to Frame-based, the output is a frame-based \(M\)-by- 1 matrix (that is, a single channel).

When the Output signal parameter or the inherited signal's frame status matches the input frame status, the block passes the input through to the output unaltered.

\section*{Frame Status Conversion (Obsolete)}

\section*{Dialog \\ Box}


Inherit output frame status from Ref input port
When selected, enables the Ref input port from which the block inherits the output frame status.

\section*{Output signal}

The output frame status, Frame-based or Sample-based.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline In & • Double-precision floating point \\
& - Single-precision floating point \\
& - Fixed point (signed only) \\
& - Boolean \\
& - 8-, 16 -, and 32 -bit signed integers \\
& • 8-, 16 -, and 32 -bit unsigned integers \\
\hline
\end{tabular}

\section*{Frame Status Conversion (Obsolete)}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Ref & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed only) \\
- Boolean \\
- 8 -, 16 -, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Output & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed only) \\
- Boolean \\
- 8 -, 16 -, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline
\end{tabular}

Check Signal Attributes
Convert 1-D to 2-D
Convert 2-D to 1-D
Inherit Complexity

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

\section*{From Audio Device}


Read audio data from computer's audio device

Signal Processing Sources
dspsrcs4

The From Audio Device block reads audio data from an audio device in real time. This block has the following limitations:
- Not supported for use with the Simulink Model block.
- Not currently supported on Solaris \({ }^{\mathrm{TM}}\) platforms.

Use the Device parameter to specify the device from which to acquire audio. This parameter is automatically populated based on the audio devices installed on your system. If you plug or unplug an audio device from your system, type clear mex at the MATLAB command prompt to update this list.

Use the Number of channels parameter to specify the number of audio channels in the signal. For example:
- Enter 2 if the audio source is two channels (stereo).
- Enter 1 if the audio source is single channel (mono).
- Enter 6 if you are working with a 5.1 speaker system.

The block's output is an \(M\)-by- \(N\) matrix, where \(M\) is the number of consecutive samples and \(N\) is the number of audio channels.

Use the Sample rate ( \(\mathbf{H z}\) ) parameter to specify the number of samples per second in the signal. If the audio data is processed in uncompressed pulse code modulation (PCM) format, it should typically be sampled at one of the standard audio device rates: \(8000,11025,22050,44100\), or 48000 Hz .

Use the Device data type parameter to specify the data type of the audio data that the device is placing in the buffer. You can choose:

\section*{From Audio Device}
- 8-bit integer
- 16-bit integer
- 24-bit integer
- 32-bit float
- Determine from output data type

If you choose Determine from output data type, the following table summarizes the block's behavior.
\begin{tabular}{|l|l}
\hline Output Data Type & Device Data Type \\
\hline \begin{tabular}{l} 
Double-precision floating point or \\
single-precision floating point
\end{tabular} & 32 -bit floating point \\
\hline 32-bit integer & 24 -bit integer \\
\hline 16 -bit integer & 16 -bit integer \\
\hline 8-bit integer & 8 -bit integer \\
\hline
\end{tabular}

If you choose Determine from output data type and the device does not support a data type, the block uses the next lowest precision data type supported by the device.

Use the Frame size (samples) parameter to specify the number of samples in the block's output. Use the Output data type parameter to specify the data type of audio data output by the block.

\section*{Buffering}

The From Audio Device block buffers the data from the audio device using the process illustrated by the following figure.

\section*{From Audio Device}


1 At the start of the simulation, the audio device begins writing the input data to a buffer. This data has the data type specified by the Device data type parameter.

2 When the buffer is full, the From Audio Device block writes the contents of the buffer to the queue. Specify the size of this queue using the Queue duration (seconds) parameter.

3 As the audio device appends audio data to the bottom of the queue, the From Audio Device block pulls data from the top of the queue to fill the Simulink frame. This data has the data type specified by the Output data type parameter.

Select the Automatically determine buffer size check box to allow the block to calculate a conservative buffer size using the following equation:
\[
\text { size }=2^{\left\lfloor\log _{2} \frac{s r}{10}\right\rfloor}
\]

In this equation, size is the buffer size, and \(s r\) is the sample rate. If you clear this check box, the Buffer size (samples) parameter appears on the block. Use this parameter to specify the buffer size in samples.

When the simulation throughput rate is lower than the hardware throughput rate, the queue, which is initially empty, fills up. If the queue is full, the block drops the incoming data from the audio device. When the simulation throughput rate is higher than the hardware throughput rate, the From Audio Device block waits for new samples to become available.

\section*{Troubleshooting}

When Simulink cannot keep up with an audio device that is operating in real time, the queue fills up and the block begins to lose audio data. To receive a warning, which will indicate the number of samples lost, type the following command on the MATLAB command line:
```

warning('on', 'spblks:block:FromAudioDevice:fromAudioDeviceDroppedS

```

Here are several ways to deal with this situation:
- Increase the queue duration.

The Queue duration (seconds) parameter specifies the duration of the signal, in seconds, that can be buffered during the simulation. This is the maximum length of time that the block's data demand can lag behind the hardware's data supply.
- Increase the buffer size.

The size of the buffer processed in each interrupt from the audio device affects the performance of your model. If the buffer is too small, a large portion of hardware resources are used to write data to the queue. If the buffer is too big, Simulink must wait for the device to fill the buffer before it moves the data to the queue, which introduces latency.
- Increase the simulation throughput rate.

Two useful methods for improving simulation throughput rates are increasing the signal frame size and compiling the simulation into native code:

\section*{From Audio Device}
- Increase frame sizes and convert sample-based signals to frame-based signals throughout the model to reduce the amount of block-to-block communication overhead. This can increase throughput rates in many cases. However, larger frame sizes generally result in greater model latency due to initial buffering operations.
- Generate executable code with Real-Time Workshop code generation software. Native code runs much faster than Simulink and should provide rates adequate for real-time audio processing.

Other ways to improve throughput rates include simplifying the model and running the simulation on a faster PC processor. For other ideas on improving simulation performance, see "Delay and Latency" and "Improving Simulation Performance and Accuracy" in the Simulink documentation.

\section*{Audio Hardware API}

The To Audio Device and From Audio Device blocks use the open-source PortAudio library in order to communicate with the audio hardware on a given computer. The PortAudio library supports a range of API's designed to communicate with the audio hardware on a given platform. The following API choices were made when building the PortAudio library for the Signal Processing Blockset product:
- Windows: DirectSound, WDM-KS
- Linux: OSS, ALSA
- Mac: CoreAudio

To select or change the Audio Hardware API, select Preferences from the MATLAB File menu. Then select Signal Processing Blockset from the tree menu.

If you are interested in using a different audio API, please search for PortAudio on the Matlab Central website.

\section*{From Audio Device}

\section*{Dialog Box}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Source Block Parameters: From Audio Device} & x \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
From Audio Device \\
Record sound data from your computer's audio device.
\end{tabular}}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Parameters \\
Device: Default
\end{tabular}}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{Number of channels: 2} \\
\hline \multicolumn{3}{|l|}{Sample rate (Hz): 44100} \\
\hline \multicolumn{3}{|l|}{Device data type: Determine from output data type} \\
\hline \multicolumn{3}{|l|}{V Automatically determine buffer size} \\
\hline \multicolumn{3}{|l|}{Queue duration (seconds): 1.0} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Outputs \\
Frame size (samples): 1024
\end{tabular}}} \\
\hline & & \\
\hline \multicolumn{2}{|l|}{Output data type: single} & \(\pm\) \\
\hline OK & Cancel & Help \\
\hline
\end{tabular}

\section*{Device}

Specify the device from which to acquire audio data.

\section*{Number of channels}

Specify the number of audio channels.

\section*{Sample rate (Hz)}

Specify the number of samples per second in the signal.

\section*{Device data type}

Specify the data type used by the device to acquire audio data.

\section*{From Audio Device}

\section*{Automatically determine buffer size}

Select this check box to enable the block to use a conservative buffer size.

\section*{Buffer size (samples)}

Specify the size of the buffer that the block uses to communicate with the audio device. This parameter is visible when the Automatically determine buffer size check box is cleared.

\section*{Queue duration (seconds)}

Specify the size of the queue in seconds.
Frame size (samples)
Specify the number of samples in the block's output signal.

\section*{Output data type}

Select the data type of the block's output.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Output & • Double-precision floating point \\
& • Single-precision floating point \\
& • 32-bit signed integers \\
& • 16 -bit signed integers \\
& • 8-bit unsigned integers \\
\hline
\end{tabular}

\section*{See Also}
\begin{tabular}{ll} 
From Wave File & Signal Processing Blockset \\
To Audio Device & Signal Processing Blockset \\
audiorecorder & MATLAB
\end{tabular}

\section*{From Multimedia File}
\begin{tabular}{l} 
Purpose \\
\hline Library \\
\\
\hline Description
\end{tabular}

Read multimedia file

Signal Processing Sources
dspsrcs4


The From Multimedia File block reads audio and/or video frames from a multimedia file. The block imports data from the file into a Simulink model.

Reading video files requires the Video and Image Processing Blockset \({ }^{\text {TM }}\) product.

Note This block supports code generation for the host computer that has file I/O available. Such support excludes RTWin (Real-Time Windows Target \({ }^{\mathrm{TM}}\) software, which does not support file I/O).

\section*{Setting up the From Multimedia File Block}

Use the File name parameter to specify the name of the multimedia file from which to read. If the location of the file does not appear on your MATLAB path, use the Browse button to specify the full path. Otherwise, if the location of this file appears on your MATLAB path, enter only the file name. On Windows \({ }^{\circledR}\) platforms, this parameter supports URLs that point to NMS (Microsoft Media Server) streams. For more information, see "Supported File Types" on page 2-594

Select the Inherit sample time from file check box if you want the block sample time to be the same as the multimedia file. If you clear this check box, enter the block sample time in the Desired sample

\section*{From Multimedia File}
time parameter field. The file that the From Multimedia File block references, determines the block default sample time. You can also set the sample time for this block manually. If you do not know the intended sample rate of the video, let the block inherit the sample rate from the multimedia file.

\section*{Port Behavior}

The output ports of the From Multimedia File block change according to the content of the multimedia file. If the file contains video frames, the Image or intensity I port appears on the block. If the file contains audio only samples, the Audio port appears on the block. If the file contains both audio and video, you can select to output the audio. The following table describes the ports available.
\begin{tabular}{l|l}
\hline Port & Description \\
\hline Image & \(M\)-by- \(N\)-by- \(P\) color video signal where \(P\) is the number of color planes. \\
\hline I & \(M\)-by- \(N\) matrix of intensity values. \\
\hline R, G, B & \begin{tabular}{l} 
Matrix that represents one plane of the RGB video stream. Outputs \\
from the R, G, or B port must have same dimensions.
\end{tabular} \\
\hline Audio & Vector of audio data. \\
\hline
\end{tabular}

\section*{Accessing the Video or Audio}

You can view the video frames using a To Video Display block and listen to the audio using a To Audio Device block.

For sink blocks to display video data properly, double- and single-precision floating-point pixel values must be between 0 and 1 . For other data types, the pixel values must be between the minimum and maximum values supported by their data type.

\section*{Supported File Types}

With the necessary codecs installed on your system, the From Multimedia File Block supports several video and audio file formats on various platforms.

\section*{From Multimedia File}

This block performs best on platforms with Version 9.0 or later of Direct \({ }^{\circledR}\) software. On the UNIX \({ }^{\circledR}\) product platforms, this block supports only uncompressed AVI files, less than 4 GB . Also, it does not support OpenDML extensions to the AVI standard.
Windows Platforms Supported File Formats
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Multimedia \\
Types
\end{tabular} & File Name Extensions \\
\hline Video files & \begin{tabular}{l}
.qt, .mov, .avi, .asf, .asx, .wmv, .mpg, .mpeg, \\
.mp2, .mp4
\end{tabular} \\
\hline Audio files & .wav, .wma, .aif, .aifc, .aiff, .mp3, .au, . snd \\
\hline
\end{tabular}

Non-Windows Platform Supported File Formats
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Multimedia \\
Types
\end{tabular} & File Name Extensions \\
\hline Video files & .avi \\
\hline
\end{tabular}

\section*{Sample Rate Calculation}

The sample rate depends on the audio and video sample rate. While the FMMF block operates at a single rate in Simulink, the underlying audio and video streams can produce different rates. In some cases, when the block outputs both audio and video, makes a small adjustment to the video rate.

The following table provides the Sample time calculations that the From Multimedia File block uses for video and audio files.

\section*{From Multimedia File}
\begin{tabular}{|c|c|c|}
\hline For Video Files & For Audio Files & For Video and Audio Files \\
\hline \begin{tabular}{l}
Sample time
\[
=\frac{1}{F P S}
\] \\
where FPS is the Frames per Second.
\end{tabular} & \begin{tabular}{l}
Sample time = \\
1024 \\
SampleRate \\
where 1024 is the size of the audio frame, set by the block.
\end{tabular} & \begin{tabular}{l}
Sample time \(=\)
\(\qquad\) \\
AudioSampleRate \\
When audio sample time is \\
AudioSampleRate \\
FPS. is noninteger, the calculation does not equal
\[
\frac{1}{F P S} .
\] \\
In this case, to prevent synchronization problems, the block drops the corresponding video frame when the audio stream leads the video stream by more than
\[
\frac{1}{F P S}
\]
\end{tabular} \\
\hline
\end{tabular}

The block outputs one video frame at each Simulink time step. To calculate the number of audio samples to output at each time step, the block divides the audio sample rate by the video frame rate (fps). If the audio sample rate does not divide evenly by the number of video frames per second, two operations occur:
- The block rounds the number of audio samples up to the nearest whole number.
- If necessary, the block periodically drops a video frame to maintain synchronization for large audio and video files.

\section*{From Multimedia File}

\section*{Dialog} Box

Source Block Parameters: From Multimedia File X|
From Multimedia File
On Windows, reads video frames and/or audio samples from a compressed or uncompressed multimedia file. Multimedia files can contain audio, video, or audio and video data.

On non-Windows platforms, reads video frames and/or audio samples from an uncompressed AVI file.

Video functionality requires a Video and Image Processing Blockset license.
Main | Data Types |
-Parameters
File name: vipmen.avi
\(\sqrt{\checkmark}\) Inherit sample time from file
Number of times to play file: inf

Outputs
I Output end-of-file indicator
Image color space: \(\begin{aligned} & \mathrm{RGB} \text { Image signal: } \\ &\end{aligned}\)

OK
Cancel Help

File name
Specify the name of the multimedia file from which to read. The block determines the type of file (audio and video, audio only, or video only) and provides the associated parameters.

\section*{From Multimedia File}

\section*{Inherit sample time from file}

Select this check box if you want the sample time of the block to equal the sample time of the multimedia file.

\section*{Desired sample time}

Specify the block sample time. This parameter becomes available if you clear the Inherit sample time from file check box.

\section*{Number of times to play file}

Enter a positive integer or inf to represent the number of times to play the file.

\section*{Output end-of-file indicator}

Use this check box to determine whether the output is the last video frame or audio sample in the multimedia file. When you select this check box, a Boolean output port labeled EOF appears on the block. The output from the EOF port defaults to 1 when the last video frame or audio sample is output from the block. Otherwise, the output from the EOF port defaults to 0 .

\section*{Multimedia outputs}

Specify Video and audio, Video only, or Audio only output file type. This parameter becomes available only when a video signal has both audio and video.

\section*{From Multimedia File}

Source Block Parameters: From Multimedia File
From Multimedia File
On Windows, reads video frames andjor audio samples from a compressed or uncompressed multimedia file. Multimedia files can contain audio, video, or audio and video data.

On non-Windows platforms, reads video frames andjor audio samples from an uncompressed AVI file.

Video functionality requires a Video and Image Processing Blockset license.
\begin{tabular}{|c|c|c|c|}
\hline Main Data Types & & & \\
\hline \multicolumn{4}{|l|}{Parameters} \\
\hline \multicolumn{2}{|l|}{File name: C:'sample.avi} & & Browse... \\
\hline \multicolumn{4}{|l|}{\(\sqrt{\square}\) Inherit sample time from file} \\
\hline \multicolumn{4}{|l|}{Number of times to play file: inf} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Outputs \\
\(\Gamma\) Output end-of-file indicator
\end{tabular}}} \\
\hline & & & \\
\hline Multimedia outputs: Video and audio & & & \(\checkmark\) \\
\hline Image color space: \(\mathrm{RGB} \quad \square\) & \multicolumn{3}{|l|}{Image signal: One multidimensional signal} \\
\hline & OK & Cancel & Help \\
\hline
\end{tabular}

\section*{Image color space}

Specify whether you want the block to output RGB or Intensity video frames. This parameter becomes available only for a signal that contains video. If you select RGB, use the Image signal parameter to specify how to output a color signal.

\section*{From Multimedia File}

\section*{Image signal}

Specify how to output a color video signal. If you select One multidimensional signal, the block outputs an \(M\)-by- \(N\)-by- \(P\) color video signal, where \(P\) is the number of color planes, at one port. If you select Separate color signals, additional ports appear on the block. Each port outputs one \(M\)-by- \(N\) plane of an RGB video stream. This parameter becomes available only if you set the Image color space parameter to RGB and the signal contains video.

\section*{Samples per audio frame}

Specify number of samples per audio frame. This parameter becomes available only for audio-only files.

\section*{From Multimedia File}


\section*{Audio output data type}

Set the data type of the audio samples output at the Audio port. This parameter becomes available only if the multimedia file contains audio. You can choose double, single, int16, or uint8 types.

\section*{From Multimedia File}

\section*{Video output data type}

Set the data type of the video frames output at the \(\mathbf{R}, \mathbf{G}, \mathbf{B}\), or Image ports. This parameter becomes available only if the multimedia file contains video. You can choose double, single, int8, uint8, int16, uint16, int32, uint32, or Inherit from file types.

Troubleshootingf the From Multimedia File block cannot read some compressed multimedia files onWindows XP x64 platforms.

1 Windows XP x64 ships with a limited set of 64-bit video and audio codecs.

There are two known workarounds for this issue:
a Run the 32-bit version of MATLAB on your Windows XP x64 platform. Windows XP x64 ships with many 32 -bit codecs.
b Change the multimedia file to a format using a codec supported on the Windows XP x64 platform.

\section*{Supported Data Types}
\begin{tabular}{l|l|l}
\hline Port & Supported Data Types & \begin{tabular}{l} 
Supports \\
Complex \\
Values?
\end{tabular} \\
\hline Image & - Double-precision floating point & \\
& - Single-precision floating point & \\
& - 8-, 16-, and 32-bit signed integers \\
& \begin{tabular}{l} 
- 8-, 16-, and 32-bit unsigned \\
integers
\end{tabular} & \\
\hline
\end{tabular}

\section*{From Multimedia File}
\begin{tabular}{l|l|l}
\hline Port & Supported Data Types & \begin{tabular}{l} 
Supports \\
Complex \\
Values?
\end{tabular} \\
\hline R, G, B & Same as the Image port & No \\
\hline Audio & - Double-precision floating point & No \\
& - Single-precision floating point & \\
& - 16-bit signed integers & \\
& \(\bullet\) 8-bit unsigned integers & \\
\hline
\end{tabular}
See Also \begin{tabular}{lll} 
To Multimedia File & Signal Processing Blockset \\
From Wave File & Signal Processing Blockset \\
Image From & Video and Image Processing Blockset \\
Workspace & \\
& To Video Display & Video and Image Processing Blockset \\
Video From & Video and Image Processing Blockset \\
Workspace & \\
& Video Viewer & Video and Image Processing Blockset \\
& "Working with & Simulink \\
& Sample Times" &
\end{tabular}

\section*{From Wave Device (Obsolete)}
\begin{tabular}{ll} 
Purpose & \begin{tabular}{l} 
Read audio data from standard audio device in real-time (32-bit \\
Windows operating systems only)
\end{tabular} \\
Library & dspwin32 \\
Description & \begin{tabular}{l} 
Note The From Wave Device block is still supported but is likely to be \\
obsoleted in a future release. We strongly recommend replacing this \\
block with the From Audio Device block.
\end{tabular} \\
\hline
\end{tabular}

The From Wave Device block reads audio data from a standard Windows audio device in real-time. It is compatible with most popular Windows hardware, including Sound Blaster cards. (Models that contain both this block and the To Wave Device block require a duplex-capable sound card.)

The Use default audio device parameter allows the block to detect and use the system's default audio hardware. This option should be selected on systems that have a single sound device installed, or when the default sound device on a multiple-device system is the desired source. In cases when the default sound device is not the desired input source, clear Use default audio device, and select the desired device in the Audio device menu parameter.
When the audio source contains two channels (stereo), the Stereo check box should be selected. When the audio source contains a single channel (mono), the Stereo check box should be cleared. For stereo input, the block's output is an \(M\)-by- 2 matrix containing one frame ( \(M\) consecutive samples) of audio data from each of the two channels. For mono input, the block's output is an \(M\)-by- 1 matrix containing one frame ( \(M\) consecutive samples) of audio data from the mono input. The frame size, \(M\), is specified by the Samples per frame parameter. For \(M=1\), the output is sample based; otherwise, the output is frame based.

The audio data is processed in uncompressed pulse code modulation (PCM) format, and should typically be sampled at one of the standard Windows audio device rates: 8000, 11025, 22050, or 44100 Hz . You can

\section*{From Wave Device (Obsolete)}
select one of these rates from the Sample rate parameter. To specify a different rate, select the User-defined option and enter a value in the User-defined sample rate parameter.

The Sample Width (bits) parameter specifies the number of bits used to represent the signal samples read by the audio device. The following settings are available:
- 8 - allocates 8 bits to each sample, allowing a resolution of 256 levels
- 16 - allocates 16 bits to each sample, allowing a resolution of 65536 levels
- 24 - allocates 24 bits to each sample, allowing a resolution of 16777216 levels (only for use with 24 -bit audio devices)

Higher sample width settings require more memory but yield better fidelity. The output from the block is independent of the Sample width (bits) setting. The output data type is determined by the Data type parameter setting.

\section*{Buffering}

Since the audio device accepts real-time audio input, Simulink software must read a continuous stream of data from the device throughout the simulation. Delays in reading data from the audio hardware can result in hardware errors or distortion of the signal. This means that the From Wave Device block must read data from the audio hardware as quickly as the hardware itself acquires the signal. However, the block often cannot match the throughput rate of the audio hardware, especially when the simulation is running from within Simulink rather than as generated code. (Simulink operations are generally slower than comparable hardware operations, and execution speed routinely varies during the simulation as the host operating system services other processes.) The block must therefore rely on a buffering strategy to ensure that signal data can be read on schedule without losing samples.

At the start of the simulation, the audio device begins writing the input data to a (hardware) buffer with a capacity of \(T_{b}\) seconds. The From Wave Device block immediately begins pulling the earliest samples off

\section*{From Wave Device (Obsolete)}
the buffer (first in, first out) and collecting them in length- \(M\) frames for output. As the audio device continues to append inputs to the bottom of the buffer, the From Wave Device block continues to pull inputs off the top of the buffer at the best possible rate.

The following figure shows an audio signal being acquired and output with a frame size of 8 samples. The buffer of the sound board is approaching its five-frame capacity at the instant shown, which means that the hardware is adding samples to the buffer more rapidly than the block is pulling them off. (If the signal sample rate was 8 kHz , this small buffer could hold approximately 0.005 second of data.

Hordwore execution rote is corstant. Simulink execution rate varies.


When the simulation throughput rate is higher than the hardware throughput rate, the buffer remains empty throughout the simulation. If necessary, the From Wave Device block simply waits for new samples to become available on the buffer (the block does not interpolate between samples). More typically, the simulation throughput rate is lower than the hardware throughput rate, and the buffer tends to fill over the duration of the simulation.

\section*{Troubleshooting}

When the buffer size is too small in relation to the simulation throughput rate, the buffer might fill before the entire length of signal is processed. This usually results in a device error or undesired device output. When this problem occurs, you can choose to either increase the buffer size or the simulation throughput rate:

\section*{From Wave Device (Obsolete)}

\section*{- Increase the buffer size}

The Queue duration parameter specifies the duration of signal, \(T_{b}\) (in real-time seconds), that can be buffered in hardware during the simulation. Equivalently, this is the maximum length of time that the block's data acquisition can lag the hardware's data acquisition. The number of frames buffered is approximately
\[
\frac{T_{b} F_{s}}{M}
\]
where \(F_{s}\) is the sample rate of the signal and \(M\) is the number of samples per frame. The required buffer size for a given signal depends on the signal length, the frame size, and the speed of the simulation. Note that increasing the buffer size might increase model latency.

\section*{- Increase the simulation throughput rate}

Two useful methods for improving simulation throughput rates are increasing the signal frame size and compiling the simulation into native code:
- Increase frame sizes (and convert sample-based signals to frame-based signals) throughout the model to reduce the amount of block-to-block communication overhead. This can drastically increase throughput rates in many cases. However, larger frame sizes generally result in greater model latency due to initial buffering operations.
- Generate executable code with Real Time Workshop. Native code runs much faster than Simulink, and should provide rates adequate for real-time audio processing.

More general ways to improve throughput rates include simplifying the model, and running the simulation on a faster PC processor. See "Delay and Latency" and "Improving Simulation Performance and Accuracy" in the Simulink documentation for other ideas on improving simulation performance.

\section*{From Wave Device (Obsolete)}

\section*{Dialog \\ Box}
\begin{tabular}{|c|c|}
\hline Source Block Parameters: From Wave Device & x \\
\hline \multicolumn{2}{|l|}{From Wave Device (mask) [link)} \\
\hline \multicolumn{2}{|l|}{Reads audio data samples from a standard Windows audio device in real time.} \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline Sample rate ( Hz ): 8 B0ioil & \(\nabla\) \\
\hline User-defined sample rate ( Hz ): & \\
\hline \multicolumn{2}{|l|}{16000} \\
\hline Sample width (bits): 16 & \(\nabla\) \\
\hline \multicolumn{2}{|l|}{\(\ulcorner\) Stereo} \\
\hline \multicolumn{2}{|l|}{Samples per frame:} \\
\hline \multicolumn{2}{|l|}{512} \\
\hline \multicolumn{2}{|l|}{Queue duration (seconds):} \\
\hline \multicolumn{2}{|l|}{3} \\
\hline \multicolumn{2}{|l|}{\(\checkmark\) Use default audio device} \\
\hline Audio device: Emu10K \& Audio [B800] & 7 \\
\hline Data type: double & \(\checkmark\) \\
\hline OK Cancel & Help \\
\hline
\end{tabular}

\section*{Sample rate (Hz)}

The sample rate of the audio data to be acquired. Select one of the standard Windows rates or the User-defined option.

\section*{User-defined sample rate ( Hz )}

The (nonstandard) sample rate of the audio data to be acquired.

\section*{Sample width (bits)}

The number of bits used to represent each signal sample.

\section*{From Wave Device (Obsolete)}

\section*{Stereo}

Specifies stereo (two-channel) inputs when selected, mono (one-channel) inputs when cleared. Stereo output is \(M\)-by- 2 ; mono output is \(M\)-by-1.

\section*{Samples per frame}

The number of audio samples in each successive output frame, \(M\). When the value of this parameter is 1 , the block outputs a sample-based signal.

\section*{Queue duration (seconds)}

The length of signal (in seconds) to buffer to the hardware at the start of the simulation.

\section*{Use default audio device}

Reads audio input from the system's default audio device when selected. Clear to enable the Audio device ID parameter and select a device.

\section*{Audio device}

The name of the audio device from which to read the audio output (lists the names of the installed audio device drivers). Select Use default audio device when the system has only a single audio card installed.

\section*{Data type}

The data type of the output: double-precision, single-precision, signed 16 -bit integer, or unsigned 8 -bit integer.
\begin{tabular}{ll} 
Supporfed & - Double-precision floating point \\
Data & - Single-precision floating point \\
Types & - 16 -bit signed integer \\
& - 8 -bit unsigned integer
\end{tabular}

\section*{From Wave Device (Obsolete)}

\author{
See Also \\ From Wave File \\ Signal Processing Blockset \\ To Wave Device Signal Processing Blockset \\ (Obsolete) \\ audiorecorder MATLAB
}

\section*{Purpose}

\section*{Library}

Description


From Wave File

Read audio data from Microsoft Wave (.wav) file
Signal Processing Sources
dspsrcs4
The From Wave File block streams audio data from a Microsoft Wave (.wav) file and generates a signal with one of the data types and amplitude ranges in the following table.
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Output Data \\
Type
\end{tabular} & Output Amplitude Range \\
\hline double & \(\pm 1\) \\
\hline single & \(\pm 1\) \\
\hline int16 & -32768 to \(32767\left(-2^{15}\right.\) to \(\left.2^{15}-1\right)\) \\
\hline uint8 & 0 to 255 \\
\hline
\end{tabular}

The audio data must be in uncompressed pulse code modulation (PCM) format.
```

y = wavread('filename') % Equivalent MATLAB code

```

The block supports 8 -, 16 -, 24 -, and 32 -bit Microsoft Wave (.wav) files.
The File name parameter can specify an absolute or relative path to the file. When the file is on the MATLAB path or in the current folder (the folder returned by typing pwd at the MATLAB command line), you need only specify the file's name. You do not need to specify the. wav extension.

For an audio file containing \(C\) channels, the block's output is an \(M\)-by- \(C\) matrix containing one frame ( \(M\) consecutive samples) of audio data from each channel. The frame size, \(M\), is specified by the Samples per output frame parameter. For \(M=1\), the output is sample based; otherwise, the output is frame based.
The output frame period, \(T_{f o}\), is
\[
T_{f_{0}}=\frac{M}{F_{s}}
\]
where \(F_{s}\) is the data sample rate in Hz .
To reduce the required number of file accesses, the block acquires \(L\) consecutive samples from the file during each access, where \(L\) is specified by the Minimum number of samples for each read from file parameter \((L \geq M)\). For \(L<M\), the block instead acquires \(M\) consecutive samples during each access. Larger values of \(L\) result in fewer file accesses, which reduces run-time overhead.

Use the Data type parameter to specify the data type of the block's output. Your choices are double, single, uint8, or int16.

Select the Loop check box if you want to play the file more than once. Then, enter the number of times to play the file. The number you enter must be a positive integer or inf.
Use the Number of times to play file parameter to enter the number of times to play the file. The number you enter must be a positive integer or inf, to play the file until you stop the simulation.
The Samples restart parameter determines whether the samples from the audio file repeat immediately or repeat at the beginning of the next frame output from the output port. When you select immediately after last sample, the samples repeat immediately. When you select at beginning of next frame, the frame containing the last sample value from the audio file is zero padded until the frame is filled. The block then places the first sample of the audio file in the first position of the next output frame.

Use the Output start-of-file indicator parameter to determine when the first audio sample in the file is output from the block. When you select this check box, a Boolean output port labeled SOF appears on the block. The output from the SOF port is 1 when the first audio sample in the file is output from the block. Otherwise, the output from the SOF port is 0 .

Use the Output end-of-file indicator parameter to determine when the last audio sample in the file is output from the block. When you select this check box, a Boolean output port labeled EOF appears on the block. The output from the EOF port is 1 when the last audio sample in the file is output from the block. Otherwise, the output from the EOF port is 0 .

The block icon shows the name, sample rate (in Hz ), number of channels (1 or 2), and sample width (in bits) of the data in the specified audio file. All sample rates are supported; the sample width must be either \(8,16,24\), or 32 bits.

\section*{From Wave File}

\section*{Dialog Box}


\section*{File name}

Enter the path and name of the file to read. Paths can be relative or absolute.

\section*{Samples per output frame}

Enter the number of samples in each output frame, \(M\). When the value of this parameter is 1 , the block outputs a sample-based signal.

\section*{Minimum number of samples for each read from file}

Enter the number of consecutive samples to acquire from the file with each file access, \(L\).

\section*{Data type}

Select the output data type: double, single, uint8, or int16. The data type setting determines the output's amplitude range, as shown in the preceding table.

\section*{Loop}

Select this check box if you want to play the file more than once.

\section*{Number of times to play file}

Enter the number of times you want to play the file.

\section*{Samples restart}

Select immediately after last sample to repeat the audio file immediately. Select at beginning of next frame to place the first sample of the audio file in the first position of the next output frame.

\section*{Output start-of-file indicator}

Use this check box to determine whether the output contains the first audio sample in the file.

\section*{Output end-of-file indicator}

Use this check box to determine whether the output contains the last audio sample in the file.
\begin{tabular}{ll} 
Supported & - Double-precision floating point \\
Dafa & - Single-precision floating point \\
Types & - 16 -bit signed integer \\
& - 8 -bit unsigned integer
\end{tabular}
\begin{tabular}{lll} 
See Also & From Audio Device & Signal Processing Blockset \\
Signal From Workspace & Signal Processing Blockset
\end{tabular}

\section*{From Wave File}
\begin{tabular}{ll} 
To Wave File & Signal Processing Blockset \\
wavread & MATLAB
\end{tabular}

\section*{Purpose}

Quantize narrowband speech input signals

\section*{Library}

\section*{Description}


Quantizers
dspquant2
The G711 Codec block is a logarithmic scalar quantizer designed for narrowband speech. Narrowband speech is defined as a voice signal
with an analog bandwidth of 4 kHz and a Nyquist sampling frequency of 8 kHz . The block quantizes a narrowband speech input signal so that it can be transmitted using only 8 -bits. The G711 Codec block has three modes of operation: encoding, decoding, and conversion. You can choose the block's mode of operation by setting the Mode parameter.
If, for the Mode parameter, you choose Encode PCM to A-law, the block assumes that the linear PCM input signal has a dynamic range of 13 bits. Because the block always operates in saturation mode, it assigns any input value above \(2^{12}-1\) to \(2^{12}-1\) and any input value below \(-2^{12}\) to \(-2^{12}\). The block implements an A-law quantizer on the input signal and outputs A-law index values. When you choose Encode PCM to mu-law, the block assumes that the linear PCM input signal has a dynamic range of 14 bits. Because the block always operates in saturation mode, it assigns any input value above \(2^{13}-1\) to \(2^{13}-1\) and any input value below \(-2^{13}\) to \(-2^{13}\). The block implements a mu-law quantizer on the input signal and outputs mu-law index values.
If, for the Mode parameter, you choose Decode A-law to PCM, the block decodes the input A-law index values into quantized output values using an A-law lookup table. When you choose Decode mu-law to PCM, the block decodes the input mu-law index values into quantized output values using a mu-law lookup table.
If, for the Mode parameter, you choose Convert A-law to mu-law, the block converts the input A-law index values to mu-law index values. When you choose Convert mu-law to A-law, the block converts the input mu-law index values to A-law index values.

> Note Set the Mode parameter to Convert A-law to mu-law or Convert mu-law to A-law only when the input to the block is A-law or mu-law index values.

If, for the Mode parameter, you choose Encode PCM to A-law or Encode PCM to mu-law, the Overflow diagnostic parameter appears on the block parameters dialog box. Use this parameter to determine the behavior of the block when overflow occurs. The following options are available:
- Ignore - Proceed with the computation and do not issue a warning message.
- Warning - Display a warning message in the MATLAB Command Window, and continue the simulation.
- Error - Display an error dialog box and terminate the simulation.

Note Like all diagnostic parameters on the Configuration Parameters dialog box, Overflow diagnostic parameter is set to Ignore in the code generated for this block by Real-Time Workshop code generation software.

\section*{Dialog Box}


\section*{Mode}
- When you choose Encode PCM to A-law, the block implements an A-law encoder.
- When you choose Encode PCM to mu-law, the block implements a mu-law encoder.
- When you choose Decode A-law to PCM, the block decodes the input index values into quantized output values using an A-law lookup table.
- When you choose Decode mu-law to PCM, the block decodes the input index values into quantized output values using a mu-law lookup table.
- When you choose Convert A-law to mu-law, the block converts the input A-law index values to mu-law index values.
- When you choose Convert mu-law to A-law, the block converts the input mu-law index values to A-law index values.

\section*{Overflow diagnostic}

Use this parameter to determine the behavior of the block when overflow occurs.
- Select Ignore to proceed with the computation without a warning message.
- Select Warning to display a warning message in the MATLAB Command Window and continue the simulation.
- Select Error to display an error dialog box and terminate the simulation.

This parameter is only visible if, for the Mode parameter, you select Encode PCM to A-law or Encode PCM to mu-law.

\section*{References \\ Supported Data Types}

ITU-T Recommendation G.711, "Pulse Code Modulation (PCM) of Voice Frequencies," General Aspects of Digital Transmission Systems; Terminal Equipments, International Telecommunication Union (ITU), 1993.
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline PCM & \(\bullet\) 16-bit signed integers \\
\hline A & \(\bullet\) 8-bit unsigned integers \\
\hline mu & \(\bullet\) 8-bit unsigned integers \\
\hline
\end{tabular}

\author{
See Also
}

Quantizer
Scalar Quantizer Decoder
Scalar Quantizer Design
Uniform Decoder
Uniform Encoder
Vector Quantizer Decoder

Simulink
Signal Processing Blockset

\section*{G711 Codec}

\author{
Vector Quantizer Design \\ Vector Quantizer Encoder
}

Signal Processing Blockset
Signal Processing Blockset

\section*{Halfband Filter}
\begin{tabular}{ll} 
Purpose & \begin{tabular}{l} 
Design halfband filter \\
Library \\
Description \\
Halfband \\
dspfdesign
\end{tabular} \\
\begin{tabular}{l} 
Filtering / Filter Design Toolbox
\end{tabular} \\
Dialog & \begin{tabular}{l} 
This block brings the functionality of the Filter Design Toolbox \\
filterbuilder function to the Simulink environment. You must have \\
a Filter Design Toolbox product license to design filters with this block. \\
However, you can run models containing this block without a license. \\
This allows you to run a model sent to you by a colleague who has \\
designed a filter using this block, even if you do not have the Filter \\
Design Toolbox product.
\end{tabular} \\
Box & \begin{tabular}{l} 
See "Halfband Filter Design Dialog Box - Main Pane" in the Filter \\
Design Toolbox documentation for more information about the \\
parameters of this block. The Data Types pane is not available for \\
Filter Design Toolbox blocks in the Signal Processing Blockset product.
\end{tabular} \\
\begin{tabular}{l} 
Parameters of this block that do not change filter order or structure \\
are tunable. Tunable parameters are enabled during simulation; \\
nontunable parameters are not.
\end{tabular}
\end{tabular}

\section*{Supported Data Types}
\begin{tabular}{l|l|}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& - Single-precision floating point \\
& • Fixed point \\
& • 8-, 16-, and 32-bit signed integers \\
& • 8-, 16-, and 32-bit unsigned integers \\
\hline Output & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point
\end{tabular}

\section*{Port Supported Data Types}
- 8 -, 16-, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers
\begin{tabular}{ll} 
Purpose & Design highpass filter \\
Library & Filtering / Filter Design Toolbox \\
& dspfdesign
\end{tabular}

\section*{Description This block brings the functionality of the Filter Design Toolbox} filterbuilder function to the Simulink environment. You must have a Filter Design Toolbox product license to design filters with this block. However, you can run models containing this block without a license. This allows you to run a model sent to you by a colleague who has designed a filter using this block, even if you do not have the Filter Design Toolbox product.

Dialog Box

See "Highpass Filter Design Dialog Box - Main Pane" in the Filter Design Toolbox documentation for more information about the parameters of this block. The Data Types pane is not available for Filter Design Toolbox blocks in the Signal Processing Blockset product.

Parameters of this block that do not change filter order or structure are tunable. Tunable parameters are enabled during simulation; nontunable parameters are not.

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Input & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Output & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point
\end{tabular} \\
\hline
\end{tabular}

\section*{Port Supported Data Types}
- 8 -, 16-, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

\section*{Hilbert Filter}

\author{
Purpose Design Hilbert filter \\ Library Filtering / Filter Design Toolbox \\ dspfdesign
}

\section*{Description}

This block brings the functionality of the Filter Design Toolbox filterbuilder function to the Simulink environment. You must have a Filter Design Toolbox product license to design filters with this block. However, you can run models containing this block without a license. This allows you to run a model sent to you by a colleague who has designed a filter using this block, even if you do not have the Filter Design Toolbox product.

Dialog Box

\section*{Supported Data Types}

See "Hilbert Filter Design Dialog Box - Main Pane" in the Filter Design Toolbox documentation for more information about the parameters of this block. The Data Types pane is not available for Filter Design Toolbox blocks in the Signal Processing Blockset product.

Parameters of this block that do not change filter order or structure are tunable. Tunable parameters are enabled during simulation; nontunable parameters are not.
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point \\
& • 8-, 16-, and 32-bit signed integers \\
& • 8-, 16-, and 32-bit unsigned integers \\
\hline Output & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point
\end{tabular}

\section*{Port Supported Data Types}
- 8 -, 16-, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

\section*{Histogram}

Purpose Generate histogram of input or sequence of inputs
Library
Statistics
dspstat3

\section*{Description}

The Histogram block computes the frequency distribution of the elements in a vector input, of the elements in each channel of a frame-based matrix input, or of the elements in a sample based N-D array. The Running histogram parameter selects between basic operation and running operation, described below. The Histogram block accepts real and complex fixed-point and floating-point inputs.
The block distributes the elements of the input into the number of discrete bins specified by the Number of bins parameter, \(n\).
\[
y=\operatorname{hist}(u, n) \quad \% \text { Equivalent MATLAB code }
\]

Complex fixed-point inputs are distributed according to their magnitude squared values; complex floating-point inputs are distributed by their normalized values.

The histogram value for a given bin represents the frequency of occurrence of the input values bracketed by that bin. You specify the upper boundary of the highest-valued bin in the Upper limit of histogram parameter, \(B_{M}\), and the lower boundary of the lowest-valued bin in the Lower limit of histogram parameter, \(B_{m}\). The bins have equal width of
\[
\Delta=\frac{B_{M}-B_{m}}{n}
\]
and centers located at
\[
B_{m}+\left(k+\frac{1}{2}\right) \Delta \quad k=0,1,2, \ldots, n-1
\]

Input values that fall on the border between two bins are placed into the lower valued bin; that is, each bin includes its upper boundary. For example, a bin of width 4 centered on the value 5 contains the input value 7 , but not the input value 3 . Input values greater than the Upper limit of histogram parameter or less than Lower limit of histogram parameter are placed into the highest valued or lowest valued bin, respectively.

The values you enter for the Upper limit of histogram and Lower limit of histogram parameters must be real-valued scalars. NaN and inf are not valid values for the Upper limit of histogram and Lower limit of histogram parameters.

\section*{Basic Operation}

When the Running histogram check box is not selected, the Histogram block computes the frequency distribution of the current input.

For frame-based \(M\)-by- \(N\) inputs, (including 1-by- \(N\) row vectors and \(M\)-by- 1 column vectors), the Histogram block computes a histogram for each channel of the \(M\)-by- \(N\) matrix independently. The block outputs an \(n\)-by- \(N\) matrix, where \(n\) is the Number of bins specified in the Histogram block. The \(j\) th column of the output matrix contains the histogram for the data in the \(j\) th column of the \(M\)-by- \(N\) input matrix.

For all sample-based N-D input arrays, including length-M 1-D vectors and 1 -by- \(N\) row vectors, the Histogram block computes the frequency distribution of the input data. The block outputs an \(n\)-by- 1 vector, where \(n\) is the Number of bins specified in the Histogram block.

\section*{Running Operation}

When you select the Running histogram check box, the Histogram block computes the frequency distribution of both the past and present data for successive inputs. The block resets the histogram (by emptying all of the bins) when it detects a reset event at the optional Rst port. See "Resetting the Running Histogram" on page 2-630 for more information on how to trigger a reset.
For frame-based \(M\)-by- \(N\) inputs (including 1-by- \(N\) row vectors and \(M\)-by- 1 column vectors), the Histogram block computes a running

\section*{Histogram}
histogram for each channel of the \(M\)-by- \(N\) matrix. The block outputs an \(n\)-by- \(N\) matrix, where \(n\) is the Number of bins specified in the Histogram block. The \(j\) th column of the output matrix contains the running histogram for the \(j\) th column of the \(M\)-by- \(N\) input matrix.
For all sample-based N-D input arrays, including length-M 1-D vectors, the Histogram block computes a running histogram for the data in the first dimension of the input. The block outputs an \(n\)-by- 1 vector, where \(n\) is the Number of bins specified in the Histogram block.

Note When the histogram block is used in running mode and the input data type is non-floating point, the output of the histogram is stored as a uint32 data type. The largest number that can be represented by this data type is \(2^{32}-1\). If the range of the uint32 data type is exceeded, the output data will wrap back to 0 .

\section*{Resetting the Running Histogram}

The block resets the running histogram whenever a reset event is detected at the optional Rst port. The reset signal and the input data signal must be the same rate.

You specify the reset event using the Reset port menu:
- None - Disables the Rst port
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described earlier)
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

\section*{Examples Real Input Data}

The bin boundaries created by the Histogram block are determined by the data type of the input:
- Bin boundaries for real, double-precision input are cast into the data type double.
- Bin boundaries for real, fixed-point input are cast into the int8 data type.

The following example shows the differences in the output of the Histogram block based on the data type of the input.

To create this model you need the following blocks.
\begin{tabular}{l|l|l}
\hline Block & Library & Quantity \\
\hline Constant & Simulink / Sources library & 2 \\
\hline Display & Signal Processing Sinks & 2 \\
\hline Histogram & Statistics & 2 \\
\hline
\end{tabular}

The parameter settings for the Double Precision Input Constant block are:
- Constant value \(=\) double ([10lll \(\left.\left.\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]^{\prime}\right)\)
- Interpret parameters as 1-D = Clear this check box.
- Sampling mode = Sample based
- Sample time = inf

The parameter settings for the Fixed-Point Input Constant block are:

- Interpret parameters as 1-D = Clear this check box.
- Sampling mode = Sample based
- Sample time \(=\) inf

The parameter settings for both Histogram blocks are:
- Lower limit of histogram = 1
- Upper limit of histogram \(=3\)
- Number of bins \(=5\)
- Normalized = Clear this check box.
- Running histogram = Clear this check box.

Connect the blocks as shown in the following figure, and run your model.


Running this model generates the following warning:
Warning: The bin width resulting from the specified parameters is less than the precision of the input data type. This might cause unexpected results. Since bin width is calculated by ((upper limit - lower limit)/number of bins), you could increase upper limit or decrease lower limit or number of bins.

This warning alerts you that it is not a good use case to have a histogram where 2 or more bin boundaries are the same. As the warning suggests, increasing the range of the limits of the histogram, or decreasing the number of bins, can correct this problem.
The following figures illustrate the different bins that are created by the Histogram block. The top figure shows the histogram for double-precision input, and the bottom figure shows the histogram for fixed-point input. The output of the histogram block differs based on the data type of the input, and the bin boundaries are duplicated in the histogram for the fixed-point input.


\section*{Complex Input Data}

The bin boundaries created by the Histogram block are determined by the data type of the input.
- Bin boundaries for complex, double-precision input are cast into the data type double. All complex, double-precision input values are placed in bins according to their normalized values.
- Bin boundaries for complex, fixed-point input are cast into the data type double and squared. All complex, fixed-point input values are placed in bins according to their magnitude-squared value.

The following example shows the differences in the bins created by the Histogram block based on the data type of the complex input.

Using the same model you created for the example with real input data, modify the following parameters:
- In the Double Precision Input Constant block, set the Constant value parameter to double ([1+1i 2+2i 3+3i 4+4i 5+5i]')
- In the Fixed-Point Input Constant block, set the Constant value parameter to int8([1+1i 2+2i 3+3i 4+4i 5+5i]')

Run your model. It should look similar to the following figure:


In this case, the Histogram block outputs the same result. The figures below illustrate how the Histogram block compares the input values to the bins it creates. The double-precision inputs are normalized for comparison, whereas the fixed-point inputs are placed using their magnitude squared value. The top figure shows the histogram for the double-precision input, and the bottom figure shows the histogram for the fixed-point input.


\section*{Histogram}

Dialog Box

The Main pane of the Histogram block dialog appears as follows.


\section*{Lower limit of histogram}

Enter a real-valued scalar for the lower boundary, \(B_{m}\), of the lowest-valued bin. NaN and inf are not valid values for \(B_{m}\). Tunable.

\section*{Histogram}

\section*{Upper limit of histogram}

Enter a real-valued scalar for the upper boundary, \(B_{M}\), of the highest-valued bin. NaN and inf are not valid values for \(B_{M}\). Tunable.

\section*{Number of bins}

The number of bins, \(n\), in the histogram.

\section*{Normalized}

When selected, the output vector, \(v\), is normalized such that \(\operatorname{sum}(v)=1\).

Use of this parameter is not supported for fixed-point signals.

\section*{Running histogram}

Set to enable the running histogram operation, and clear to enable basic histogram operation. For more information, see "Basic Operation" on page 2-629 and "Running Operation" on page 2-629.

\section*{Reset port}

The type of event that resets the running histogram. For more information, see "Resetting the Running Histogram" on page \(2-630\). The reset signal and the input data signal must be the same rate. This parameter is enabled only when you select the Running histogram check box. For more information, see "Running Operation" on page 2-629.

The Data type attributes pane of the Histogram block dialog appears as follows.
-Histogram
Histogram of the vector elements. If running histogram is selected, block returns the histogram of the input elements over time.

Main Data type attributes
Fixed-point operational parameters
Rounding mode: Floor \(\quad\) Overflow mode: Wrap

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the block input is floating point, all block data types match the input. In addition, fixed-point data type attributes only apply when the block inputs are complex fixed-point signals.


Note The fixed-point parameters listed are only used for fixed-point complex inputs, which are distributed by squared magnitude.

\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Histogram}

\section*{Product output data type}

Specify the product output data type. See "Multiplication Data Types" for illustrations depicting the use of the product output data type. You can set it to:
- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button \(\quad \gg \quad\) to display the Data Type Assistant, which helps you set the Product output data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

\section*{Accumulator data type}

Specify the accumulator data type. You can set this parameter to:
- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button \(\quad \ggg\) to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

\section*{Lock scaling against changes by the autoscaling tool}

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline In & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- 8 -, 16 -, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline Output & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- 32-bit unsigned integers
\end{tabular} \\
\hline Rst & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{lll} 
See Also & Sort & Signal Processing Blockset \\
& hist & MATLAB
\end{tabular}

Purpose
Library

Description


Compute inverse discrete cosine transform (IDCT) of input
Transforms
dspxfrm3

The IDCT block computes the inverse discrete cosine transform (IDCT) of each channel in the \(M\)-by- \(N\) input matrix, u.
\[
y=\operatorname{idct}(u) \quad \% \text { Equivalent MATLAB code }
\]

When the input is a sample-based row vector, the IDCT block computes the inverse discrete cosine transform across the vector dimension of the input. For all other sample-based N-D arrays, the block computes the IDCT across the first dimension of the input.

For both sample-based and frame-based inputs, the block assumes that each input column is a frame containing \(M\) consecutive samples from an independent channel. The frame size, \(M\), must be a power of two. To work with other frame sizes, use the Pad block to pad or truncate the frame size to a power of two length.

When the input is an \(M\)-by- \(N\) matrix, the output is an \(M\)-by- \(N\) matrix whose \(l\) th column contains the length- \(M\) IDCT of the corresponding input column.
\[
y(m, l)=\sum_{k=1}^{M} w(k) u(k, l) \cos \frac{\pi(2 m-1)(k-1)}{2 M}, \quad m=1, \ldots, M
\]
where
\[
w(k)= \begin{cases}\frac{1}{\sqrt{M}}, & k=1 \\ \sqrt{\frac{2}{M}}, & 2 \leq k \leq M\end{cases}
\]

The Output sampling mode parameter allows you to select the sampling mode of the output. If the input is a sample-based N-D array with 3 or more dimensions, the Output sampling mode must be Sample based. The output sample rate and data type (real/complex) are the same as those of the input.
For convenience, length-M 1-D vector inputs and sample-based length \(-M\) row vector inputs are processed as single channels (that is, as \(M\)-by- 1 column vectors), and the output has the same dimension as the input.

The Sine and cosine computation parameter determines how the block computes the necessary sine and cosine values. This parameter has two settings, each with its advantages and disadvantages, as described in the following table.
\begin{tabular}{l|l|l}
\hline \begin{tabular}{l} 
Sine and Cosine \\
Computation \\
Parameter Setting
\end{tabular} & \begin{tabular}{l} 
Sine and Cosine Computation \\
Method
\end{tabular} & \begin{tabular}{l} 
Effect on Block \\
Performance
\end{tabular} \\
\hline Table lookup & \begin{tabular}{l} 
The block computes and stores the \\
trigonometric values before the \\
simulation starts, and retrieves \\
them during the simulation. \\
When you generate code from \\
the block, the processor running \\
the generated code stores the \\
trigonometric values computed \\
by the block in a speed-optimized \\
table, and retrieves the values \\
during code execution.
\end{tabular} & \begin{tabular}{l} 
The block usually runs \\
much more quickly, \\
but requires extra \\
memory for storing \\
the precomputed \\
trigonometric values.
\end{tabular} \\
\hline Trigonometric fcn & \begin{tabular}{l} 
The block computes sine and cosine \\
values during the simulation. \\
When you generate code from the \\
block, the processor running the \\
generated code computes the sine \\
and cosine values while the code \\
runs.
\end{tabular} & \begin{tabular}{l} 
The block usually runs \\
more slowly, but does not \\
need extra data memory. \\
For code generation, the \\
block requires a support \\
library to emulate the \\
trigonometric functions, \\
increasing the size of the \\
generated code.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fixed-Point Data Types}

The following diagrams show the data types used within the IDCT block for fixed-point signals. You can set the sine table, accumulator, product output, and output data types displayed in the diagrams in the IDCT block dialog as discussed in "Dialog Box" on page 2-647.

Inputs to the IDCT block are first cast to the output data type and stored in the output buffer. Each butterfly stage processes signals in the accumulator data type, with the final output of the butterfly being cast back into the output data type.


\section*{Butierily Stage Data Types}


\section*{Iwidde Muthiplication Daka Types}


The output of the multiplier is in the product output data type when at least one of the inputs to the multiplier is real. When both of the
inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, see "Multiplication Data Types".

Dialog Box

The Main pane of the IDCT block dialog appears as follows.

\section*{Function Block Parameters: IDCT x}
-IDCT
Outputs the inverse discrete cosine transform (IDCT) of a real or complex input. The IDCT is computed across the vector dimension for a sample-based vector input and across the first dimension for all other inputs. The dimension across which the IDCT is computed must be a power-of-two length.

The block only accepts N -dimensional signals with \(\mathrm{N}>2\) when the 'Output sampling mode' parameter is set to 'Sample based.'


\section*{Sine and cosine computation}

Sets the block to compute sines and cosines by either looking up sine and cosine values in a speed-optimized table (Table lookup), or by making sine and cosine function calls (Trigonometric fen). See the table above.

\section*{Output sampling mode}

Select Sample based or Frame based output. If the input to the IDCT block has 3 or more dimensions, you must select Sample based output.

The Fixed-point pane of the IDCT block dialog appears as follows.

\section*{Function Block Parameters: IDCT}
-IDCT
Outputs the inverse discrete cosine transform (IDCT) of a real or complex input. The IDCT is computed across the vector dimension for a sample-based vector input and across the first dimension for all other inputs. The dimension across which the IDCT is computed must be a power-of-two length.

The block only accepts N -dimensional signals with \(\mathrm{N}>2\) when the 'Output sampling mode' parameter is set to 'Sample based.'

\section*{Main Fixed-point}

Settings on this pane only apply when block inputs are fixed-point signals.
Fixed-point operational parameters
Rounding mode: Floor
Overflow mode: Wrap
-Fixed-point data types
Mode
Sine table
Same word length as input
Product output Inherit via internal rule
Accumulator Inherit via internal rule
Output
Inherit via internal rule
L Lock scaling against changes by the autoscaling tool


\section*{Rounding mode}

Select the rounding mode for fixed-point operations. The sine table values do not obey this parameter; they always round to Nearest.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Sine table}

Choose how you specify the word length of the values of the sine table. The fraction length of the sine table values is always equal to the word length minus one:
- When you select Same word length as input, the word length of the sine table values match that of the input to the block.
- When you select Specify word length, you can enter the word length of the sine table values, in bits.

The sine table values do not obey the Rounding mode and Overflow mode parameters; they are always saturated and rounded to Nearest.

\section*{Product output}

Use this parameter to specify how you would like to designate the product output word and fraction lengths. See "Fixed-Point Data Types" on page 2-644 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block:
- When you select Inherit via internal rule, the product output word length and fraction length are calculated automatically. For information about how the product output word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

\section*{Accumulator}

Use this parameter to specify how you would like to designate the accumulator word and fraction lengths. See "Fixed-Point Data Types" on page 2-644 and "Multiplication Data Types" for illustrations depicting the use of the accumulator data type in this block:
- When you select Inherit via internal rule, the accumulator word length and fraction length are calculated automatically. For information about how the accumulator word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".
- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

\section*{Output}

Choose how you specify the output word length and fraction length:
- When you select Inherit via internal rule, the output word length and fraction length are calculated automatically. The internal rule first calculates an ideal output word length and fraction length using the following equations:
\[
W L_{\text {ideal output }}=W L_{\text {input }}+\text { floor }\left(\log _{2}(D C T \text { length }-1)\right)+1
\]
\[
F L_{\text {ideal output }}=F L_{\text {input }}
\]

Using these ideal results, the internal rule then selects word lengths and fraction lengths that are appropriate for your hardware. For more information, see "Inherit via Internal Rule".
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

\section*{Lock scaling against changes by the autoscaling tool}

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling feature of the Fixed-Point Tool. See the fxptdlg reference page for more information.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& - Single-precision floating point \\
& - Fixed point (signed and unsigned) \\
& - 8-, 16-, and 32 -bit signed integers \\
& • 8-, 16-, and 32-bit unsigned integers \\
\hline Output & • Double-precision floating point \\
& - Single-precision floating point \\
& • Fixed point (signed only) \\
& • 8-, 16-, and 32 -bit signed integers \\
\hline
\end{tabular}
\begin{tabular}{lll} 
See Also & DCT & Signal Processing Blockset \\
& IFFT & Signal Processing Blockset \\
& idct & Signal Processing Toolbox
\end{tabular}

\section*{Identity Matrix}

Library

Description


\section*{Examples}

Purpose Generate matrix with ones on main diagonal and zeros elsewhere
- Signal Processing Sources dspsrcs4
- Math Functions / Matrices and Linear Algebra / Matrix Operations dspmtrx3

The Identity Matrix block generates a rectangular matrix with ones on the main diagonal and zeros elsewhere.

When you select the Inherit output port attributes from input port check box, the input port is enabled, and an \(M\)-by- \(N\) matrix input generates a sample-based \(M\)-by- \(N\) matrix output with the same sample period. The values in the input matrix are ignored.
\[
y=\operatorname{eye}([M \mathrm{~N}]) \quad \% \text { Equivalent MATLAB code }
\]

When you do not select the Inherit output port attributes from input port check box, the input port is disabled, and the dimensions of the output matrix are determined by the Matrix size parameter. A scalar value, \(M\), specifies an \(M\)-by- \(M\) identity matrix, while a two-element vector, \([M N\) ], specifies an \(M\)-by- \(N\) unit-diagonal matrix. The output is sample based, and has the sample period specified by the Sample time parameter.

Set Matrix size to [3 6] to generate the 3-by-6 unit-diagonal matrix below.
\[
\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
\]

\section*{Identity Matrix}

Dialog Box

The Main pane of the Identity Matrix block dialog appears as follows.

Source Block Parameters: Identity Matrix X
Identity Matrix (mask) (link)
Output an identity matrix. If the matrix size entered is a scalar, then the output will be a square (symmetric) identity matrix with the number of rows and columns both equal to the specified value. If the matrix size entered is a two-element vector [ \(\mathrm{M} N \mathrm{~N}\) ] then the output will be an asymmetric matrix with the number of rows equal to M , the number of columns equal to N , ones down the diagonal, and zeros elsewhere. This matches the syntax of the MATLAB function eye( N ) and eye \((\mathrm{M}, \mathrm{N})\), respectively.

\section*{\begin{tabular}{l|l|}
\hline Main & Data Types
\end{tabular}}
\(\Gamma\) Inherit output port attributes from input port
Matrix size:
5
Sample time:
1


\section*{Inherit output port attributes from input port}

Enables the input port when selected. In this mode, the output inherits its dimensions, sample period, and data type from the input. The output is always real.

\section*{Matrix size}

The number of rows and columns in the output matrix: a scalar \(M\) for a square \(M\)-by- \(M\) output, or a vector [ \(M N\) ] for an \(M\)-by- \(N\) output. This parameter is disabled when you select Inherit input port attributes from input port.

\section*{Identity Matrix}

\section*{Sample time}

The discrete sample period of the output. This parameter is disabled when you select Inherit input port attributes from input port.

The Data Types pane of the Identity Matrix block dialog appears as follows.

Output an identity matrix. If the matrix size entered is a scalar, then the output will be a square (symmetric) identity matrix with the number of rows and columns both equal to the specified value. If the matrix size entered is a two-element vector [ \(\mathrm{M} N\) ] , then the output will be an asymmetric matrix with the number of rows equal to M , the number of columns equal to N , ones down the diagonal, and zeros elsewhere. This matches the syntax of the MA, TLAB function eye ( N ) and eye \((\mathrm{M}, \mathrm{N}\) ), respectively.


\section*{Output data type}

Specify the output data type in one of the following ways:
- Choose one of the built-in data types from the list.
- Choose Fixed-point to specify the output data type and scaling in the Signed, Word length, Set fraction length in output to, and Fraction length parameters.
- Choose User-defined to specify the output data type and scaling in the User-defined data type, Set fraction length in output to, and Fraction length parameters.
- Choose Inherit via back propagation to set the output data type and scaling to match the following block

\section*{Signed}

Select to output a signed fixed-point signal. Otherwise, the signal is unsigned. This parameter is visible only when you select Fixed-point for the Output data type parameter.

\section*{Word length}

Specify the word length, in bits, of the fixed-point output data type. This parameter is visible only when you select Fixed-point for the Output data type parameter.

\section*{User-defined data type}

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the following Simulink Fixed Point functions: sfix, ufix, sint, uint, sfrac, and ufrac. This parameter is visible only when you select User-defined for the Output data type parameter.

\section*{Set fraction length in output to}

Specify the scaling of the fixed-point output by either of the following two methods:
- Choose Best precision to have the output scaling automatically set such that the output signal has the best possible precision.
- Choose User-defined to specify the output scaling in the Fraction length parameter.

This parameter is visible only when you select Fixed-point for the Output data type parameter, or when you select User-defined and the specified output data type is a fixed-point data type.

\section*{Identity Matrix}

\section*{Fraction length}

For fixed-point output data types, specify the number of fractional bits, or bits to the right of the binary point. This parameter is visible only when you select Fixed-point or User-defined for the Output data type parameter and User-defined for the Set fraction length in output to parameter.

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Input & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Output & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- Boolean \\
- 8-, 16 -, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline
\end{tabular}

See Also
Constant Diagonal Matrix
Constant
eye

Signal Processing Blockset
Simulink
MATLAB
\begin{tabular}{ll} 
Purpose & Inverse discrete wavelet transform (IDWT) of input \\
Library & \begin{tabular}{l} 
Transforms \\
\\
\\
\\
dspxfrm3
\end{tabular} \\
Description & \begin{tabular}{ll}
\(10 W T\) \\
\(A s y m\)
\end{tabular}
\end{tabular}

Note The IDWT block is the same as the Dyadic Synthesis Filter Bank block in the Multirate Filters library, but with different default settings. See the Dyadic Synthesis Filter Bank for more information on how to use the block.

The IDWT block computes the inverse discrete wavelet transform (IDWT) of the input subbands. By default, the block accepts a single sample-based vector or matrix of concatenated subbands. The output is frame based, and has the same dimensions as the input. Each column of the output is the IDWT of the corresponding input column.
You must install the Wavelet Toolbox product for the block to design wavelet-based filters automatically to compute the IDWT. Otherwise, you must specify your own lowpass and highpass FIR filters by setting the Filter parameter to User defined.
For detailed information about how to use this block, see Dyadic Synthesis Filter Bank.

Examples
See the examples in the Dyadic Synthesis Filter Bank block reference.
Supported - Double-precision floating point
Data
Types
- Single-precision floating point

\author{
See Also \\ Dyadic Synthesis Filter Bank DWT \\ Signal Processing Blockset \\ Signal Processing Blockset
}

\section*{Purpose}

\section*{Library}

Description


Compute inverse fast Fourier transform (IFFT) of input
Transforms
dspxfrm3

The IFFT block computes the inverse fast Fourier transform (IFFT) of each row of a sample-based 1-by- \(P\) input vector, \(u\), or across the first dimension \((P)\) of an N-D input array, \(u\). When you select the Inherit FFT length from input dimensions check box, \(P\) must be an integer power of two and the FFT length, \(M\), gets set equal to \(P\). If you do not select the check box, \(P\) can be any length, and the value of the FFT length parameter, \(M\), must be a positive integer power of two. For user-specified FFT lengths, when \(M\) is not equal to \(P\), zero padding or modulo- \(M\) data wrapping happens before the IFFT operation, as per Orfanidis [1].
```

$y=i f f t(u, M) \quad \% \quad P \leq M$
$y(:, l)=$ ifft(datawrap(u(:,l),M)) \% P > M; l = 1,...,N

```

When the input length, \(P\), is greater than the FFT length, \(M\), you may see magnitude increases in your IFFT output. These magnitude increases occur because the IFFT block uses modulo- \(M\) data wrapping to preserve all available input samples.
To avoid such magnitude increases, you can truncate the length of your input sample, \(P\), to the FFT length, \(M\). To do so, place a Pad block before the IFFT block in your model.
The \(k\) th entry of the \(l\) th output channel, \(y(k, l)\), is equal to the \(k\) th point of the \(M\)-point inverse discrete Fourier transform (IDFT) of the \(l\) th input channel:
\[
y(k, l)=\frac{1}{M} \sum_{p=1}^{P} u(p, l) e^{j 2 \pi(p-1)(k-1) / M} \quad k=1, \ldots, M
\]

This block supports real and complex floating-point and fixed-point inputs.

\section*{Input and Output Characteristics}

The following table describes the input and output characteristics of the IFFT block. The table's columns provide the following information:
- Valid inputs to the IFFT block. They can be real- or complex-valued, and they can be in linear or bit-reversed order.
- The dimension along which the block computes the IDFT.
- The corresponding block output characteristics. The output port rate must equal the input port rate.
\begin{tabular}{l|l|l}
\hline & \begin{tabular}{l} 
Dimension \\
Along \\
Which \\
Block
\end{tabular} \\
Computes
\end{tabular},

\section*{Corresponding Block Output Characteristics}

The following output characteristics apply to all valid block inputs:
- Frame based
- Complex valued. If you input conjugate symmetric data and select the Input is conjugate symmetric check box, the block outputs a real-valued result.
- Same dimension as input (for 1-D inputs, output is a length- \(M\) column).
- Each output column (each row for sample-based row inputs) contains the \(M\)-point IDFT of the corresponding input channel in linear order. If you do not select the Divide output by FFT length check box, the block computes a modified version of

\begin{tabular}{l|l} 
& \begin{tabular}{l} 
the IDFT that does not include the multiplication \\
factor of \(1 / M\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Selecting the Twiddle Factor Computation Method}

The Twiddle factor computation parameter determines how the block computes the necessary sine and cosine terms to calculate the term \(e^{j 2 \pi(p-1)(k-1) / M}\), shown in the first equation of this block reference page. This parameter has two settings, each with its advantages and disadvantages, as described in the following table. For fixed-point signals, only Table lookup mode is supported.
\(\left.\begin{array}{l|l|l}\hline \begin{array}{l}\text { Twiddle Factor } \\
\text { Computation } \\
\text { Parameter } \\
\text { Setting }\end{array} & \begin{array}{l}\text { Sine and Cosine Computation } \\
\text { Method }\end{array} & \text { Effect on Block Performance }\end{array}\right]\)\begin{tabular}{lll} 
Table lookup & \begin{tabular}{l} 
The block computes and stores the \\
trigonometric values before the \\
simulation starts and retrieves \\
them during the simulation. \\
When you generate code from \\
the block, the processor running \\
the generated code stores the \\
trigonometric values computed by \\
the block and retrieves the values \\
during code execution.
\end{tabular} & \begin{tabular}{l} 
The block usually runs much more \\
quickly, but requires extra memory \\
for storing the precomputed \\
trigonometric values. You can \\
optimize the table for memory \\
consumption or speed, as described \\
in "Optimizing the Table of \\
Trigonometric Values" on page \\
\(2-664\).
\end{tabular} \\
\hline \begin{tabular}{l} 
Trigonometric \\
fcn
\end{tabular} & \begin{tabular}{l} 
The block computes sine and cosine \\
values during the simulation. \\
When you generate code from the
\end{tabular} & \begin{tabular}{l} 
The block usually runs more \\
slowly, but does not need extra \\
data memory. For code generation,
\end{tabular} \\
\hline
\end{tabular}


\section*{Optimizing the Table of Trigonometric Values}

When you set the Twiddle factor computation parameter to Table lookup, you also need to set the Optimize table for parameter. This parameter optimizes the table of trigonometric values for speed or memory by varying the number of table entries as summarized in the following table.
\begin{tabular}{l|l|l}
\hline \begin{tabular}{l} 
Optimize \\
Table for \\
Parameter \\
Setting
\end{tabular} & \begin{tabular}{l} 
Number of Table \\
Entries for N-Point \\
IFFT
\end{tabular} & \begin{tabular}{l} 
Memory Required for Single-Precision \\
512-Point IFFT
\end{tabular} \\
\hline Speed & \begin{tabular}{l}
\(3 N / 4-\) floating point \\
\(N-\) fixed point
\end{tabular} & \(\left(\frac{3 \times 512}{4}\right.\) table entries \() \times\left(4 \frac{\text { bytes }}{\text { table entry }}\right)=1536\) bytes \\
\hline Memory & \begin{tabular}{l}
\(N / 4-\) floating point \\
Not supported for \\
fixed point
\end{tabular} & \(\left(\frac{512}{4}\right.\) table entries \() \times\left(4 \frac{\text { bytes }}{\text { table entry }}\right)=512\) bytes \\
\hline
\end{tabular}

\section*{Input Order}

Select or clear the Input is in bit-reversed order check box to designate the ordering of the column elements of the block input. If you select the Input is in bit-reversed order check box, the block assumes the input is in bit-reversed order. If you clear the Input is in bit-reversed order check box, the block assumes the input is in linear order. For more information on ordering of the output, see "Linear and Bit-Reversed Output Order".

\section*{Conjugate Symmetric Input}

The FFT block yields conjugate symmetric output when you input real-valued data. Taking the IFFT of a conjugate symmetric input matrix produces real-valued output. Therefore, if you input conjugate symmetric data and select the Input is conjugate symmetric check box, the block produces real-valued outputs. Selecting this check box optimizes the block's computation method.
If you input conjugate symmetric data to the IFFT block and do not select the Input is conjugate symmetric check box, the IFFT block outputs a complex-valued signal with small imaginary parts. If you select this check box and the input is not conjugate symmetric, the block output is invalid.

\section*{Scaled Output}

When you select the Divide output by FFT length check box, the block computes its output according to the IDFT equation, discussed in the Description section.

If you clear the Divide output by FFT length check box, the block computes a modified version of the IDFT, \(M \cdot y(k, l)\), which is defined by the following equation:
\[
M \cdot y(k, l)=\sum_{p=1}^{P} u(p, l) e^{j 2 \pi(p-1)(k-1) / M} \quad k=1, \ldots, M
\]

\section*{Algorithms Used for IFFT Computation}

Depending on whether the block input is in bit-reversed order, conjugate symmetric order, or both, the block uses one or more of the following algorithms as summarized in the subsequent table:
- Bit-reversal operation
- Double-signal algorithm
- Half-length algorithm
- Radix-2 decimation-in-time (DIT) algorithm
\begin{tabular}{l|l|l}
\hline \begin{tabular}{l} 
Input \\
Complexity
\end{tabular} & \begin{tabular}{l} 
Other Parameter \\
Settings
\end{tabular} & \begin{tabular}{l} 
Algorithms \\
Used for IFFT \\
Computation
\end{tabular} \\
\hline Real or complex & \begin{tabular}{l} 
Г Input is in bit-reversed order \\
Г Input is coniugate symmetric
\end{tabular} & \begin{tabular}{l} 
Bit-reversal \\
operation and \\
radix-2 DIT
\end{tabular} \\
\hline Real or complex & \begin{tabular}{l} 
V Input is in bit-reversed order \\
Г Input is coniugate symmetric
\end{tabular} & Radix-2 DIF \\
\hline Real or complex & \begin{tabular}{l} 
Г Input is in bit-reversed order \\
\(\boldsymbol{V}\)
\end{tabular} & \begin{tabular}{l} 
Bit-reversal is coniugate symmetric \\
operation and \\
radix-2 DIT in \\
conjunction with \\
the half-length \\
and double-signal \\
algorithms
\end{tabular} \\
\hline Real or complex & \(\boldsymbol{\nabla}\) Input is in bit-reversed order \\
\(\boldsymbol{V}\) Input is coniugate symmetric & \begin{tabular}{l} 
Radix-2 DIF in \\
conjunction with \\
the half-length \\
and double-signal \\
algorithms
\end{tabular} \\
\hline
\end{tabular}

When the Input is conjugate symmetric check box is selected, the efficiency of the IFFT algorithm can be enhanced in two ways:
- By forming one length- \(M\) complex-valued sequence from two length- \(M\) conjugate symmetric input sequences
- By forming one length- \(M\) complex-valued sequence from one length- \(2 M\) conjugate symmetric input sequence

These optimizations correspond to the optimizations used in the FFT computation of real input signals.

When there are \(2 N+1\) conjugate symmetric input channels and the Input is conjugate symmetric check box is selected, the IFFT block applies the double-signal algorithm to the first \(2 N\) input channels and the half-length algorithm to the last odd-numbered channel. If the input signals have fixed-point data types, it is possible to see different numerical results in the output of the last odd channel, even if all input channels are identical. This numerical difference results from differences in the double-signal algorithm and the half-length algorithm.

You can eliminate this numerical difference in two ways:
- Using full precision arithmetic for fixed-point input signals
- Changing the input data type to floating point

For more information on the double-signal and half-length algorithms, see Proakis [2]. "Efficient Computation of the DFT of Two Real Sequences" on page 475 describes the double signal algorithm. "Efficient Computation of the DFT of a 2 N-Point Real Sequence" on page 476 describes the half-length algorithm.

\section*{Fixed-Point Data Types}

The following diagrams show the data types used within the IFFT block for fixed-point signals. You can set the sine table, accumulator, product output, and output data types displayed in the diagrams in the IFFT block dialog, as discussed in "Dialog Box" on page 2-670.

The IFFT block first casts input to the output data type and then stores it in the output buffer. Each butterfly stage then processes signals in the accumulator data type, with the final output of the butterfly being cast back into the output data type. The block multiplies in a twiddle factor before each butterfly stage in a decimation-in-time IFFT, and after each butterfly stage in a decimation-in-frequency IFFT.

\section*{Decinatioriartine IFFT}

--twiddle mutiplixation- butterly stoge_-_

\section*{Decinatioririrfrequency IFFT}

\(\downarrow\) - butterfly stoge — widdle multiplication-

\section*{Butierily stage data types}


\section*{Twidde multiplication data types}


The output of the multiplier is in the accumulator data type because both of the inputs to the multiplier are complex. For details on the complex multiplication performed, see "Multiplication Data Types".

\section*{Examples See "Transforming Frequency-Domain Data into the Time Domain" in the Signal Processing Blockset User's Guide.}

Dialog Box

The Main pane of the IFFT block dialog appears as follows.


\section*{Twiddle factor computation}

Specify the computation method of the term \(e^{j 2 \pi(p-1)(l-1) / M}\) shown in the first equation of this block reference page.

In Table lookup mode, the block computes and stores the sine and cosine values before the simulation starts.

In Trigonometric fcn mode, the block computes the sine and cosine values during the simulation. See "Selecting the Twiddle Factor Computation Method" on page 2-663.

This parameter must be set to Table lookup for fixed-point signals.

\section*{Optimize table for}

Select this option to optimize the table of sine and cosine values for either Speed or Memory. This parameter becomes available only when you set the Twiddle factor computation parameter to Table lookup. See "Optimizing the Table of Trigonometric Values" on page 2-664.

This parameter must be set to Speed for fixed-point signals.

\section*{Input is in bit-reversed order}

Designate the order of the input channel elements. Select this check box when the input is in bit-reversed order, and clear this check box when the input is in linear order. The block yields invalid outputs when you do not set this parameter correctly. See "Input Order" on page 2-665.

You cannot select this parameter if you have cleared the Inherit FFT length from input dimensions parameter, and you are specifying the FFT length using the FFT length parameter.

\section*{Input is conjugate symmetric}

Select this option when the input to the block is conjugate symmetric and you want real-valued outputs. If you select this
option and the input is not conjugate symmetric, the block output is invalid.

You cannot select this parameter if you have cleared the Inherit FFT length from input dimensions parameter, and you are specifying the FFT length using the FFT length parameter.

\section*{Divide output by FFT length}

When you select this check box, the block computes the output according to the IDFT equation discussed in the Description section.

When you clear this check box, the block computes the output using a modified version of the IDFT. The modified IDFT equation does not include the multiplication factor of \(1 / M\). For the full equation, see "Scaled Output" on page 2-665.

\section*{Inherit FFT length from input dimensions}

Select to inherit the FFT length from the input dimensions. When you select this parameter, the input length \(P\) must be a power of two. If you do not select this parameter, the FFT length parameter becomes available.

You cannot clear this parameter when you select either the Input is in bit-reversed order or the Input is conjugate symmetric parameter.

\section*{FFT length}

Specify a power-of-two FFT length. This parameter only becomes available if you do not select the Inherit FFT length from input dimensions parameter.

\section*{Output sampling mode}

Select Sample based or Frame based output. If the input to the IFFT block has 3 or more dimensions, you must select Sample based output.

The Fixed-point pane of the IFFT block dialog appears as follows.

\section*{Function Block Parameters: IFFT}

IFFT
Outputs the inverse fast Fourier transform (IFFT) of a real or complex input by computing radix-2 decimation-in-time (DIT) or decimation-in-frequency (DIF), depending on block options. Outputs are real if you select 'Input is conjugate symmetric' option; otherwise, outputs are complex.

When the 'Inherit FFT length from input dimensions' check box is selected, the input must have a power-of-two width. The block only accepts N -dimensional signals with \(\mathrm{N}>2\) when the 'Output sampling mode' parameter is set to 'Sample based.'

\section*{Main Fixed-point}

Settings on this pane only apply when block inputs are fixed-point signals.
\(\left[\begin{array}{l}\text { Fixed-point operational parameters } \\ \text { Rounding mode: } \\ \end{array}\right.\) Floor \(\quad \square\) Overflow mode: \(\begin{array}{l}\text { Wrap }\end{array}\)



\section*{Rounding mode}

Select the rounding mode for fixed-point operations. The sine table values do not obey this parameter; instead, they always round to Nearest.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations. The sine table values do not obey this parameter; instead, they are always saturated.

\section*{Sine table}

Choose how you specify the word length of the values of the sine table. The fraction length of the sine table values always equals the word length minus one:
- When you select Same word length as input, the word length of the sine table values match that of the input to the block.
- When you select Specify word length, you can enter the word length of the sine table values, in bits.

The sine table values do not obey the Rounding mode and Overflow mode parameters; instead, they are always saturated and rounded to Nearest.

\section*{Product output}

Use this parameter to specify how you would like to designate the product output word and fraction lengths. See "Fixed-Point Data Types" on page 2-667 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block:
- When you select Inherit via internal rule, the product output word length and fraction length are calculated automatically. For information about how the block calculates the product output word and fraction lengths when an internal rule is used, see "Inherit via Internal Rule".
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

\section*{Accumulator}

Use this parameter to specify how you would like to designate the accumulator word and fraction lengths. See "Fixed-Point Data Types" on page 2-667 and "Multiplication Data Types" for illustrations depicting the use of the accumulator data type in this block:
- When you select Inherit via internal rule, the block calculates the accumulator word length and fraction length automatically. For information about how block calculates the accumulator word and fraction lengths when an internal rule is used, see "Inherit via Internal Rule".
- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

\section*{Output}

Choose how you specify the output word length and fraction length:
- When you select Inherit via internal rule, the block calculates the output word length and fraction length
automatically. The internal rule first calculates an ideal output word length and fraction length using the following equations:
\[
\begin{aligned}
& W L_{\text {ideal output }}=W L_{\text {input }}+\text { floor }\left(\log _{2}(F F T \text { length }-1)\right)+1 \\
& F L_{\text {ideal output }}=F L_{\text {input }}
\end{aligned}
\]

Using these ideal results, the internal rule then selects word lengths and fraction lengths that are appropriate for your hardware. For more information, see "Inherit via Internal Rule".
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

\section*{Lock scaling against changes by the autoscaling tool}

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling feature of the Fixed-Point Tool. See the fxptdlg reference page for more information.

\section*{References [1] Orfanidis, S. J. Introduction to Signal Processing. Upper Saddle} River, NJ: Prentice Hall, 1996, p. 497.
[2] Proakis, John G. and Dimitris G. Manolakis. Digital Signal Processing, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 1996.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point \\
& • 8 -, 16-, and 32-bit signed integers \\
& • 8-, 16-, and 32-bit unsigned integers \\
\hline Output & • Double-precision floating point \\
& - Single-precision floating point \\
& • Fixed point (signed only) \\
& • 8-, 16 -, and 32 -bit signed integers \\
\hline
\end{tabular}
\begin{tabular}{lll} 
See Also & FFT & Signal Processing Blockset \\
& IDCT & Signal Processing Blockset \\
& Pad & Signal Processing Blockset \\
& bitrevorder & Signal Processing Toolbox \\
& fft & MATLAB \\
& ifft & MATLAB
\end{tabular}

\section*{Inherit Complexity}

Purpose
Library

\section*{Description}
\(\ggg>\) Def Complexity

Change complexity of input to match reference signal
Signal Management / Signal Attributes
dspsigattribs
The Inherit Complexity block alters the input data at the Data port to match the complexity of the reference input at the Ref port. When the Data input is real, and the Ref input is complex, the block appends a zero-valued imaginary component, 0i, to each element of the Data input.


When the Data input is complex, and the Ref input is real, the block outputs the real component of the Data input.


When both the Data input and Ref input are real, or when both the Data input and Ref input are complex, the block propagates the Data input with no change.

\section*{Inherit Complexity}

\section*{Dialog} Box


Supported Data
Types
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Data & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline Ref & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline
\end{tabular}

\section*{Inherit Complexity}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Output & \(\bullet\) Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point (signed and unsigned) \\
& • Boolean \\
& \(\bullet 8-, 16-\), and 32 -bit signed integers \\
& \(\bullet 8-, 16\)-, and 32 -bit unsigned integers \\
\hline
\end{tabular}
See Also \begin{tabular}{lll} 
Check Signal & Signal Processing Blockset \\
Attributes & \\
\begin{tabular}{l} 
Complex to \\
Magnitude-Angle
\end{tabular} & Simulink \\
\begin{tabular}{l} 
Complex to \\
Real-Imag
\end{tabular} & Simulink \\
\begin{tabular}{l} 
Magnitude-Angle to \\
Complex
\end{tabular} & Simulink \\
\begin{tabular}{l} 
Real-Imag to \\
Complex
\end{tabular} & Simulink
\end{tabular}

\title{
Integer Delay (Obsolete)
}

\section*{Purpose \\ Library \\ Description \\ }

Delay input by integer number of sample periods
dspobslib

Note The Integer Delay block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Delay block.

The Integer Delay block delays a discrete-time input by the number of sample intervals specified in the Delay parameter. Noninteger delay values are rounded to the nearest integer, and negative delays are clipped at 0 .

\section*{Sample-Based Operation}

When the input is a sample-based \(M\)-by- \(N\) matrix, the block treats each of the \(M^{*} N\) matrix elements as an independent channel. The Delay parameter, \(v\), can be an \(M\)-by- \(N\) matrix of positive integers that specifies the number of sample intervals to delay each channel of the input, or a scalar integer by which to equally delay all channels.

For example, when the input is \(M\)-by- 1 and \(v\) is the matrix [ \(v(1) v(2)\) \(\ldots \quad v(M)]\), the first channel is delayed by \(v(1)\) sample intervals, the second channel is delayed by \(v(2)\) sample intervals, and so on. Note that when a channel is delayed for \(\Delta\) sample-time units, the output sample at time \(t\) is the input sample at time \(t-\Delta\). When \(t-\Delta\) is negative, then the output is the corresponding value specified by the Initial conditions parameter.

A 1-D vector of length \(M\) is treated as an \(M\)-by-1 matrix, and the output is 1-D.

The Initial conditions parameter specifies the output of the block during the initial delay in each channel. The initial delay for a particular channel is the time elapsed from the start of the simulation until the first input in that channel is propagated to the output. Both

\section*{Integer Delay (Obsolete)}
fixed and time-varying initial conditions can be specified in a variety of ways to suit the dimensions of the input.

\section*{Fixed Initial Conditions}

A fixed initial condition in sample-based mode can be specified as one of the following:
- Scalar value to be repeated at each sample time of the initial delay (for every channel). For a 2 -by- 2 input with the parameter settings below,

the block generates the following sequence of matrices at the start of the simulation,
\[
\left[\begin{array}{ll}
-1 & -1 \\
-1 & -1
\end{array}\right],\left[\begin{array}{cc}
u_{11}^{1} & -1 \\
-1 & -1
\end{array}\right],\left[\begin{array}{cc}
u_{11}^{2} & u_{12}^{1} \\
-1 & -1
\end{array}\right],\left[\begin{array}{cc}
u_{11}^{3} & u_{12}^{2} \\
u_{21}^{1} & -1
\end{array}\right],\left[\begin{array}{cc}
u_{11}^{4} & u_{12}^{3} \\
u_{21}^{2} & u_{22}^{1}
\end{array}\right], \ldots
\]
where \(u_{i j}^{k}\) is the \(i, j\) th element of the \(k\) th matrix in the input sequence.
- Array of size \(M\)-by- \(N\)-by- \(d\). In this case, you can set different fixed initial conditions for each element of a sample-based input. This setting is explained further in the Array bullet in "Time-Varying Initial Conditions" on page 2-682.

Initial conditions cannot be specified by full matrices.

\section*{Time-Varying Initial Conditions}

A time-varying initial condition in sample-based mode can be specified in one of the following ways:

\section*{Integer Delay (Obsolete)}
- Vector of length \(d\), where \(d\) is the maximum value specified for any channel in the Delay parameter. The vector can be a \(L\)-by- \(d\), 1-by- \(d\), or 1-by-1-by- \(d\). The d elements of the vector are output in sequence, one at each sample time of the initial delay.

For a scalar input and the parameters shown below,

the block outputs the sequence \(-1,-1,-1,0,1, \ldots\) at the start of the simulation.
- Array of dimension \(M\)-by- \(N\)-by- \(d\), where \(d\) is the value specified for the Delay parameter (the maximum value when the Delay is a vector) and \(M\) and \(N\) are the number of rows and columns, respectively, in the input matrix. The \(d\) pages of the array are output in sequence, one at each sample time of the initial delay. For a 2 -by- 3 input, and the parameters below,

the block outputs the matrix sequence
\[
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right],\left[\begin{array}{lll}
2 & 4 & 6 \\
1 & 3 & 5
\end{array}\right],\left[\begin{array}{lll}
3 & 6 & 9 \\
0 & 4 & 8
\end{array}\right]
\]
at the start of the simulation. Note that setting Initial conditions to an array with the same matrix for each entry implements constant initial conditions; a different constant initial condition for each input matrix element (channel).

Initial conditions cannot be specified by full matrices.

\section*{Integer Delay (Obsolete)}

\section*{Frame-Based Operation}

When the input is a frame-based \(M\)-by- \(N\) matrix, the block treats each of the \(N\) columns as an independent channel, and delays each channel as specified by the Delay parameter.

For frame-based inputs, the Delay parameter can be a scalar integer by which to equally delay all channels. It can also be a 1-by- \(N\) row vector, each element of which serves as the delay for the corresponding channel of the \(N\)-channel input. Likewise, it can also be an \(M\)-by- 1 column vector, each element of which serves as the delay for one of the corresponding \(M\) samples for each channel. The Delay parameter can be an \(M\)-by- \(N\) matrix of positive integers as well; in this case, each element of each channel is delayed by the corresponding element in the delay matrix. For instance, if the fifth element of the third column of the delay matrix was 3 , then the fifth element of the third channel of the input matrix is always delayed by three sample-time units.

When a channel is delayed for \(\Delta\) sample-time units, the output sample at time \(t\) is the input sample at time \(t-\Delta\). When \(t-\Delta\) is negative, then the output is the corresponding value specified in the Initial conditions parameter.

The Initial conditions parameter specifies the output during the initial delay. Both fixed and time-varying initial conditions can be specified. The initial delay for a particular channel is the time elapsed from the start of the simulation until the first input in that channel is propagated to the output.

\section*{Fixed Initial Conditions}

The settings shown below specify fixed initial conditions. The value entered in the Initial conditions parameter is repeated at the output for each sample time of the initial delay. A fixed initial condition in frame-based mode can be one of the following:
- Scalar value to be repeated for all channels of the output at each sample time of the initial delay. For a general \(M\)-by- \(N\) input with the parameter settings below,

\title{
Integer Delay (Obsolete)
}

the first five samples in each of the \(N\) channels are zero. Notice that when the frame size is larger than the delay, all of these zeros are all included in the first output from the block.
- Array of size 1 -by- \(N\)-by- \(D\). In this case, you can also specify different fixed initial conditions for each channel. See "Time-Varying Initial Conditions" on page 2-685 for details.

Initial conditions cannot be specified by full matrices.

\section*{Time-Varying Initial Conditions}

The following settings specify time-varying initial conditions. For time-varying initial conditions, the values specified in the Initial conditions parameter are output in sequence during the initial delay. A time-varying initial condition in frame-based mode can be specified in the following ways:
- Vector of length \(D\), where each of the \(N\) channels have the same initial conditions sequence specified in the vector. \(D\) is defined as follows:
- When an element of the delay entry is less than the frame size,
\(D=d+1\)
where \(d\) is the maximum delay.
- When the all elements of the delay entry are greater than the input frame size,
\[
D=d+\text { input frame size }-1
\]

Only the first \(d\) entries of the initial condition vector are used; the rest of the values are ignored, but you must include them nonetheless. For a two-channel ramp input [1:100; 1:100]' with a frame size of 4 and the parameter settings below,

\section*{Integer Delay (Obsolete)}

\section*{Delap (samples) \\ [25] \\ Intial condtions \\ \([1-1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6]\)}
the block outputs the following sequence of frames at the start of the simulation.
\[
\left[\begin{array}{ll}
-4 & -1 \\
-5 & -2 \\
1 & -3 \\
2 & -4
\end{array}\right],\left[\begin{array}{ll}
3 & -5 \\
4 & 1 \\
5 & 2 \\
6 & 3
\end{array}\right],\left[\begin{array}{ll}
7 & 4 \\
8 & 5 \\
9 & 6 \\
10 & 7
\end{array}\right], \ldots
\]

Note that since one of the delays, 2 , is less than the frame size of the input, 4, the length of the Initial conditions vector is the sum of the maximum delay and \(1(5+1)\), which is 6 . The first five entries of the initial conditions vector are used by the channel with the maximum delay, and the rest of the entries are ignored. Since the first channel is delayed for less than the maximum delay ( 2 sample time units), it only makes use of two of the initial condition entries.
- Array of size 1-by- \(N\)-by- \(D\), where \(D\) is defined in "Time-Varying Initial Conditions" on page \(2-685\). In this case, the \(k\) th entry of each 1 -by- \(N\) entry in the array corresponds to an initial condition for the \(k\) th channel of the input matrix. Thus, a 1-by- \(N\)-by- \(D\) initial conditions input allows you to specify different initial conditions for each channel. For instance, for a two-channel ramp input [ 1:100; \(1: 100\) ] ' with a frame size of 4 and the parameter settings below,

the block outputs the following sequence of frames at the start of the simulation.

\section*{Integer Delay (Obsolete)}
\[
\left[\begin{array}{ll}
-1 & -2 \\
-3 & -4 \\
-5 & -6 \\
-7 & -8
\end{array}\right],\left[\begin{array}{cc}
-9 & -10 \\
1 & 1 \\
2 & 2 \\
3 & 3
\end{array}\right],\left[\begin{array}{ll}
4 & 4 \\
5 & 5 \\
6 & 6 \\
7 & 7
\end{array}\right], \ldots
\]

Note that the channels have distinct time varying initial conditions; the initial conditions for channel 1 correspond to the first entry of each length- 2 row vector in the initial conditions array, and the initial conditions for channel 2 correspond to the second entry of each row vector in the initial conditions array. Only the first five entries in the initial conditions array are used; the rest are ignored.

The 1-by- \(N\)-by- \(D\) array entry can also specify different fixed initial conditions for every channel; in this case, every 1 -by- \(N\) entry in the array would be identical, so that the initial conditions for each column are fixed over time.

Initial conditions cannot be specified by full matrices.

\section*{Resetting the Delay}

The block resets the delay whenever it detects a reset event at the optional Rst port. The reset sample time must be a positive integer multiple of the input sample time.

You specify the reset event in the Reset port parameter:
- None disables the Rst port.
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

\section*{Integer Delay (Obsolete)}

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above).
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero.

\section*{Integer Delay (Obsolete)}

Note When running simulations in the Simulink MultiTasking mode, sample-based reset signals have a one-sample latency, and frame-based reset signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a reset event, and when it applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

\section*{Examples}

Dialog
Box

The dspafxr demo illustrates an audio reverberation system built around the Integer Delay block.


\section*{Delay}

The number of sample periods to delay the input signal.

\section*{Initial conditions}

The value of the block's output during the initial delay.

\section*{Integer Delay (Obsolete)}

\section*{Reset port}

Determines the reset event that causes the block to reset the delay. For more information, see "Resetting the Delay" on page 2-687.

Supported
Data Types
- Double-precision floating point
- Single-precision floating point
- Fixed point (signed only)
- Boolean - The block accepts Boolean inputs to the Rst port, which is enabled by the Reset port parameter.
- 8 -, 16-, and 32 -bit signed integers
- 8 -, 16-, and 32 -bit unsigned integers

\author{
See Also
}

Unit Delay
Variable Fractional Delay
Variable Integer Delay

Simulink
Signal Processing Blockset
Signal Processing Blockset

\section*{Purpose}

\section*{Library}

Description


Interpolate values of real input samples
Signal Operations
dspsigops
The Interpolation block interpolates discrete, real, inputs using linear or FIR interpolation. The block accepts both sample- and frame-based input data in the form of a vector, matrix, or sample-based N-D array. The block outputs a scalar, vector, matrix, or N-D array of the interpolated values, which has the same frame status as the input data.

You must specify the interpolation points (times at which to interpolate values) in a one-based interpolation array, \(I_{\text {Pts }}\). An entry of 1 in \(I_{\text {Pts }}\) refers to the first sample of the input data, an entry of 2.5 refers to the sample half-way between the second and third input sample, and so on. Depending on the dimensions of the input data, \(I_{\mathrm{Pts}}\) can be a scalar, a length- \(P\) row or column vector, a \(P\)-by- \(N\) frame-based matrix, or a sample-based N-D array where \(P\) is the size of the first dimension of the N-D array. In most cases, \(P\) can be any positive integer. For more information about valid interpolation arrays, refer to the tables in "How the Block Applies Interpolation Arrays to Inputs" on page 2-692.
In most cases, the block applies \(I_{\text {Pts }}\) across the first dimension of an N-D input array, or to each input vector. You can set the block to apply the same interpolation array for all input data (static interpolation points entered on the block mask) or to use a different interpolation array for each N-D array, matrix, or vector input (time-varying interpolation points received via the Pts input port).

\section*{Sections of This Reference Page}
- "Specifying Static Interpolation Points" on page 2-692
- "Specifying Time-Varying Interpolation Points" on page 2-692
- "How the Block Applies Interpolation Arrays to Inputs" on page 2-692
- "Handling Out-of-Range Interpolation Points" on page 2-698
- "Linear Interpolation Mode" on page 2-699

\section*{Interpolation}
- "FIR Interpolation Mode" on page 2-700
- "Dialog Box" on page 2-701
- "Supported Data Types" on page 2-703

\section*{Specifying Static Interpolation Points}

To supply the block with a static interpolation array (an interpolation array applied to every vector or N-D array of input data), perform the following steps:
- Set the Source of interpolation points parameter to Specify via dialog.
- Enter the interpolation array in the Interpolation points parameter. To learn about interpolation arrays, see "How the Block Applies Interpolation Arrays to Inputs" on page 2-692.

\section*{Specifying Time-Varying Interpolation Points}

To supply the block with time-varying interpolation arrays (where the block uses a different interpolation array for each vector or N-D array input), perform the following steps:

1 Set the Source of interpolation points parameter to Input port, the Pts port appears on the block.

2 Generate a signal of interpolation arrays, and supply it to the Pts port. The block uses the input to this port as the interpolation points. To learn about interpolation arrays, see "How the Block Applies Interpolation Arrays to Inputs" on page 2-692.

\section*{How the Block Applies Interpolation Arrays to Inputs}

The interpolation array \(I_{\text {Pts }}\) represents the points in time at which to interpolate values of the input signal. An entry of 1 in \(I_{\text {Pts }}\) refers to the first sample of the input, an entry of 2.5 refers to the sample half-way between the second and third input sample, and so on. In most cases, when \(I_{\mathrm{Pts}}\) is a vector, it can be of any length.

Valid values in the interpolation array, \(I_{\text {Pts }}\), range from 1 to the number of samples in each channel of the input. To learn how the block handles out of range interpolation values, see "Handling Out-of-Range Interpolation Points" on page 2-698.
Depending on the dimension and frame status of the input and the dimension of \(I_{\text {Pts }}\), the block usually applies \(I_{\text {Pts }}\) to the input in one of the following ways:
- Applies the \(I_{\text {Pts }}\) array across the first dimension of a sample-based N -D array or frame-based matrix input, resulting in a sample-based N -D array or frame-based matrix output.
- Applies the vector \(I_{\text {Pts }}\) to each input vector (as if the input vector were a single channel), resulting in a vector output with the same orientation as the input (row or column).

The following tables summarize how the block applies the interpolation array \(I_{\mathrm{Pts}}\) to all the possible types of sample- and frame-based inputs, and show the resulting output dimensions.

The first table describes the block's behavior when the Source of interpolation points is Specify via dialog and the input is sample based.
\begin{tabular}{|c|c|c|c|}
\hline Input Dimensions (Sample Based) & \begin{tabular}{l}
Valid \\
Dimensions of Interpolation Array \(I_{\text {Pts }}\)
\end{tabular} & How Block Applies \(I_{\text {Pts }}\) to Input & Output Dimensions (Sample Based) \\
\hline \multirow[t]{3}{*}{N-D Array (ex. \(M\)-by- \(N\)-by- \(Q\) )} & 1-by-P row & \multirow[t]{2}{*}{Applies \(I_{\text {Pts }}\) to the first dimension of the input array} & \multirow[t]{3}{*}{\[
\begin{aligned}
& P \text {-by- } N \text {-by- } Q \\
& \text { array }
\end{aligned}
\]} \\
\hline & \(P\)-by-1 column & & \\
\hline & \[
\begin{aligned}
& P \text {-by- } N \text {-by- } Q \\
& \text { array }
\end{aligned}
\] & Applies the columns of \(I_{\text {Pts }}\) to the corresponding & \\
\hline
\end{tabular}

\section*{Interpolation}


The next table describes the block's behavior when the Source of interpolation points is Specify via dialog and the input is frame based.
\begin{tabular}{l|l|l|l}
\hline \begin{tabular}{l} 
Input \\
Dimensions \\
(Frame \\
Based)
\end{tabular} & \begin{tabular}{l} 
Valid \\
Dimensions of \\
Interpolation \\
Array I I Pts
\end{tabular} & \begin{tabular}{l} 
How Block \\
Applies I I to \\
Input
\end{tabular} & \begin{tabular}{l} 
Output \\
Dimensions \\
(Frame \\
Based)
\end{tabular} \\
\hline\(M\)-by- \(N\) matrix & 1-by- \(N\) row & \begin{tabular}{l} 
Applies each \\
column of \(I_{\text {Pts }}\) \\
(each element \\
of \(I_{\text {Pts }}\) to the \\
corresponding \\
column of the \\
input matrix
\end{tabular} & 1-by- \(N\) row \\
\hline
\end{tabular}
\(\left.\begin{array}{l|l|l|l}\hline \begin{array}{l}\text { Input } \\
\text { Dimensions } \\
\text { (Frame } \\
\text { Based) }\end{array} & \begin{array}{l}\text { Valid } \\
\text { Dimensions of } \\
\text { Interpolation } \\
\text { Array } I_{\text {Pts }}\end{array} & \begin{array}{l}\text { How Block } \\
\text { Applies I IPts }\end{array} \\
\text { Input }\end{array}\right)\)\begin{tabular}{l} 
Output \\
Dimensions \\
(Frame \\
Based)
\end{tabular}\(|\)

The next table describes the block's behavior when the Source of interpolation points is Input port and the input is sample based.

\section*{Interpolation}
\begin{tabular}{|c|c|c|c|}
\hline Input Dimensions (Sample Based) & \begin{tabular}{l}
Valid \\
Dimensions of Interpolation Array \(I_{\text {Pts }}\)
\end{tabular} & How Block Applies \(I_{\text {Pts }}\) to Input & Output Dimensions (Sample Based) \\
\hline \multirow[t]{3}{*}{N-D Array (ex. \(M\)-by- \(N\)-by- \(Q\) )} & Sample-based 1-by-P row & \multirow[t]{2}{*}{Applies \(I_{\text {Pts }}\) to the first dimension of the input array} & \multirow[t]{3}{*}{\[
\begin{aligned}
& P \text {-by- } N \text {-by- } Q \\
& \text { array }
\end{aligned}
\]} \\
\hline & Sample- or frame-based \(P\)-by- 1 column & & \\
\hline & Sample-based \(P\)-by- \(N\)-by- \(Q\) array & Applies the columns of \(I_{\text {Pts }}\) to the corresponding columns of the input array & \\
\hline \multirow[t]{2}{*}{M-by-1 column} & Sample-based 1-by-P row & \multirow[t]{2}{*}{Applies \(I_{\text {Pts }}\) to the input column} & \multirow[t]{2}{*}{\(P\)-by-1 column} \\
\hline & Sample- or frame-based \(P\)-by- 1 column & & \\
\hline \multirow[t]{2}{*}{1-by- \(N\) row} & Sample-based 1-by- \(P\) row & \multirow[t]{2}{*}{Applies \(I_{\text {Pts }}\) to the input row} & \multirow[t]{2}{*}{1-by-P row} \\
\hline & Sample or frame-based \(P\)-by- 1 column & & \\
\hline
\end{tabular}

The next table describes the block's behavior when the Source of interpolation points is Input port and the input is frame based.
\begin{tabular}{l|l|l|l}
\hline \begin{tabular}{l} 
Input \\
Dimensions \\
(Frame \\
Based)
\end{tabular} & \begin{tabular}{l} 
Valid \\
Dimensions of \\
Interpolation \\
Array \(I_{\text {Pts }}\)
\end{tabular} & \begin{tabular}{l} 
How Block \\
Applies \(I_{\text {Pts }}\) \\
Input
\end{tabular} & \begin{tabular}{l} 
Output \\
Dimensions \\
(Frame \\
Based)
\end{tabular} \\
\hline\(M\)-by- \(N\) matrix & \begin{tabular}{l} 
Frame-based \\
1 -by- \(N\) row
\end{tabular} & \begin{tabular}{l} 
Applies each \\
column of \(I_{\text {Pts }}\) \\
(each element \\
of \(I_{\text {Pts }}\) to the \\
corresponding \\
column of the \\
input matrix
\end{tabular} & 1-by- \(N\) row \\
& \begin{tabular}{l} 
Sample-based \\
1 -by- \(P\) row
\end{tabular} & \begin{tabular}{l} 
Applies \(I_{\text {Pts }}\) \\
to each input \\
column
\end{tabular} & \(P\)-by- \(N\) matrix \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Frame- or \\
sample-based \\
\(P\)-by- 1 column
\end{tabular} & \begin{tabular}{l} 
Frame- or \\
sample-based \\
\(P\)-by- \(N\) matrix
\end{tabular} & \begin{tabular}{l} 
Applies the \\
columns of \\
\(I_{\text {Pts to the }}\) \\
corresponding \\
columns of the \\
input matrix
\end{tabular}
\end{tabular}

\section*{Interpolation}
\(\left.\begin{array}{l|l|l|l}\hline \begin{array}{l}\text { Input } \\ \text { Dimensions } \\ \text { (Frame } \\ \text { Based) }\end{array} & \begin{array}{l}\text { Valid } \\ \text { Dimensions of } \\ \text { Interpolation } \\ \text { Array I I }\end{array} & \begin{array}{l}\text { How Block } \\ \text { Applies } I_{\text {Pts }}\end{array} & \begin{array}{l}\text { to } \\ \text { Input }\end{array}\end{array} \begin{array}{l}\text { Output } \\ \text { Dimensions } \\ \text { (Frame } \\ \text { Based) }\end{array}\right\}\)

\section*{Handling Out-of-Range Interpolation Points}

Valid values in the interpolation array \(I_{\text {Pts }}\) range from 1 to the number of samples in each channel of the input. For instance, given a length- 5 input vector D, all entries of \(I_{\mathrm{Pts}}\) must range from 1 to \(5 . I_{\mathrm{Pts}}\) cannot contain entries such as 7 or -9 , since there is no 7 th or -9 th entry in \(D\).

The Out of range interpolation points parameter sets how the block handles interpolation points that are fall outside the valid range, and has the following settings:
- Clip - The block replaces any out-of-range values in \(I_{\text {Pts }}\) with the closest value in the valid range (from 1 to the number of input samples), and then proceeds with computations using the clipped version of \(I_{\text {Pts }}\).
- Clip and warn - In addition to Clip, the block issues a warning at the MATLAB command line every time clipping occurs.
- Error - When the block encounters an out-of-range value in \(I_{\text {Pts }}\), the simulation stops, and the block issues an error at the MATLAB command line.

\section*{Example of Clipping}

Suppose the block is set to clip out-of-range interpolation points, and gets the following input vector and interpolation points:
- D = [11 2233 44]'
- \(I_{\text {pts }}=\left[\begin{array}{lll}10 & 2.6 & -3\end{array}\right]^{\prime}\)

Because \(D\) has four samples, valid interpolation points range from 1 to 4. The block clips the interpolation point 10 to 4 and the point -3 to 1 , resulting in the clipped interpolation vector \(I_{\text {Ptsclipped }}=\left[\begin{array}{lll}4 & 2.6 & 1\end{array}\right]\) '.

\section*{Linear Interpolation Mode}

When Interpolation Mode is set to Linear, the block interpolates data values by assuming that the data varies linearly between samples taken at adjacent sample times.
For instance, if the input signal \(D=\left[\begin{array}{llll}1 & 1 & 1.5 & 3\end{array} 0.25\right]^{\prime}\), the following plot on the left shows the samples in \(D\), and the plot on the right shows the linearly interpolated values between the samples in \(D\).


\section*{Interpolation}

The following figure illustrates the case of a block in linear interpolation mode that is set to clip out-of-range interpolation points. The vector \(D\) supplies the input data and the vector \(I_{\mathrm{Pts}}\) supplies the interpolation points:
- \(D=\left[\begin{array}{llll}1 & 2 & 1.5 & 3 \\ 0.25\end{array}\right]^{\prime}\)
- \(I_{\text {Pts }}=\left[\begin{array}{llll}-4 & 2.7 & 4.3 & 10\end{array}\right]^{\prime}\)

The block clips the invalid interpolation points, and outputs the linearly interpolated values in a vector, \(\left[\begin{array}{llll}1 & 1.65 & 2.175 & 0.25\end{array}\right]^{\prime}\).

Interpolated Values of D at Clipped Interpolation Points


FIR Interpolation Mode
When Interpolation Mode is set to FIR, the block interpolates data values using an FIR interpolation filter, specified by various block

\section*{Interpolation}
parameters. See FIR Interpolation Mode on page 1369 in the Variable Fractional Delay block reference for more information.

\section*{Dialog Box}
\begin{tabular}{l}
\hline Function Block Parameters: Interpolation \\
\begin{tabular}{l} 
Interpolation (mask] (link] \\
Interpolate values between real-valued input samples using linear or FIR \\
interpolation. \\
Specify which values to interpolate by providing a vector of interpolation points. An \\
interpolation point of 1 refers to the first sample in the input. To interpolate the value \\
half-way between the second and third sample in the input, specify an interpolation \\
point of 2.5 . \\
You can provide the vector of interpolation points in the parameter, "Interpolation \\
points," or through the optional input port, "Pts," depending on the setting of the \\
"Source of interpolation points' parameter. \\
Parameters \\
Source of interpolation points: Specify via dialog \\
Interpolation points: \\
[1.1 4.82.67 1.6 3.2]' \\
Interpolation mode: Linear \\
Interpolation filter half-length: \\
\hline 3 \\
Interpolation points per input sample: \\
\hline 3 \\
Normalized input bandwidth: \\
\hline 0.5 \\
Out of range interpolation points: Clip \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Source of interpolation points}

Choose how you want to specify the interpolation points. If you select Specify via dialog, the Interpolation points parameter become available. Use this option for static interpolation points. If you select Input port, the Pts port

\section*{Interpolation}
appears on the block. The block uses the input to this port as the interpolation points. Use this option for time-varying interpolation points. For more information, see "Specifying Static Interpolation Points" on page 2-692 and "Specifying Time-Varying Interpolation Points" on page 2-692.

\section*{Interpolation points}

The array, \(I_{\text {Pts }}\), of points in time at which to interpolate the input signal. An entry of 1 in \(I_{\text {Pts }}\) refers to the first sample of the input, an entry of 2.5 refers to the sample half-way between the second and third input sample, and so on. See "How the Block Applies Interpolation Arrays to Inputs" on page 2-692. Tunable.

\section*{Interpolation mode}

Sets the block to interpolate by either linear or FIR interpolation. For more information, see "Linear Interpolation Mode" on page 2-699 and "FIR Interpolation Mode" on page 2-700.

\section*{Interpolator filter half-length}

Half the length of the FIR interpolation filter. For more information, see "FIR Interpolation Mode" on page 2-700.

\section*{Interpolation points per input sample}

The number Q, where the FIR interpolation filter uses the nearest 2* Q points in the signal to interpolate the value at an interpolation point. When there are less than 2*Q neighboring points, the block uses linear interpolation in place of FIR interpolation. For more information, see "FIR Interpolation Mode" on page 2-700. and "Linear Interpolation Mode" on page 2-699.

\section*{Normalized input bandwidth}

The bandwidth of the input divided by \(\mathrm{Fs} / 2\) (half the input sample frequency). For more information, see "FIR Interpolation Mode" on page 2-700.

\section*{Out of range interpolation points}

When an interpolation point is out of range, this parameter sets the block to either clip the interpolation point, clip the value and issue a warning at the MATLAB command line, or stop the simulation and issue an error at the MATLAB command line.

For more information, see "Handling Out-of-Range Interpolation Points" on page 2-698.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline In & • Double-precision floating point \\
& - Single-precision floating point
\end{tabular}\(|\)\begin{tabular}{ll} 
Pts & • Double-precision floating point \\
& - Single-precision floating point
\end{tabular}

\section*{Inverse Short-Time FFT}

Purpose

Library

Description


Inverse
Short-Time FFT

Recover time-domain signals by performing inverse short-time, fast Fourier transform (FFT)

Transforms
dspxfrm3

The Inverse Short-Time FFT block reconstructs the time-domain signal from the frequency-domain output of the Short-Time FFT block using a two-step process. First, the block performs the overlap add algorithm shown below.
\[
x[n]=\frac{L}{W(0)} \sum_{p=-\infty}^{\infty}\left[\frac{1}{N} \sum_{k=0}^{N-1} X[p L, k] e^{j 2 \pi k n / N}\right]
\]

Then, the block rebuffers the signal in order to reconstruct the frame-based time-domain signal. Depending on the analysis window used by the Short-Time FFT block, the Inverse Short-Time FFT block might or might not achieve perfect reconstruction of the time domain signal.
Connect your complex-valued, sample-based, single-channel or multichannel input signal to the \(\mathrm{X}(\mathrm{n}, \mathrm{k})\) port. The block uses the Overlap between consecutive STFFT frames (in samples) and Samples per output frame parameters as well as the Input is conjugate symmetric check box to reconstruct the original time-domain signal. The real or complex-valued, frame-based, single-channel or multichannel inverse short-time FFT is output at port \(x(n)\).

Connect your complex-valued, sample-based or frame-based, single-channel analysis window to the \(\mathrm{w}(\mathrm{n})\) port. When you select the Assert if analysis window does not support perfect signal reconstruction check box, the block displays an error when the input signal cannot be perfectly reconstructed. The block uses the values you enter for the Analysis window length (W) and Reconstruction error tolerance, or maximum amount of allowable error in the

\section*{Inverse Short-Time FFT}

\section*{Examples}

\section*{Dialog Box}
reconstruction process, to determine if the signal can be perfectly reconstructed.

The dspstsa demo illustrates how to use the Short-Time FFT and Inverse Short-Time FFT blocks to remove the background noise from a speech signal.
\[
\begin{aligned}
& \text { FFunction Block Parameters: Inverse Short-Time FFT } \\
& \begin{array}{l}
\text { Inverse Short-Time FFT (mask) (link) - } \\
\text { Reconstructs a signal from its Short-Time FFT (STFFT) by using the OLA method. } \\
\text { The block takes as an input the analysis window w[n] used in the generation of the } \\
\text { STFFT to normalize the output signal. } \\
\text { Optionally, the block asserts if the analysis window does not satisfy constraints } \\
\text { that permit perfect reconstruction of the signal. }
\end{array} .
\end{aligned}
\]

Parameters
Analysis window length:
```

512

```

Overlap between consecutive STFFT frames (in samples):
```

384

```

Samples per output frame:
```

512

```
\(\sqrt{ }\) Input is conjugate symmetric
「 Assert if analysis window does not support perfect signal reconstruction

OK
Cancel Help

\section*{Inverse Short-Time FFT}

\section*{Analysis window length}

Enter the length of the analysis window. This parameter is visible when you select the Assert if analysis window does not support perfect signal reconstruction check box.

Overlap between consecutive STFFT frames (in samples)
Enter the number of samples of overlap for each frame of the Short-Time FFT block's input signal. This value should be the same as the Overlap between consecutive windows (in samples) parameter in the Short-Time FFT block parameters dialog.

\section*{Samples per output frame}

Enter the desired frame length of the frame-based output signal.

\section*{Input is conjugate symmetric}

Select this check box when the input to the block is both floating point and conjugate symmetric, and you want real-valued outputs. When you select this check box when the input is not conjugate symmetric, the output of the block is invalid. This parameter cannot be used for fixed-point signals.

Assert if analysis window does not support perfect signal reconstruction

Select this check box to display an error when the analysis window used by the Short-Time FFT block does not support perfect signal reconstruction.

\section*{Reconstruction error tolerance}

Enter the amount of acceptable error in the reconstruction of the original signal. This parameter is visible when you select the Assert if analysis window does not support perfect signal reconstruction check box.

\author{
References Quatieri, Thomas E. Discrete-Time Speech Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 2001.
}

\section*{Inverse Short-Time FFT}

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline \(\mathrm{X}(\mathrm{n}, \mathrm{k})\) & • Double-precision floating point \\
& - Single-precision floating point
\end{tabular}

See Also
\begin{tabular}{ll} 
Burg Method & Signal Processing Blockset \\
Magnitude FFT & Signal Processing Blockset \\
Periodogram & Signal Processing Blockset \\
Short-Time FFT & Signal Processing Blockset \\
Spectrum Scope & Signal Processing Blockset \\
Window Function & Signal Processing Blockset \\
Yule-Walker Method & Signal Processing Blockset \\
pwelch & Signal Processing Toolbox
\end{tabular}

\section*{Inverse Sinc Filter}
\begin{tabular}{ll} 
Purpose & \begin{tabular}{l} 
Design inverse sinc filter \\
Library \\
Description \\
Filtering / Filter Design Toolbox \\
dspfdesign
\end{tabular} \\
\hline Inverse Sinc & \begin{tabular}{l} 
This block brings the functionality of the Filter Design Toolbox \\
filterbuilder function to the Simulink environment. You must have \\
a Filter Design Toolbox product license to design filters with this block. \\
However, you can run models containing this block without a license. \\
This allows you to run a model sent to you by a colleague who has \\
designed a filter using this block, even if you do not have the Filter \\
Design Toolbox product.
\end{tabular} \\
Dialog & \begin{tabular}{l} 
See "Inverse Sinc Filter Design Dialog Box - Main Pane" in the
\end{tabular} \\
Box & \begin{tabular}{l} 
Filter Design Toolbox documentation for more information about the \\
parameters of this block. The Data Types pane is not available for \\
Filter Design Toolbox blocks in the Signal Processing Blockset product.
\end{tabular} \\
\begin{tabular}{l} 
Parameters of this block that do not change filter order or structure
\end{tabular} \\
are tunable. Tunable parameters are enabled during simulation; \\
nontunable parameters are not.
\end{tabular}

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point \\
& • 8-, 16-, and 32 -bit signed integers \\
& • 8-, 16-, and 32-bit unsigned integers \\
\hline Output & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point
\end{tabular}

\section*{Port Supported Data Types}
- 8 -, 16-, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

\section*{Kalman Adaptive Filter (Obsolete)}
\begin{tabular}{ll} 
Purpose & \begin{tabular}{l} 
Compute filter estimates for inputs using Kalman adaptive filter \\
algorithm
\end{tabular} \\
Library & dspobslib \\
Description & \begin{tabular}{l} 
Note The Kalman Adaptive Filter block is still supported but is likely \\
to be obsoleted in a future release. We strongly recommend replacing \\
this block with the Kalman Filter block.
\end{tabular} \\
\hline
\end{tabular}

The Kalman Adaptive Filter block computes the optimal linear minimum mean-square estimate (MMSE) of the FIR filter coefficients using a one-step predictor algorithm. This Kalman filter algorithm is based on the following physical realization of a dynamic system.


The Kalman filter assumes that there are no deterministic changes to the filter taps over time (that is, the transition matrix is identity), and that the only observable output from the system is the filter output with additive noise. The corresponding Kalman filter is expressed in matrix form as
\[
\begin{aligned}
& g(n)=\frac{K(n-1) u(n)}{u^{H}(n) K(n-1) u(n)+Q_{M}} \\
& y(n)=u^{H}(n) \hat{w}(n) \\
& e(n)=d(n)-y(n) \\
& \hat{w}(n+1)=\widehat{w}(n)+e(n) g(n) \\
& K(n)=K(n-1)-g(n) u^{H}(n) K(n-1)+Q_{p}
\end{aligned}
\]

The variables are as follows
\begin{tabular}{l|l}
\hline Variable & Description \\
\hline\(n\) & The current algorithm iteration \\
\hline\(u(n)\) & The buffered input samples at step \(n\) \\
\hline\(K(n)\) & The correlation matrix of the state estimation error \\
\hline\(g(n)\) & The vector of Kalman gains at step \(n\) \\
\hline\(\hat{w}(n)\) & The vector of filter-tap estimates at step \(n\) \\
\hline\(y(n)\) & The filtered output at step \(n\) \\
\hline\(e(n)\) & The estimation error at step \(n\) \\
\hline\(d(n)\) & The desired response at step \(n\) \\
\hline\(Q_{M}\) & The correlation matrix of the measurement noise \\
\hline\(Q_{P}\) & The correlation matrix of the process noise \\
\hline
\end{tabular}

The correlation matrices, \(Q_{M}\) and \(Q_{P}\), are specified in the parameter dialog by scalar variance terms to be placed along the matrix diagonals, thus ensuring that these matrices are symmetric. The filter algorithm based on this constraint is also known as the random-walk Kalman filter.

\section*{Kalman Adaptive Filter (Obsolete)}

The implementation of the algorithm in the block is optimized by exploiting the symmetry of the input covariance matrix \(K(n)\). This decreases the total number of computations by a factor of two.
The block icon has port labels corresponding to the inputs and outputs of the Kalman algorithm. Note that inputs to the In and Err ports must be sample-based scalars with the same complexity. The signal at the Out port is a scalar, while the signal at the Taps port is a sample-based vector.
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Block \\
Ports
\end{tabular} & Corresponding Variables \\
\hline In & \begin{tabular}{l}
\(u\), the scalar input, which is internally buffered into \\
the vector \(u(n)\)
\end{tabular} \\
\hline Out & \(y(n)\), the filtered scalar output \\
\hline Err & \(e(n)\), the scalar estimation error \\
\hline Taps & \(\widehat{w}(n)\), the vector of filter-tap estimates \\
\hline
\end{tabular}

An optional Adapt input port is added when you select the Adapt port check box in the dialog. When this port is enabled, the block continuously adapts the filter coefficients while the Adapt input is nonzero. A zero-valued input to the Adapt port causes the block to stop adapting, and to hold the filter coefficients at their current values until the next nonzero Adapt input.

The FIR filter length parameter specifies the length of the filter that the Kalman algorithm estimates. The Measurement noise variance and the Process noise variance parameters specify the correlation matrices of the measurement and process noise, respectively. The Measurement noise variance must be a scalar, while the Process noise variance can be a vector of values to be placed along the diagonal, or a scalar to be repeated for the diagonal elements.

The Initial value of filter taps specifies the initial value \(\hat{w}(0)\) as a vector, or as a scalar to be repeated for all vector elements. The Initial

\section*{Kalman Adaptive Filter (Obsolete)}

\section*{Dialog Box}
error correlation matrix specifies the initial value \(K(0)\), and can be a diagonal matrix, a vector of values to be placed along the diagonal, or a scalar to be repeated for the diagonal elements.


\section*{FIR filter length}

The length of the FIR filter.

\section*{Kalman Adaptive Filter (Obsolete)}

\section*{Measurement noise variance}

The value to appear along the diagonal of the measurement noise correlation matrix. Tunable.

\section*{Process noise variance}

The value to appear along the diagonal of the process noise correlation matrix. Tunable.

\section*{Initial value of filter taps}

The initial FIR filter coefficients.

\section*{Initial error correlation matrix}

The initial value of the error correlation matrix.

\section*{Adapt port}

Enables the Adapt port.

\section*{References}

Haykin, S. Adaptive Filter Theory. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.
\begin{tabular}{ll} 
Supported & - Double-precision floating point \\
Data & - Single-precision floating point \\
Types &
\end{tabular}

See Also
\begin{tabular}{ll} 
LMS Adaptive Filter & Signal Processing Blockset \\
(Obsolete) & \\
RLS Adaptive Filter & Signal Processing Blockset \\
(Obsolete)
\end{tabular}

See "Adaptive Filters" for related information.

\section*{Purpose}

Predict or estimate states of dynamic systems

\section*{Library}

\section*{Description}


Filtering/Adaptive Filters
dspadpt3
Use the Kalman Filter block to predict or estimate the state of a dynamic system from a series of incomplete and/or noisy measurements. Suppose you have a noisy linear system that is defined by the following equations:
\[
\begin{aligned}
& x_{k}=A x_{k-1}+w_{k-1} \\
& z_{k}=H x_{k}+v_{k}
\end{aligned}
\]

This block can use the previously estimated state, \(\hat{x}_{k-1}\), to predict the current state at time \(k, x_{k}^{-}\), as shown by the following equation:
\[
\begin{aligned}
& x_{k}^{-}=A \hat{x}_{k-1} \\
& P_{k}^{-}=A \hat{P}_{k-1} A^{T}+Q
\end{aligned}
\]

The block can also use the current measurement, \(z_{k}\), and the predicted state, \(x_{k}^{-}\), to estimate the current state value at time \(k, \hat{x}_{k}\), so that it is a more accurate approximation:
\[
\begin{aligned}
& K_{k}=P_{k}^{-} H^{T}\left(H P_{k}^{-} H^{T}+R\right)^{-1} \\
& \hat{x}_{k}=x_{k}^{-}+K_{k}\left(z_{k}-H x_{k}^{-}\right) \\
& \hat{P}_{k}=\left(I-K_{k} H\right) P_{k}^{-}
\end{aligned}
\]

The variables in the previous equations are defined in the following table.

\section*{Kalman Filter}
\begin{tabular}{|c|c|c|}
\hline Variable & Definition & Default Value or Initial Condition \\
\hline \(x\) & State & N/A \\
\hline \(\hat{x}\) & Estimated state & zeros([6, 1]) \\
\hline \(x^{-}\) & Predicted state & N/A \\
\hline A & State transition matrix & \(\left[\begin{array}{llllll}1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\) \\
\hline \(w\) & Process noise & N/A \\
\hline \(z\) & Measurement & N/A \\
\hline H & Measurement matrix & \(\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\) \\
\hline \(v\) & Measurement noise & N/A \\
\hline \(\hat{P}\) & Estimated error covariance & 10*eye (6) \\
\hline \(P^{-}\) & Predicted error covariance & N/A \\
\hline \(Q\) & Process noise covariance & 0.05*eye (6) \\
\hline K & Kalman gain & N/A \\
\hline
\end{tabular}

\section*{Kalman Filter}
\begin{tabular}{l|l|l}
\hline Variable & Definition & \begin{tabular}{l} 
Default Value or Initial \\
Condition
\end{tabular} \\
\hline\(R\) & \begin{tabular}{l} 
Measurement noise \\
covariance
\end{tabular} & eye (4) \\
\hline\(I\) & Identity matrix & N/A \\
\hline
\end{tabular}

In the previous equations, \(z\) is a vector of measurement values. Most of the time, the block processes Z, an M-by-N matrix, where M is the number of measurement values and N is the number of filters.

Use the Number of filters parameter to specify the number of filters to use to predict or estimate the current value.

Use the Enable filters parameter to specify which filters are enabled or disabled at each time step. If you select Always, the filters are always enabled. If you choose Specify via input port <Enable>, the Enable port appears on the block. The input to this port must be a row vector of 1 s and 0 s whose length is equal to the number of filters. For example, if there are 3 filters and the input to the Enable port is [101], only the first and third filter are enabled at this time step. If you select the Reset the estimated state and estimated error covariance when filters are disabled check box, the estimated and predicted states as well as the estimated error covariance that correspond to the disabled filters are reset to their initial values.

Note All filters have the same state transition matrix, measurement matrix, initial conditions, and noise covariance, but their state, measurement, enable, and MSE signals are unique. Within the state, measurement, enable, and MSE signals, each column corresponds to a filter.

Use the Measurement matrix source parameter to specify how to enter the measurement matrix values. If you select Specify via dialog, the Measurement matrix parameter appears in the dialog

\section*{Kalman Filter}
box. If you select Input port <H>, the H port appears on the block. Use this port to specify your measurement matrix.

See the Radar Tracking demo for an example of how to use this block. You can open this demo by typing
aero_radmod_dsp
at the MATLAB command prompt.
If you have the Video and Image Processing Blockset product installed, you can also explore the People Tracking demo. Open this demo by typing
viptrackpeople
at the MATLAB command prompt.

\section*{Fixed-Point Data Types}

This block can process fixed-point data types if you make several modifications to its subsystem:

1 Add a Kalman Filter block to a Simulink model.
2 Right-click the block and select Link Options > Disable Link.
3 Right-click the block and select Look Under Mask.
The subsystem that implements the Kalman filter opens.


4 Double-click the Check Signal Attributes block and change the Data type parameter to Ignore.

If you have the Video and Image Processing Blockset product installed, you can see an example by typing viptrackpeople_fixpt_all at the MATLAB command prompt. This opens the fixed-point version of the People Tracking demo. The Kalman Filter block is located inside the Enabled Subsystem block called Tracking.

\section*{Kalman Filter}

Dialog Box

The Kalman Filter dialog box appears as shown in the following figure.


\section*{Number of filters}

Specify the number of filters to use to predict or estimate the current value.

\section*{Enable filters}

Specify which filters are enabled or disabled at each time step. If you select Always, the filters are always enabled. If you choose Specify via input port <Enable>, the Enable port appears on the block.

\section*{Reset the estimated state and estimated error covariance when filters are disabled}

If you select this check box, the estimated and predicted states as well as the estimated error covariance that correspond to the disabled filters are reset to their initial values. This parameter is visible if, for the Enable filters parameter, you select Specify via input port <Enable>.

\section*{Initial condition for estimated state}

Enter the initial condition for the estimated state.

\section*{Initial condition for estimated error covariance}

Enter the initial condition for the estimated error covariance.

\section*{State transition matrix}

Enter the state transition matrix.
Process noise covariance
Enter the process noise covariance.

\section*{Measurement matrix source}

Specify how to enter the measurement matrix values. If you select Specify via dialog, the Measurement matrix parameter appears in the dialog box. If you select Input port <H>, the H port appears on the block.

\section*{Measurement matrix}

Enter the measurement matrix values. This parameter is visible if you select Specify via dialog for the Measurement matrix source parameter.

\section*{Measurement noise covariance}

Enter the measurement noise covariance.

\section*{Kalman Filter}

\section*{Output estimated measurement <Z_est>}

Select this check box if you want the block to output the estimated measurement.

Output estimated state <X_est>
Select this check box if you want the block to output the estimated state.

Output MSE of estimated state <MSE_est>
Select this check box if you want the block to output the mean-squared error of the estimated state.

Output predicted measurement <Z_prd>
Select this check box if you want the block to output the predicted measurement.

Output predicted state <X_prd>
Select this check box if you want the block to output the predicted state.

\section*{Output MSE of predicted state <MSE_prb>}

Select this check box if you want the block to output the mean-squared error of the predicted state.

\section*{References}
[1] Haykin, Simon. Adaptive Filter Theory. Upper Saddle River, NJ: Prentice Hall, 1996.
[2] Welch, Greg and Gary Bishop, "An Introduction to the Kalman Filter," TR 95-041, Department of Computer Science, University of North Carolina.

\section*{Supported Data Types}
\begin{tabular}{l|l|l}
\hline Port & Input/Output & Supported Data Types \\
\hline Z & \begin{tabular}{l} 
M-by-N measurement where \\
M is the length of the \\
measurement vector and N \\
is the number of filters.
\end{tabular} & \begin{tabular}{l} 
- Double-precision \\
floating point
\end{tabular} \\
- \begin{tabular}{l} 
Single-precision \\
floating point
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Port & Input/Output & Supported Data Types \\
\hline Enable & \begin{tabular}{l} 
1-by-N vector of 1s and 0s \\
where N is the number of \\
filters.
\end{tabular} & \begin{tabular}{l} 
• Double-precision \\
floating point \\
- ingle-precision \\
floating point \\
- Boolean
\end{tabular} \\
\hline H & \begin{tabular}{l} 
M-by-P measurement matrix \\
where M is the length of the \\
measurement vector and P is \\
the length of the filter state \\
vectors.
\end{tabular} & Same as Z port \\
\hline Z_est & \begin{tabular}{l} 
M-by-N estimated \\
measurement matrix where \\
M is the length of the \\
measurement vector and N \\
is the number of filters.
\end{tabular} & Same as Z port \\
\hline X_est & \begin{tabular}{l} 
P-by-N estimated state \\
matrix where P is the length \\
of the filter state vectors and \\
N is the number of filters.
\end{tabular} & Same as Z port \\
\hline MSE_est & \begin{tabular}{l} 
1-by-N vector that represents \\
the mean-squared-error of \\
the estimated state. N is the \\
number of filters.
\end{tabular} & Same as Z port \\
\hline Z_prd & \begin{tabular}{l} 
M-by-N predicted \\
measurement matrix where \\
M is the length of the \\
measurement vector and N \\
is the number of filters.
\end{tabular} & Same as Z port \\
\hline
\end{tabular}

\section*{Kalman Filter}
\begin{tabular}{l|l|l}
\hline Port & Input/Output & Supported Data Types \\
\hline X_prd & \begin{tabular}{l} 
P-by-N predicted state \\
matrix where P is the length \\
of the filter state vectors and \\
N is the number of filters.
\end{tabular} & Same as Z port \\
\hline MSE_prd & \begin{tabular}{l} 
1-by-N vector that represents \\
the mean-squared-error of \\
the predicted state. N is the \\
number of filters.
\end{tabular} & Same as Z port \\
\hline
\end{tabular}

\footnotetext{
See Also
LDL Solver
Signal Processing Blockset
}

\section*{LDL Factorization}

\section*{Purpose}

\section*{Library}

\section*{Description}


Factor square Hermitian positive definite matrices into lower, upper, and diagonal components

Math Functions / Matrices and Linear Algebra / Matrix Factorizations dspfactors

The LDL Factorization block uniquely factors the square Hermitian positive definite input matrix S as
\[
S=L D L^{*}
\]
where \(L\) is a lower triangular square matrix with unity diagonal elements, \(D\) is a diagonal matrix, and \(L^{*}\) is the Hermitian (complex conjugate) transpose of \(L\). Only the diagonal and lower triangle of the input matrix are used, and any imaginary component of the diagonal entries is disregarded.
The block's output is a composite matrix with lower triangle elements \(l_{i j}\) from \(L\), diagonal elements \(d_{i j}\) from \(D\), and upper triangle elements \(u_{i j}\) from \(L^{*}\). It is always sample based. The output format is shown below for a 5 -by- 5 matrix.
\begin{tabular}{|l|l|l|l|l|}
\hline\(d_{11}\) & \(u_{12}\) & \(u_{13}\) & \(u_{14}\) & \(u_{15}\) \\
\hline\(l_{21}\) & \(d_{22}\) & \(u_{23}\) & \(u_{24}\) & \(u_{25}\) \\
\hline\(l_{31}\) & \(l_{32}\) & \(d_{33}\) & \(u_{34}\) & \(u_{35}\) \\
\hline\(l_{41}\) & \(l_{42}\) & \(l_{43}\) & \(d_{44}\) & \(u_{45}\) \\
\hline\(l_{51}\) & \(l_{52}\) & \(l_{53}\) & \(l_{54}\) & \(d_{55}\) \\
\hline
\end{tabular}
\[
u_{i j}=l_{j i}^{*}
\]

LDL factorization requires half the computation of Gaussian elimination (LU decomposition), and is always stable. It is more efficient than Cholesky factorization because it avoids computing the square roots of the diagonal elements.

The algorithm requires that the input be square and Hermitian positive definite. When the input is not positive definite, the block reacts with the behavior specified by the Non-positive definite input parameter.

\section*{Fixed-Point Data Types}

The following diagram shows the data types used within the LDL Factorization block for fixed-point signals.


You can set the intermediate product, product output, accumulator, and output data types in the block dialog as discussed below.
The output of the second multiplier is in the product output data type when the input is real. When the input is complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, see "Multiplication Data Types".

\section*{Examples}

LDL decomposition of a 3-by-3 Hermitian positive definite matrix:

\[
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-0.11 & 1 & 0 \\
0.22 & -0.61 & 1
\end{array}\right] \quad D=\left[\begin{array}{ccc}
9.00 & 0 & 0 \\
0 & 7.89 & 0 \\
0 & 0 & 3.66
\end{array}\right] \quad L^{\prime}=\left[\begin{array}{ccc}
1 & -0.11 & 0.22 \\
0 & 1 & -0.61 \\
0 & 0 & 1
\end{array}\right]
\]

\section*{LDL Factorization}

Dialog Box

The Main pane of the LDL Factorization block dialog appears as follows.


\section*{Non-positive definite input}

Specify the action when nonpositive definite matrix inputs occur:
- Ignore - Proceed with the computation and do not issue an alert. The output is not a valid factorization. A partial factorization is present in the upper left corner of the output.
- Warning - Display a warning message in the MATLAB Command Window, and continue the simulation. The output is

\section*{LDL Factorization}
not a valid factorization. A partial factorization is present in the upper left corner of the output.
- Error - Display an error dialog and terminate the simulation.

The Fixed-point pane of the LDL Factorization block dialog appears as follows.


\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Intermediate product}

Use this parameter to specify how you would like to designate the intermediate product word and fraction lengths. See "Fixed-Point Data Types" on page 2-726 for an illustration depicting the use of the intermediate product data type in this block:
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the intermediate product, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the intermediate product. This block requires power-of-two slope and a bias of zero.

\section*{Product output}

Use this parameter to specify how you would like to designate the product output word and fraction lengths. See "Fixed-Point Data Types" on page 2-726 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block:
- When you select Inherit via internal rule, the product output word length and fraction length are calculated automatically. For information about how the product output word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.

\section*{LDL Factorization}
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

\section*{Accumulator}

Use this parameter to specify how you would like to designate the accumulator word and fraction lengths. See "Fixed-Point Data Types" on page 2-726 and "Multiplication Data Types" for illustrations depicting the use of the accumulator data type in this block.
- When you select Inherit via internal rule, the accumulator word length and fraction length are calculated automatically. For information about how the accumulator word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".
- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

\section*{Output}

Use this parameter to specify how you would like to designate the output word and fraction lengths. See "Fixed-Point Data Types" on page 2-726 for an illustration depicting the use of the output data type in this block:
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

\section*{Lock scaling against changes by the autoscaling tool}

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling feature of the Fixed-Point Tool. See the fxptdlg reference page for more information.

\section*{References}

Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline S & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point (signed only) \\
& • 8-, 16-, and 32-bit signed integers \\
\hline LDL' \(^{\prime}\) & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point (signed only) \\
& • 8-, 16-, and 32-bit signed integers \\
\hline
\end{tabular}

\section*{See Also}

Cholesky Factorization
LDL Inverse Signal Processing Blockset
LDL Solver Signal Processing Blockset
LU Factorization
QR Factorization

Signal Processing Blockset

Signal Processing Blockset
Signal Processing Blockset

\section*{LDL Factorization}

See "Matrix Factorizations" for related information.

\section*{Purpose}

Library

\section*{Description}

Sym. Pos. Def. Inverse
(LDL)

Compute inverse of Hermitian positive definite matrix using LDL factorization

Math Functions / Matrices and Linear Algebra / Matrix Inverses dspinverses

The LDL Inverse block computes the inverse of the Hermitian positive definite input matrix \(S\) by performing an LDL factorization.
\[
S^{-1}=\left(L D L^{*}\right)^{-1}
\]
\(L\) is a lower triangular square matrix with unity diagonal elements, \(D\) is a diagonal matrix, and \(L^{*}\) is the Hermitian (complex conjugate) transpose of \(L\). Only the diagonal and lower triangle of the input matrix are used, and any imaginary component of the diagonal entries is disregarded. The output is always sample based.

LDL factorization requires half the computation of Gaussian elimination (LU decomposition), and is always stable. It is more efficient than Cholesky factorization because it avoids computing the square roots of the diagonal elements.
The algorithm requires that the input be Hermitian positive definite. When the input is not positive definite, the block reacts with the behavior specified by the Non-positive definite input parameter. The following options are available:
- Ignore - Proceed with the computation and do not issue an alert. The output is not a valid inverse.
- Warning - Display a warning message in the MATLAB command window, and continue the simulation. The output is not a valid inverse.
- Error - Display an error dialog and terminate the simulation.

Note The Non-positive definite input parameter is a diagnostic parameter. Like all diagnostic parameters on the Configuration Parameters dialog, it is set to Ignore in the code generated for this block by Real-Time Workshop code generation software.

\section*{Dialog} Box


\section*{Non-positive definite input}

Response to nonpositive definite matrix inputs.

\section*{References}

Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.

\section*{Supported \\ Data \\ Types}
- Double-precision floating point
- Single-precision floating point

See Also
\begin{tabular}{ll} 
Cholesky Inverse & Signal Processing Blockset \\
LDL Factorization & Signal Processing Blockset \\
LDL Solver & Signal Processing Blockset \\
LU Inverse & Signal Processing Blockset
\end{tabular}

\section*{LDL Inverse}
\begin{tabular}{ll} 
Pseudoinverse & Signal Processing Blockset \\
inv & MATLAB
\end{tabular}

See "Matrix Inverses" for related information.

\section*{Purpose}

\section*{Library}

Description


Solve \(S X=B\) for \(X\) when \(S\) is square Hermitian positive definite matrix
Math Functions / Matrices and Linear Algebra / Linear System Solvers dspsolvers

The LDL Solver block solves the linear system \(S \mathrm{X}=B\) by applying LDL factorization to the matrix at the S port, which must be square ( \(M\)-by- \(M\) ) and Hermitian positive definite. Only the diagonal and lower triangle of the matrix are used, and any imaginary component of the diagonal entries is disregarded. The input to the B port is the right side \(M\)-by- \(N\) matrix, \(B\). The output is the unique solution of the equations, \(M\)-by- \(N\) matrix \(X\), and is always sample based.
A length- \(M\) 1-D vector input for right side \(B\) is treated as an \(M\)-by-1 matrix.

When the input is not positive definite, the block reacts with the behavior specified by the Non-positive definite input parameter. The following options are available:
- Ignore - Proceed with the computation and do not issue an alert. The output is not a valid solution.
- Warning - Proceed with the computation and display a warning message in the MATLAB Command Window. The output is not a valid solution.
- Error - Display an error dialog and terminate the simulation.

Note The Non-positive definite input parameter is a diagnostic parameter. Like all diagnostic parameters on the Configuration Parameters dialog, it is set to Ignore in the code generated for this block by Real-Time Workshop code generation software.

\section*{Algorithm}

The LDL algorithm uniquely factors the Hermitian positive definite input matrix S as

\section*{LDL Solver}
\[
S=L D L^{*}
\]
where \(L\) is a lower triangular square matrix with unity diagonal elements, \(D\) is a diagonal matrix, and \(L^{*}\) is the Hermitian (complex conjugate) transpose of \(L\).

The equation
\[
L D L^{*} X=B
\]
is solved for \(X\) by the following steps:
1 Substitute
\[
Y=D L^{*} X
\]

2 Substitute
\[
Z=L^{*} X
\]

3 Solve one diagonal and two triangular systems.
\(L Y=B\)
\[
D Z=Y
\]
\[
L^{*} X=Z
\]


\section*{Non-positive definite input}

Response to nonpositive definite matrix inputs.
\begin{tabular}{ll} 
Supporfed & - Double-precision floating point \\
Data & - Single-precision floating point \\
Types &
\end{tabular}

\author{
See Also
}
\begin{tabular}{ll} 
Autocorrelation LPC & Signal Processing Blockset \\
Cholesky Solver & Signal Processing Blockset \\
LDL Factorization & Signal Processing Blockset \\
LDL Inverse & Signal Processing Blockset \\
Levinson-Durbin & Signal Processing Blockset \\
LU Solver & Signal Processing Blockset \\
QR Solver & Signal Processing Blockset
\end{tabular}

See "Linear System Solvers" for related information.

\section*{Least Squares FIR Filter Design (Obsolete)}

\author{
Purpose Design and implement least-squares FIR filter \\ Library \\ dspobslib \\ \section*{Description} \\ 
}

Note The Least Squares FIR Filter Design block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Digital Filter block.

The Least Squares FIR Filter Design block designs an FIR filter and applies it to a discrete-time input using the Direct Form II Transpose Filter block. The filter design uses the Signal Processing Toolbox firls function to minimize the integral of the squared error between the desired frequency response and the actual frequency response.

An \(M\)-by- \(N\) sample-based matrix input is treated as \(M^{*} N\) independent channels, and an \(M\)-by- \(N\) frame-based matrix input is treated as \(N\) independent channels. In both cases, the block filters each channel independently over time, and the output has the same size and frame status as the input.

The Filter type parameter allows you to specify one of the following filters:
- Multiband - The Multiband filter designs a linear-phase filter with an arbitrary magnitude response.
- Differentiator - The Differentiator filter approximates the ideal differentiator. Differentiators are antisymmetric FIR filters with approximately linear magnitude responses. To obtain the correct derivative, scale the Gains at these frequencies vector by п \(\mathrm{F}_{\mathrm{s}} \mathrm{rad} / \mathrm{s}\), where \(\mathrm{F}_{\mathrm{s}}\) is the sample frequency in Hertz.

\section*{Least Squares FIR Filter Design (Obsolete)}
- Hilbert Transformer - The Hilbert Transformer filter approximates the ideal Hilbert transformer. Hilbert transformers are antisymmetric FIR filters with approximately constant magnitude.

The Band-edge frequency vector parameter is a vector of frequency points in the range 0 to 1 , where 1 corresponds to half the sample frequency. This vector must have even length, and intermediate points must appear in ascending order. The Gains at these frequencies parameter is a vector containing the desired magnitude response at the corresponding points in the Band-edge frequency vector.

Each odd-indexed frequency-amplitude pair defines the left endpoint of a line segment representing the desired magnitude response in that frequency band. The corresponding even-indexed frequency-amplitude pair defines the right endpoint. Between the frequency bands specified by these end-points, there may be undefined sections of the specified frequency response. These are called "don't care" or "transition" regions, and the magnitude response in these areas is a result of the optimization in the other (specified) frequency ranges.


\section*{Least Squares FIR Filter Design (Obsolete)}

The Weights parameter is a vector that specifies the emphasis to be placed on minimizing the error in certain frequency bands relative to others. This vector specifies one weight per band, so it is half the length of the Band-edge frequency vector and Gains at these frequencies vectors.

In most cases, differentiators and Hilbert transformers have only a single band, so the weight is a scalar value that does not affect the final filter. However, the Weights parameter is useful when using the block to design an antisymmetric multiband filter, such as a Hilbert transformer with stopbands.

For more information on the Band-edge frequency vector, Gains at these frequencies, and Weights parameters, see "Filter Designs and Implementation" in the Signal Processing Toolbox documentation. For more on the FIR filter algorithm, see the description of the firls function in the Signal Processing Toolbox documentation.

\section*{Examples Example 1: Multiband}

Consider a lowpass filter with a transition band in the normalized frequency range 0.4 to 0.5 , and 10 times more error minimization in the stopband than the passband. In this case,
- Filter type = Multiband
- Band-edge frequency vector \(=\left[\begin{array}{llll}0 & 0.4 & 0.5 & 1\end{array}\right]\)
- Gains at these frequencies \(=\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right]\)
- Weights = \(\left.\begin{array}{ll}1 & 10\end{array}\right]\)

\section*{Example 2: Differentiator}

Assume the specifications for a differentiator filter require it to have order 21. The "ramp" response extends over the entire frequency range. In this case, specify:
- Filter type = Differentiator
- Filter order \(=21\)

\section*{Least Squares FIR Filter Design (Obsolete)}
- Band-edge frequency vector \(=\left[\begin{array}{ll}0 & 1\end{array}\right]\)
- Gains at these frequencies \(=[0 \mathrm{pi} * \mathrm{Fs}]\)

For a type III (even order) filter, the differentiation band should stop short of half the sample frequency. For example, if the filter order is 20 , you could specify the block parameters as follows:
- Filter type = Differentiator
- Filter order \(=20\)
- Band-edge frequency vector \(=\left[\begin{array}{ll}0 & 0.9\end{array}\right]\)
- Gains at these frequencies \(=\left[\begin{array}{ll}0 & 0.9 * p i * F s\end{array}\right]\)

\section*{Example 3: Hilbert Transformer}

Assume the specifications for a Hilbert transformer filter require it to have order 21. The passband extends over approximately the entire frequency range. In this case, specify:
- Filter type \(=\) Hilbert Transform
- Filter order \(=21\)
- Band-edge frequency vector \(=\left[\begin{array}{ll}0.1 & 1\end{array}\right]\)
- Gains at these frequencies \(=\left[\begin{array}{ll}1 & 1\end{array}\right]\)

\section*{Least Squares FIR Filter Design (Obsolete)}

\section*{Dialog \\ Box}


\section*{Filter type}

The filter type. Tunable.
Filter order
The filter order.

\section*{Band-edge frequency vector}

A vector of frequency points, in ascending order, in the range 0 to 1 . The value 1 corresponds to half the sample frequency. This vector must have even length. Tunable.

\section*{Gains at these frequencies}

A vector of frequency-response amplitudes corresponding to the points in the Band-edge frequency vector. This vector must be the same length as the Band-edge frequency vector. Tunable.

\section*{Least Squares FIR Filter Design (Obsolete)}

\section*{Weights}

A vector containing one weight for each frequency band. This vector must be half the length of the Band-edge frequency vector and Gains at these frequencies vectors. Tunable.

\author{
References Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.
}

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

\section*{Least Squares Polynomial Fit}

Purpose

Library

\section*{Description}


Compute polynomial coefficients that best fit input data in least-squares sense

Math Functions / Polynomial Functions
dsppolyfun
The Least Squares Polynomial Fit block computes the coefficients of the \(n\)th order polynomial that best fits the input data in the least-squares sense, where you specify \(n\) in the Polynomial order parameter. A distinct set of \(n+1\) coefficients is computed for each column of the \(M\)-by- \(N\) input, \(u\).

For a given input column, the block computes the set of coefficients, \(c_{1}\), \(c_{2}, \ldots, c_{n+1}\), that minimizes the quantity
\[
\sum_{i=1}^{M}\left(u_{i}-\hat{u}_{i}\right)^{2}
\]
where \(u_{i}\) is the \(i\) th element in the input column, and
\[
\hat{u}_{i}=f\left(x_{i}\right)=c_{1} x_{i}^{n}+c_{2} x_{i}^{n-1}+\ldots+c_{n+1}
\]

The values of the independent variable, \(x_{1}, x_{2}, \ldots, x_{M}\), are specified as a length- \(M\) vector by the Control points parameter. The same \(M\) control points are used for all \(N\) polynomial fits, and can be equally or unequally spaced. The equivalent MATLAB code is shown below.
```

c = polyfit(x,u,n) % Equivalent MATLAB code

```

Inputs can be frame based or sample based. For convenience, a length-M 1-D vector input is treated as an \(M\)-by-1 matrix.

Each column of the \((n+1)\)-by- \(N\) output matrix, \(c\), represents a set of \(n+1\) coefficients describing the best-fit polynomial for the corresponding column of the input. The coefficients in each column are arranged in order of descending exponents, \(c_{1}, c_{2}, \ldots, c_{n+1}\). The output is always sample based.

\section*{Least Squares Polynomial Fit}

Examples In the model below, the Polynomial Evaluation block uses the second-order polynomial
\[
y=-2 u^{2}+3
\]
to generate four values of dependent variable \(y\) from four values of independent variable \(u\), received at the top port. The polynomial coefficients are supplied in the vector [ \(\left.\begin{array}{lll}-2 & 0 & 3\end{array}\right]\) at the bottom port. Note that the coefficient of the first-order term is zero.


The Control points parameter of the Least Squares Polynomial Fit block is configured with the same four values of independent variable \(u\) that are used as input to the Polynomial Evaluation block, [llll \(\left.\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]\). The Least Squares Polynomial Fit block uses these values together with the input values of dependent variable \(y\) to reconstruct the original polynomial coefficients.

\section*{Least Squares Polynomial Fit}

\section*{Dialog \\ Box}


\section*{Control points}

The values of the independent variable to which the data in each input column correspond. For an \(M\)-by- \(N\) input, this parameter must be a length \(-M\) vector. Tunable.

\section*{Polynomial order}

The order, \(n\), of the polynomial to be used in constructing the best fit. The number of coefficients is \(n+1\).

Supported
Data
Types

\author{
See Also \\ Detrend \\ Polynomial Evaluation \\ Polynomial Stability Test \\ polyfit
}

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
MATLAB

\section*{Purpose}

Solve linear system of equations using Levinson-Durbin recursion

\section*{Library}

Description


Math Functions / Matrices and Linear Algebra / Linear System Solvers dspsolvers

The Levinson-Durbin block solves the \(n\) th-order system of linear equations
\[
R a=b
\]
in the cases where:
- \(R\) is a Hermitian, positive-definite, Toeplitz matrix.
- \(b\) is identical to the first column of \(R\) shifted by one element and
with the opposite sign.
\[
\left[\begin{array}{cccc}
r(1) & r^{*}(2) & \cdots & r^{*}(n) \\
r(2) & r(1) & \cdots & r^{*}(n-1) \\
\vdots & \vdots & \ddots & \vdots \\
r(n) & r(n-1) & \cdots & r(1)
\end{array}\right]\left[\begin{array}{c}
a(2) \\
a(3) \\
\vdots \\
a(n+1)
\end{array}\right]=\left[\begin{array}{c}
-r(2) \\
-r(3) \\
\vdots \\
-r(n+1)
\end{array}\right]
\]

The input to the block, \(r=[r(1) r(2) \ldots \quad r(n+1)]\), can be a 1-D or 2 -D row or column vector or a sample- or frame-based matrix. If the input is a matrix, the block treats each column as an independent channel and solves it separately. Each channel of the input contains lags 0 through \(n\) of an autocorrelation sequence, which appear in the matrix \(R\).

The block can output the polynomial coefficients, \(A\), the reflection coefficients, \(K\), and the prediction error power, \(P\), in various combinations. The Output(s) parameter allows you to enable the \(A\) and \(K\) outputs by selecting one of the following settings:
- A - For each channel, port A outputs \(A=\left[\begin{array}{lll}1 & a(2) & a(3)\end{array}\right.\) \(a(n+1)\) ], the solution to the Levinson-Durbin equation. \(A\) has the

\section*{Levinson-Durbin}
same dimension as the input. You can also view the elements of each output channel as the coefficients of an \(n\) th-order autoregressive (AR) process.
- K — For each channel, port K outputs \(K=[k(1) k(2) \ldots \quad k(n)]\), which contains \(n\) reflection coefficients and has the same dimension as the input, less one element. A scalar input channel causes an error when you select K. You can use reflection coefficients to realize a lattice representation of the AR process described later in this page.
- A and K - The block outputs both representations at their respective ports. A scalar input channel causes an error when you select A and K .
\(A\) and \(K\) are matrices when the input is a matrix. Otherwise, \(A\) and \(K\) are 1-D vectors.

Select the Output prediction error power ( \(\mathbf{P}\) ) check box to output the prediction error power for each channel, \(P\). For each channel, \(P\) represents the power of the output of an FIR filter with taps \(A\) and input autocorrelation described by \(r\), where \(A\) represents a prediction error filter and \(r\) is the input to the block. In this case, \(A\) is a whitening filter. \(P\) has one element per input channel.

When you select the If the value of lag 0 is zero, \(A=[1\) zeros], \(\mathbf{K}=[z e r o s], \mathbf{P}=\mathbf{0}\) check box (default), an input channel whose \(r(1)\) element is zero generates a zero-valued output. When you clear this check box, an input with \(r(1)=0\) generates NaNs in the output. In general, an input with \(r(1)=0\) is invalid because it does not construct a positive-definite matrix \(R\). Often, however, blocks receive zero-valued inputs at the start of a simulation. The check box allows you to avoid propagating NaNs during this period.

\section*{Applications}

One application of the Levinson-Durbin formulation implemented by this block is in the Yule-Walker AR problem, which concerns modeling an unknown system as an autoregressive process. You would model such a process as the output of an all-pole IIR filter with white Gaussian noise input. In the Yule-Walker problem, the use of the signal's
autocorrelation sequence to obtain an optimal estimate leads to an \(R a\) \(=b\) equation of the type shown above, which is most efficiently solved by Levinson-Durbin recursion. In this case, the input to the block represents the autocorrelation sequence, with \(r(1)\) being the zero-lag value. The output at the block's A port then contains the coefficients of the autoregressive process that optimally models the system. The coefficients are ordered in descending powers of \(z\), and the AR process is minimum phase. The prediction error, \(G\), defines the gain for the unknown system, where \(G=\sqrt{P}\) :
\[
H(z)=\frac{G}{A(z)}=\frac{G}{1+a(2) z^{-1}+\ldots+a(n+1) z^{-n}}
\]

The output at the block's K port contains the corresponding reflection coefficients, \([k(1) k(2) \ldots \quad k(\mathrm{n})]\), for the lattice realization of this IIR filter. The Yule-Walker AR Estimator block implements this autocorrelation-based method for AR model estimation, while the Yule-Walker Method block extends the method to spectral estimation.

Another common application of the Levinson-Durbin algorithm is in linear predictive coding, which is concerned with finding the coefficients of a moving average (MA) process (or FIR filter) that predicts the next value of a signal from the current signal sample and a finite number of past samples. In this case, the input to the block represents the signal's autocorrelation sequence, with \(r(1)\) being the zero-lag value, and the output at the block's A port contains the coefficients of the predictive MA process (in descending powers of \(z\) ).
\[
H(z)=A(z)=1+a(2) z^{-1}+\ldots a(n+1) z^{-n}
\]

These coefficients solve the following optimization problem:
\[
\min _{\left\{a_{i}\right\}}
\]

\section*{Levinson-Durbin}
\[
E\left[\left|x_{n}-\sum_{i=1}^{N} a_{i} x_{n-i}\right|^{2}\right]
\]

Again, the output at the block's K port contains the corresponding reflection coefficients, \([k(1) k(2) \ldots k(n)]\), for the lattice realization of this FIR filter. The Autocorrelation LPC block in the Linear Prediction library implements this autocorrelation-based prediction method.

\section*{Fixed-Point Data Types}

The diagrams in this section show the data types used within the Levinson-Durbin block for fixed-point signals.

After initialization the block performs \(n\) updates. At the ( \(j+1\) ) update,
\[
\text { value in accumulator }=r(j+1)+\sum a_{j}(i) \times r(j-i+1)
\]

The following diagram displays the fixed-point data types used in this calculation:
\(r(j-i+1)\)


The block then updates the reflection coefficients \(K\) according to
\[
K_{j+1}=\text { value in accumulator } / P_{j}
\]

The block then updates the prediction error power \(P\) according to

\section*{Levinson-Durbin}
\[
P_{j+1}=P_{j}-P_{j} \times K_{j+1} \times \operatorname{conj}\left(K_{j+1}\right)
\]

The next diagram displays the fixed-point data types used in this calculation:
\(r(j-i+1)\)

dato type
\(\alpha_{j}(i)\)
lood accumulator with \(r(j+1)\)

The polynomial coefficients \(A\) are then updated according to
\[
a_{j+1}(i)=a_{j}(i)+K_{j+1} \times \operatorname{conj}\left(\mathrm{a}_{\mathrm{j}}(j-1+i)\right)
\]

This diagram displays the fixed-point data types used in this calculation:


\section*{Levinson-Durbin}

Algorithm

Dialog Box

The algorithm requires \(O\left(n^{2}\right)\) operations for each input channel. This implementation is therefore much more efficient for large \(n\) than standard Gaussian elimination, which requires \(O\left(n^{3}\right)\) operations per channel.

The Main pane of the Levinson-Durbin block dialog box appears as follows.
```

Function Block Parameters: Levinson-Durbin
-Levinson-Durbin
Solve Hermitian Toeplitz system of equations using the Levinson-Durbin recursion. Input is typically a vector of autocorrelation coefficients with lag 0 as the first element. Outputs polynomial coefficients A, reflection coefficients K, and/or the prediction error power P.

```
```

Main | Data type attributes

```
Main | Data type attributes
Parameters
Output(s): K
```



```
\(\Gamma\) Output prediction error power ( \(P\) )
If the value of lag 0 is zero, \(A=[1\) zeros \(], \mathrm{K}=[\) zeros \(], \mathrm{P}=0\)
```


Output(s)

Specify the solution representation of $R a=b$ to output: model coefficients (A), reflection coefficients (K), or both (A and K). For scalar and frame-based row vector inputs, this parameter must be set to A.

Output prediction error power (P)

Select to output the prediction error at port P.
If the value of lag 0 is zero, $\mathrm{A}=[1$ zeros], $\mathrm{K}=[$ zeros], $\mathrm{P}=0$
When you select this check box and the first element of the input, $r(1)$, is zero, the block outputs the following vectors, as appropriate:

- $A=[1 \operatorname{zeros}(1, n)]$
- $K=[z e r o s(1, n)]$
- $P=0$

When you clear this check box, the block outputs a vector of NaNs for each channel whose $r(1)$ element is zero.

The Data type attributes pane of the Levinson-Durbin block dialog box appears as follows.

Levinson-Durbin

Note Floating-point inheritance takes precedence over the data type settings defined on this pane. When inputs are floating point, the block ignores these settings, and all internal data types are floating point.

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Product output data type

Specify the product output data type. See "Fixed-Point Data Types" on page 2-752 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

> Click the Show data type assistant button $\quad \gg$ display the Data Type Assistant, which helps you set the Product output data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Accumulator data type

Specify the accumulator data type. See "Fixed-Point Data Types" on page 2-752 for illustrations depicting the use of the accumulator data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt(1,16,0)

Click the Show data type assistant button $\quad \ggg$ to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Levinson-Durbin

Polynomial coefficients (A)

Specify the polynomial coefficients (A) data type. See "Fixed-Point Data Types" on page 2-752 for illustrations depicting the use of the A data type in this block. You can set it to an expression that evaluates to a valid data type, for example, fixdt $(1,16,15)$.

Click the Show data type assistant button $\quad \ggg$ to display the Data Type Assistant, which helps you set the A parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Reflection coefficients (K)

Specify the polynomial coefficients (A) data type. See "Fixed-Point Data Types" on page 2-752 for illustrations depicting the use of the K data type in this block. You can set it to an expression that evaluates to a valid data type, for example, fixdt ($1,16,15$).

Click the Show data type assistant button $\quad \gg$ to display the Data Type Assistant, which helps you set the K parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Prediction error power (P)

Specify the prediction error power (P) data type. See "Fixed-Point Data Types" on page 2-752 for illustrations depicting the use of the P data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt(1, 16, 0)

Click the Show data type assistant button $\quad \ggg$ to display the Data Type Assistant, which helps you set the \mathbf{P} parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

Minimum

Specify the minimum values that the polynomial coefficients, reflection coefficients, or prediction error power should have. The default value, [], is equivalent to - Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Automatic scaling of fixed-point data types

Maximum

Specify the maximum values that the polynomial coefficients, reflection coefficients, or prediction error power should have. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Automatic scaling of fixed-point data types

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling feature of the Fixed-Point Tool. See the fxptdlg reference page for more information.

References

Golub, G. H. and C. F. Van Loan. Sect. 4.7 in Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.

Ljung, L. System Identification: Theory for the User. Englewood Cliffs, NJ: Prentice Hall, 1987. Pgs. 278-280.

Kay, Steven M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice Hall, 1988.

Levinson-Durbin

Supported	- Double-precision floating point
Data	- Single-precision floating point
Types	- Fixed point (signed only)
	- 8 -, 16-, and 32 -bit signed integers

See Also

Cholesky Solver	Signal Processing Blockset
LDL Solver	Signal Processing Blockset
Autocorrelation LPC	Signal Processing Blockset
LU Solver	Signal Processing Blockset
QR Solver	Signal Processing Blockset
Yule-Walker AR Estimator	Signal Processing Blockset
Yule-Walker Method	Signal Processing Blockset
levinson	Signal Processing Toolbox

See "Linear System Solvers" for related information.

LMS Adaptive Filter (Obsolete)

Purpose

Compute filter estimates for input using LMS adaptive filter algorithm

Library

Description

dspobslib

Note The LMS Adaptive Filter block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the LMS Filter block.

The LMS Adaptive Filter block implements an adaptive FIR filter using the stochastic gradient algorithm known as the normalized least mean-square (LMS) algorithm.

$$
\begin{gathered}
y(n)=\hat{w}^{H}(n-1) u(n) \\
e(n)=d(n)-y(n) \\
\widehat{w}(n)=\widehat{w}(n-1)+\frac{u(n)}{a+u^{H}(n) u(n)} \mu e^{*}(n)
\end{gathered}
$$

LMS Adaptive Filter (Obsolete)

The variables are as follows.

Variable	Description
n	The current algorithm iteration
$u(n)$	The buffered input samples at step n
$\hat{w}(n)$	The vector of filter-tap estimates at step n
$y(n)$	The filtered output at step n
$e(n)$	The estimation error at step n
$d(n)$	The desired response at step n
μ	The adaptation step size

To overcome potential numerical instability in the tap-weight update, a small positive constant ($a=1 \mathrm{e}-10$) has been added in the denominator.
To turn off normalization, clear the Use normalization check box in the parameter dialog. The block then computes the filter-tap estimate as

$$
\widehat{w}(n)=\widehat{w}(n-1)+u(n) \mu e^{*}(n)
$$

The block icon has port labels corresponding to the inputs and outputs of the LMS algorithm. Note that inputs to the In and Err ports must be sample-based scalars. The signal at the Out port is a scalar, while the signal at the Taps port is a sample-based vector.

Block Ports	Corresponding Variables
In	u, the scalar input, which is internally buffered into the vector $u(n)$
Out	$y(n)$, the filtered scalar output
Err	$e(n)$, the scalar estimation error
Taps	$\hat{w}(n)$, the vector of filter-tap estimates

LMS Adaptive Filter (Obsolete)

An optional Adapt input port is added when you select the Adapt input check box in the dialog. When this port is enabled, the block continuously adapts the filter coefficients while the Adapt input is nonzero. A zero-valued input to the Adapt port causes the block to stop adapting, and to hold the filter coefficients at their current values until the next nonzero Adapt input.

The FIR filter length parameter specifies the length of the filter that the LMS algorithm estimates. The Step size parameter corresponds to μ in the equations. Typically, for convergence in the mean square, μ must be greater than 0 and less than 2 . The Initial value of filter taps specifies the initial value $\hat{w}(0)$ as a vector, or as a scalar to be repeated for all vector elements. The Leakage factor specifies the value of the leakage factor, $1-\mu \alpha$, in the leaky LMS algorithm below. This parameter must be between 0 and 1 .

$$
\widehat{w}(n+1)=(1-\mu \alpha) \hat{w}(n)+\frac{u(n)}{u^{H}(n) u(n)} \mu e^{*}(n)
$$

Examples See the lmsadeq and lmsadtde demos.

LMS Adaptive Filter (Obsolete)

Dialog
 Box

Block Parameters: LMS Adaptive Filter		
-LMS Adaptive Filler (mask)		
Least mean-square (LMS) algoithm for adaptive FIR filtering of input signal. Energy normalization may optionally be disabled. If Adapt inpu checkbox is enabled, and the Adapt input port is zero, the algorithm stops adapting the filter coefficients.		
Parameters FIR filter length:		
32		
Step-size, mu:		
. 65		
Initial value of filter taps:		
0.0		
Leakage factor (0 to 1):		
1.0		
V Use normalization		
\ulcorner Adapt input		
OK Cancel	Help	$\Delta \mathrm{Apply}$

FIR filter length

The length of the FIR filter.

Step-size

The step-size, usually in the range (0,2). Tunable.

Initial value of filter taps

The initial FIR filter coefficients.

Leakage factor

The leakage factor, in the range $[0,1]$. Tunable.

Use normalization

Select this check box to compute the filter-tap estimate using the normalized equations.

LMS Adaptive Filter (Obsolete)

	Adapt input Enables the Adapt port when selected.
References	Haykin, S. Adaptive Filter Theory. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.
Supported Data Types	- Double-precision floating point - Single-precision floating point
See Also	Kalman Adaptive Filter (Obsolete)
	RLS Adaptive Filter (Obsolete)\quad Signal Processing Blockset
	See "Adaptive Filters" for related information.

Purpose Compute output, error, and weights using LMS adaptive algorithm
Library Filtering / Adaptive Filters
dspadpt3

Description

The LMS Filter block can implement an adaptive FIR filter using five different algorithms. The block estimates the filter weights, or coefficients, needed to minimize the error, $e(n)$, between the output signal $y(n)$ and the desired signal, $d(n)$. Connect the signal you want to filter to the Input port. This input signal can be a sample-based scalar or a single-channel frame-based signal. Connect the desired signal to the Desired port. The desired signal must have the same data type, frame status, complexity, and dimensions as the input signal. The Output port outputs the filtered input signal, which is the estimate of the desired signal. The output of the Output port has the same frame status as the input signal. The Error port outputs the result of subtracting the output signal from the desired signal.
When you select LMS for the Algorithm parameter, the block calculates the filter weights using the least mean-square (LMS) algorithm. This algorithm is defined by the following equations.

$$
\begin{gathered}
y(n)=\mathbf{w}^{T}(n-1) \mathbf{u}(n) \\
e(n)=d(n)-y(n) \\
\mathbf{w}(n)=\mathbf{w}(n-1)+f(\mathbf{u}(n), e(n), \mu)
\end{gathered}
$$

The weight update function for the LMS adaptive filter algorithm is defined as

$$
f(\mathbf{u}(n), e(n), \mu)=\mu e(n) \mathbf{u}^{*}(n)
$$

The variables are as follows.

Variable	Description
n	The current time index
$\mathbf{u}(n)$	The vector of buffered input samples at step n
$\mathbf{u *}(n)$	The complex conjugate of the vector of buffered input samples at step n
$\mathbf{w}(n)$	The vector of filter weight estimates at step n
$y(n)$	The filtered output at step n
$e(n)$	The estimation error at step n
$d(n)$	The desired response at step n
μ	The adaptation step size

When you select Normalized LMS for the Algorithm parameter, the block calculates the filter weights using the normalized LMS algorithm. The weight update function for the normalized LMS algorithm is defined as

$$
f(\mathbf{u}(n), e(n), \mu)=\mu e(n) \frac{\mathbf{u}^{*}(n)}{\varepsilon+\mathbf{u}^{H}(n) \mathbf{u}(n)}
$$

To overcome potential numerical instability in the update of the weights, a small positive constant, epsilon, has been added in the denominator. For double-precision floating-point input, epsilon is $2.2204460492503131 \mathrm{e}-016$. For single-precision floating-point input, epsilon is $1.192092896 \mathrm{e}-07$. For fixed-point input, epsilon is 0 .

When you select Sign-Error LMS for the Algorithm parameter, the block calculates the filter weights using the LMS algorithm equations.

However, each time the block updates the weights, it replaces the error term $e(n)$ with +1 when the error term is positive, -1 when it is negative, or 0 when it is zero.

When you select Sign-Data LMS for the Algorithm parameter, the block calculates the filter weights using the LMS algorithm equations. However, each time the block updates the weights, it replaces each sample of the input vector $\boldsymbol{u}(n)$ with +1 when the input sample is positive, -1 when it is negative, or 0 when it is zero.

When you select Sign-Sign LMS for the Algorithm parameter, the block calculates the filter weights using the LMS algorithm equations. However, each time the block updates the weights, it replaces the error term $e(n)$ with +1 when the error term is positive, -1 when it is negative, or 0 when it is zero. It also replaces each sample of the input vector \boldsymbol{u} (n) with +1 when the input sample is positive, -1 when it is negative, or 0 when it is zero.

Use the Filter length parameter to specify the length of the filter weights vector.

The Step size (mu) parameter corresponds to μ in the equations. For convergence of the normalized LMS equations, $0<\mu<2$. You can either specify a step size using the input port, Step-size, or by entering a value in the Block Parameters: LMS Filter dialog.
Use the Leakage factor ($\mathbf{0}$ to $\mathbf{1}$) parameter to specify the leakage factor $1-\mu \alpha$ where $0<1-\mu \alpha \leq 1$ in the leaky LMS algorithm shown below.

$$
\mathbf{w}(n)=(1-\mu \alpha) \mathbf{w}(n-1)+f(\mathbf{u}(n), e(n), \mu)
$$

When you select LMS from the Algorithm list, the weight update function in the above equation is the LMS weight update function. When you select Normalized LMS from the Algorithm list, the weight update function in the above equation is the normalized LMS weight update function.

Enter the initial filter weights $\mathbf{w}(0)$ as a vector or a scalar in the Initial value of filter weights text box. When you enter a scalar, the block uses the scalar value to create a vector of filter weights. This vector
has length equal to the filter length and all of its values are equal to the scalar value.
When you select the Adapt port check box, an Adapt port appears on the block. When the input to this port is greater than zero, the block continuously updates the filter weights. When the input to this port is less than or equal to zero, the filter weights remain at their current values.

When you want to reset the value of the filter weights to their initial values, use the Reset port parameter. The block resets the filter weights whenever a reset event is detected at the Reset port. The reset signal rate must be the same rate as the data signal input.
From the Reset port list, select None to disable the Reset port. To enable the Reset port, select one of the following from the Reset port list:

- Rising edge - Triggers a reset operation when the Reset input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

LMS Filter

- Falling edge - Triggers a reset operation when the Reset input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Reset input is a Rising edge or Falling edge (as described above)
- Non-zero sample - Triggers a reset operation at each sample time that the Reset input is not zero

Note When running simulations in the Simulink MultiTasking mode, sample-based reset signals have a one-sample latency, and frame-based reset signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a reset event, and when it applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

Select the Output filter weights check box to create a Wts port on the block. For each iteration, the block outputs the current updated filter weights from this port.

Fixed-Point Data Types

The following diagrams show the data types used within the LMS Filter block for fixed-point signals; the table summarizes the definitions of variables used in the diagrams:

Variable	Definition				
\mathbf{u}	Input vector				
\mathbf{W}	Vector of filter weights				
μ	Step size				
e	Error				
Q	Quotient, $Q=\frac{\mu \cdot e}{\sim \prime \mathbf{u}}$	$	$	Product u'u	Product data type in Energy calculation diagram
:---	:---				
Accumulator u'u	Accumulator data type in Energy calculation diagram				
Product W'u	Product data type in Convolution diagram				
Accumulator $\mathbf{W} \mathbf{\prime} \mathbf{u}$	Accumulator data type in Convolution diagram				
Product $\mu \cdot e$	Product data type in Product of step size and error diagram				
Product $Q \cdot \mathbf{u}$	Product and accumulator data type in Weight update diagram. ${ }^{1}$				

${ }^{1}$ The accumulator data type for this quantity is automatically set to be the same as the product data type. The minimum, maximum, and

LMS Filter

overflow information for this accumulator is logged as part of the product information. Autoscaling treats this product and accumulator as one data type.

Energy calculation (for normalized LMS algorithm only)

Convolution

Product of step size and error (for LMS and Sign-Data LMS algorithms only)

Quotient (for normalized LMS only)

You can set the data type of the parameters, weights, products, quotient, and accumulators in the block mask. Fixed-point inputs, outputs, and mask parameters of this block must have the following characteristics:

- The input signal and the desired signal must have the same word length, but their fraction lengths can differ.

LMS Filter

- The step size and leakage factor must have the same word length, but their fraction lengths can differ.
- The output signal and the error signal have the same word length and the same fraction length as the desired signal.
- The quotient and the product output of the \mathbf{u} 'u, W'u, $\mu \cdot e$, and $Q \cdot \mathbf{u}$ operations must have the same word length, but their fraction lengths can differ.
- The accumulator data type of the u'u and W'u operations must have the same word length, but their fraction lengths can differ.

The output of the multiplier is in the product output data type if at least one of the inputs to the multiplier is real. If both of the inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, see "Multiplication Data Types".

Dialog Box

The Main pane of the LMS Filter block dialog appears as follows.

Algorithm

Choose the algorithm used to calculate the filter weights.

Filter length

Enter the length of the FIR filter weights vector.

Specify step size via

Select Dialog to enter a value for step size in the Block parameters: LMS Filter dialog. Select Input port to specify step size using the Step-size input port.

Step size (mu)

Enter the step size μ. Tunable.

Leakage factor (0 to 1)

Enter the leakage factor, $0<1-\mu \alpha \leq 1$. Tunable.

Initial value of filter weights

Specify the initial values of the FIR filter weights.
Adapt port
Select this check box to enable the Adapt input port.

Reset port

Select this check box to enable the Reset input port.

Output filter weights

Select this check box to export the filter weights from the Wts port.
The Fixed-point pane of the LMS Filter block dialog appears as follows.

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

LMS Filter

Parameters

This parameter is visible if, for the Specify step size via parameter, you choose Dialog. Choose how you specify the word length and the fraction length of the leakage factor and step size:

- When you select Same word length as first input, the word length of the leakage factor and step size match that of the first input to the block. In this mode, the fraction length of the leakage factor and step size is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Specify word length, you can enter the word length of the leakage factor and step size, in bits. In this mode, the fraction length of the leakage factor and step size is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Binary point scaling, you can enter the word length and the fraction length of the leakage factor and step size, in bits. The leakage factor and the step size must have the same word length, but the fraction lengths can differ.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the leakage factor and step size. The leakage factor and the step size must have the same word length, but the slopes can differ. This block requires a power-of-two slope and a bias of zero.

If, for the Specify step size via parameter, you choose Input port, the word length of the leakage factor is the same as the word length of the step size input at the Step size port. The fraction length of the leakage factor is automatically set to the best precision possible based on the word length of the leakage factor.

Weights

Choose how you specify the word length and fraction length of the filter weights of the block:

- When you select Same as first input, the word length and fraction length of the filter weights match those of the first input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the filter weights, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the filter weights. This block requires a power-of-two slope and a bias of zero.

Products \& quotient

Choose how you specify the word length and fraction length of $\mathbf{u} \mathbf{\prime}, \mathbf{W} \mathbf{\prime} \mathbf{u}, \mu \cdot e, Q \cdot \mathbf{u}$, and the quotient, Q . Here, \mathbf{u} is the input vector, \mathbf{W} is the vector of filter weights, μ is the step size, e is the
error, and Q is the quotient, which is defined as $Q=\frac{\mu \cdot e}{\mathbf{u} \mathbf{u}}$

- When you select Same as first input, the word length and fraction length of these quantities match those of the first input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of these quantities, in bits. The word length of the quantities must be the same, but the fraction lengths can differ.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of these quantities. The word length of the quantities must be the same, but the slopes can differ. This block requires a power-of-two slope and a bias of zero.

LMS Filter

Accumulators

Use this parameter to specify how you would like to designate the word and fraction lengths of the accumulators for the u'u and W'u operations.

Note This parameter is not used to designate the word and fraction lengths of the accumulator for the $Q \cdot \mathbf{u}$ operation. The accumulator data type for this quantity is automatically set to be the same as the product data type. The minimum, maximum, and overflow information for this accumulator is logged as part of the product information. Autoscaling treats this product and accumulator as one data type.

See "Fixed-Point Data Types" on page 2-771 and "Multiplication Data Types" for illustrations depicting the use of the accumulator data type in this block:

- When you select Same as first input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulators, in bits. The word length of both the accumulators must be the same, but the fraction lengths can differ.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulators. The word length of both the accumulators must be the same, but the slopes can differ. This block requires a power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling feature of the Fixed-Point Tool. See the fxptdlg reference page for more information.

References
 Supported Data Types

Hayes, M.H. Statistical Digital Signal Processing and Modeling. New York: John Wiley \& Sons, 1996.

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Signed fixed point
Desired	- Must be the same as Input for floating-point signals - Must be any signed fixed-point data type when Input is fixed point
Step-size	- Must be the same as Input for floating-point signals - Must be any signed fixed-point data type when Input is fixed point
Adapt	- Double-precision floating point - Single-precision floating point - Boolean - 8 -, 16-, and 32 -bit signed integers
Reset	- Double-precision floating point - Single-precision floating point - Boolean - 8 -, 16-, and 32 -bit signed integers
Output	- Must be the same as Input for floating-point signals - Must be the same as Desired for fixed-point signals

LMS Filter

Port	Supported Data Types
Error	• Must be the same as Input for floating-point signals - Must be the same as Desired for fixed-point signals
Wts	- Must be the same as Input for floating-point signals - Obeys the Weights parameter for fixed-point signals

See Also

Kalman Adaptive Filter (Obsolete)	Signal Processing Blockset
RLS Filter	Signal Processing Blockset
Block LMS Filter	Signal Processing Blockset
Fast Block LMS Filter	Signal Processing Blockset

See "Adaptive Filters" for related information.

Purpose	Design lowpass Filter
Library	Filtering / Filter Design Toolbox
	dspfdesign

Description This block brings the functionality of the Filter Design Toolbox filterbuilder function to the Simulink environment. You must have a Filter Design Toolbox product license to design filters with this block. However, you can run models containing this block without a license. This allows you to run a model sent to you by a colleague who has designed a filter using this block, even if you do not have the Filter Design Toolbox product.

Dialog Box

See "Lowpass Filter Design Dialog Box - Main Pane" in the Filter Design Toolbox documentation for more information about the parameters of this block. The Data Types pane is not available for Filter Design Toolbox blocks in the Signal Processing Blockset product.

Parameters of this block that do not change filter order or structure are tunable. Tunable parameters are enabled during simulation; nontunable parameters are not.

Supported
 Data Types

Port	Supported Data Types
Input	• Double-precision floating point
	- Single-precision floating point
	• Fixed point
	• 8-, 16-, and 32-bit signed integers
	• 8-, 16-, and 32-bit unsigned integers
Output	• Double-precision floating point
	• Single-precision floating point
	• Fixed point

Lowpass Filter

Port	Supported Data Types
	• 8 -, 16-, and 32 -bit signed integers
	$\bullet 8$-, 16-, and 32-bit unsigned integers

Purpose

Library
 Description

Convert linear prediction coefficients to line spectral pairs or line spectral frequencies

Estimation / Linear Prediction
dsplp

The LPC to LSF/LSP Conversion block takes a vector or matrix of linear prediction coefficients (LPCs) and converts it to a vector or matrix of line spectral pairs (LSPs) or line spectral frequencies (LSFs). When converting LPCs to LSFs, the block outputs match those of the poly2lsf function.

The block input must be a sample-based row vector, which is treated as a single channel, or a matrix, which is treated as a single channel per column.
The input LPCs for each channel, $1, a_{1}, a_{2}, \ldots, a_{m}$, must be the denominator of the transfer function of a stable all-pole filter with the form given in the first equation of "Requirements for Valid Outputs" on page 2-785. A length- $M+1$ input channel yields a length $-M$ output channel. Inputs can be sample based or frame based, but outputs are always sample based.

See other sections of this reference page to learn about how to ensure that you get valid outputs, how to detect invalid outputs, how the block computes the LSF/LSP values, and more.

Requirements for Valid Outputs

To get valid outputs, your inputs and the Root finding coarse grid points parameter value must meet these requirements:

- The input LPCs for each channel, $1, a_{1}, a_{2}, \ldots, a_{m}$, must come from the denominator of the following transfer function, $H(z)$, of a stable all-pole filter (all roots of $H(z)$ must be inside the unit circle). Note that the first term in $H(z)$'s denominator must be 1 . When the input LPCs do not come from a transfer function of the following form, the block outputs are invalid.

LPC to LSF/LSP Conversion

$$
H(z)=\frac{1}{1+a_{1} z^{-1}+a_{2} z^{-2}+\ldots+a_{m} z^{-m}}
$$

- The Root finding coarse grid points parameter value must be large enough so that the block can find all the LSP or LSF values. (The output LSFs and LSPs are roots of polynomials related to the input LPC polynomial; the block looks for these roots to produce the output. For details, see "LSF and LSP Computation Method: Chebyshev Polynomial Method for Root Finding" on page 2-793.) When you do not set Root finding coarse grid points to a high enough value relative to the number of LPCs, the block might not find all the LSPs or LSFs and yield invalid outputs as described in "Root Finding Method Limitations: Failure to Find Roots" on page 2-797.

To learn about recognizing invalid inputs and outputs and parameters for dealing with them, see "Handling and Recognizing Invalid Inputs and Outputs" on page 2-788.

Setting Outputs to LSFs or LSPs

Set the Output parameter to one of the following settings to determine whether the block outputs LSFs or LSPs:

- LSF in radians (0 pi) - Block outputs the LSF values between 0 and π radians in increasing order. The block does not output the guaranteed LSF values, 0 and π.
- LSF normalized in range (0 0.5) — Block outputs normalized LSF values in increasing order, computed by dividing the LSF values between 0 and Π radians by 2π. The block does not output the guaranteed normalized LSF values, 0 and 0.5.
- LSP in range (-1 1) — Block outputs LSP values in decreasing order, equal to the cosine of the LSF values between 0 and π radians. The block does not output the guaranteed LSP values, -1 and 1 .

Adjusting Output Computation Time and Accuracy with Root Finding Parameters

The values n and k determine the block's output computation time and accuracy, where

- n is the value of the Root finding coarse grid points parameter (choose this value with care; see the note below).
- k is the value of the Root finding bisection refinement parameter.
- Decreasing the values of n and k decreases the output computation time, but also decreases output accuracy:
- The upper bound of block's computation time is proportional to $k \cdot(n-1)$.
- Each LSP output is within $1 /\left(n \cdot 2^{k}\right)$ of the actual LSP value.
- Each LSF output is within $\Delta L S F$ of the actual LSF value, $L S F_{a c t}$, where

$$
\Delta L S F=\left|a \cos \left(L S F_{a c t}\right)-a \cos \left(L S F_{a c t}+1 /\left(n \cdot 2^{k}\right)\right)\right|
$$

Note When the value of the Root finding coarse grid points parameter is too small relative to the number of LPCs, the block might output invalid data as described in "Requirements for Valid Outputs" on page 2-785. Also see "Handling and Recognizing Invalid Inputs and Outputs" on page 2-788.

Notable Input and Output Properties

- To get valid outputs, your input LPCs and the value of the Root finding coarse grid points parameter must meet the requirements described in "Requirements for Valid Outputs" on page 2-785.
- Length- $L+1$ input channel yields length- L output channel

LPC to LSF/LSP Conversion

- Output is always sample based
- Output parameter determines the output type (see "Setting Outputs to LSFs or LSPs" on page 2-786):
- LSFs - frequencies, w_{k}, where $0<w_{k}<\pi$ and $w_{k}<w_{k+1}$
- Normalized LSFs $-w_{k} / 2 \Pi$
- LSPs $-\cos \left(w_{k}\right)$

Handling and Recognizing Invalid Inputs and Outputs

The block outputs invalid data when your input LPCs and the value of the Root finding coarse grid points parameter do not meet the requirements described in "Requirements for Valid Outputs" on page 2-785. The following topics describe what invalid outputs look like, and how to set the block parameters provided for handling invalid inputs and outputs:

- "What Invalid Outputs Look Like" on page 2-788
- "Parameters for Handling Invalid Inputs and Outputs" on page 2-789

What Invalid Outputs Look Like

The channels of an invalid output have the same dimensions, sizes, and frame statues as the channels of a valid output. However, invalid output channels do not contain all the LSP or LSF values. Instead, they contain none or some of the LSP and LSF values and the rest of the output is filled with place holder values ($-1,0.5$, or π) depending on the Output parameter setting).

In short, all invalid outputs in a channel end in one of the place holder values ($-1,0.5$, or π) as illustrated in the following table. To learn how to use the block's parameters for handling invalid inputs and outputs, see the next section.

Output Parameter Setting	Place Holder	Sample Invalid Outputs
LSF normalized in range $\left(\begin{array}{ll}0 & 0.5\end{array}\right)$	0.5	$\left[\begin{array}{l}w_{1} \\ w_{2} \\ 0.5\end{array}\right]$
LSP in range (-1 1)	-1	$\left[\begin{array}{c}\cos \left(w_{13}\right) \\ \cos \left(w_{23}\right) \\ -1 \\ -1 \\ -1\end{array}\right]$

Parameters for Handling Invalid Inputs and Outputs

You must set how the block handles invalid inputs and outputs by setting these parameters:

- Show output validity status ($1=$ valid, $\mathbf{0}=$ invalid) - Set this parameter to activate a second output port that outputs a vector with one Boolean element per channel; 1 when the output of the corresponding channel is valid, and 0 when the output is invalid. The LSF and LSP outputs are invalid when the block fails to find all the LSF or LSP values or when the input LPCs are unstable (for details, see "Requirements for Valid Outputs" on page 2-785). See the previous section to learn how to recognize invalid outputs.
- If current output is invalid, overwrite with previous output Select this check box to cause the block to overwrite invalid outputs with the previous output. When you set this parameter you also need to consider these parameters:
- When first output is invalid, overwrite with user-defined values - When the first input is unstable, you can overwrite the invalid first output with either

LPC to LSF/LSP Conversion

- The default values, by clearing this check box
- Values you specify, by selecting this check box

The default initial overwrite values are the LSF or LSP representations of an all-pass filter. The vector that is used to overwrite invalid output is stored as an internal state.

- User-defined LSP/LSF values for overwriting invalid first output - Specify a vector of values for overwriting an invalid first output if you selected the When first output is invalid, overwrite with user-defined values parameter. For multichannel inputs, provide a matrix with the same number of channels as the input, or one vector that will be applied to every channel. The vector or matrix of LSP/LSF values you specify should have the same dimension, size, and frame status as the other outputs.
- If first input value is not 1 - The block output in any channel is invalid when the first coefficient in an LPC vector is not 1 ; this parameter determines what the block does when given such inputs:
- Ignore - Proceed with computations as if the first coefficient is 1.
- Normalize - Divide the input LPCs by the value of the first coefficient before computing the output.
- Normalize and warn - In addition to Normalize, display a warning message at the MATLAB command line.
- Error - Stop the simulation and display an error message at the MATLAB command line.

Dialog Box

Output

Specifies whether to convert the input linear prediction polynomial coefficients (LPCs) to LSP in range (-1 1), LSF in radians (0 pi), or LSF normalized in range (0 0.5). See "Setting Outputs to LSFs or LSPs" on page 2-786 for descriptions of the three settings.

Root finding coarse grid points

The value n, where the block divides the interval $(-1,1)$ into n subintervals of equal length, and looks for roots (LSP values) in each subinterval. You must pick n large enough or the block

LPC to LSF/LSP Conversion

output might be invalid as described in "Requirements for Valid Outputs" on page 2-785. To learn how the block uses this parameter to compute the output, see "LSF and LSP Computation Method: Chebyshev Polynomial Method for Root Finding" on page 2-793. Also see "Adjusting Output Computation Time and Accuracy with Root Finding Parameters" on page 2-787. Tunable.

Root finding bisection refinement

The value k, where each LSP output is within $1 /\left(n \cdot 2^{k}\right)$ of the actual LSP value, where n is the value of the Root finding coarse grid points parameter. To learn how the block uses this parameter to compute the output, see "LSF and LSP Computation Method: Chebyshev Polynomial Method for Root Finding" on page 2-793. Also see "Adjusting Output Computation Time and Accuracy with Root Finding Parameters" on page 2-787. Tunable.

Show output validity status

Set this parameter to activate a second output port that outputs a vector with one Boolean element per channel; 1 when the output of the corresponding channel is valid, and 0 when the output is invalid. The LSF and LSP outputs are invalid when the block fails to find all the LSF or LSP values or when the input LPCs are unstable (for details, see "Requirements for Valid Outputs" on page 2-785).

If current output is invalid, overwrite with previous output Selecting this check box causes the block to overwrite invalid outputs with the previous output. Setting this parameter activates other parameters for taking care of initial overwrite values (when the very first output of the block is invalid). For more information, see "Parameters for Handling Invalid Inputs and Outputs" on page 2-789.

When first output is invalid, overwrite with user-defined values

 When the first input is unstable, you can overwrite the invalid first output with either- The default values, by clearing this check box

LPC to LSF/LSP Conversion

- Values you specify, by selecting this check box The default initial overwrite values are the LSF or LSP representations of an all-pass filter. The vector that is used to overwrite invalid output is stored as an internal state. For more information, see "Parameters for Handling Invalid Inputs and Outputs" on page 2-789.

User-defined LSP/LSF values for overwriting invalid first output

Specify a vector of values for overwriting an invalid first output if you selected the When first output is invalid, overwrite with user-defined values parameter. For multichannel inputs, provide a matrix with the same number of channels as the input, or one vector that will be applied to every channel. The vector or matrix of LSP/LSF values you specify should have the same dimension, size, and frame status as the other outputs.

If first input value is not 1

Determines what the block does when the first coefficient of an input is not 1 . The block can either proceed with computations as when the first coefficient is 1 (Ignore); divide the input LPCs by the value of the first coefficient before computing the output (Normalize); in addition to Normalize, display a warning message at the MATLAB command line (Normalize and warn); stop the simulation and display an error message at the MATLAB command line (Error). For more information, see "Parameters for Handling Invalid Inputs and Outputs" on page 2-789.

Theory LSF and LSP Computation Method: Chebyshev Polynomial Method for Root Finding

Note To learn the principles on which the block's LSP and LSF computation method is based, see the reference listed in "References" on page 2-799.

LPC to LSF/LSP Conversion

To compute LSP outputs for each channel, the block relies on the fact that LSP values are the roots of two particular polynomials related to the input LPC polynomial; the block finds these roots using the Chebyshev polynomial root finding method, described next. To compute LSF outputs, the block computes the arc cosine of the LSPs, outputting values ranging from 0 to Π radians.

Root Finding Method

LSPs, which are the roots of two particular polynomials, always lie in the range $(-1,1)$. (The guaranteed roots at 1 and -1 are factored out.) The block finds the LSPs by looking for a sign change of the two polynomials' values between points in the range ($-1,1$). The block searches a maximum of $k(n-1)$ points, where

- n is the value of the Root finding coarse grid points parameter.
- k is the value of the Root finding bisection refinement parameter.

The block's method for choosing which points to check consists of the following two steps:

1 Coarse Root Finding -- The block divides the interval [-1, 1] into n intervals, each of length $2 / n$, and checks the signs of both polynomials' values at the endpoints of the intervals. The block starts checking signs at 1 , and continues checking signs at $1-4 / n, 1-6 / n$, and so on at steps of length $2 / n$, outputting any point if it is a root. The block stops searching in these situations:
a The block finds a sign change of a polynomial's values between two adjacent points. An interval containing a sign change is guaranteed to contain a root, so the block further searches the interval as described in Step 2, Root Finding Refinement.
b The block finds and outputs all M roots (given a length- $M+1$ LPC input).
c The block fails to find all M roots and yields invalid outputs as described in "Handling and Recognizing Invalid Inputs and Outputs" on page 2-788.

2 Root Finding Refinement - When the block finds a sign change in an interval, $[a, b]$, it searches for the root guaranteed to lie in the interval by following these steps:
a Check if Midpoint Is a Root - The block checks the sign of the midpoint of the interval $[a, b]$. The block outputs the midpoint if it is a root, and continues Step 1, Coarse Root Finding, at the next point, $a-2 / n$. Otherwise, the block selects the half-interval with endpoints of opposite sign (either $[a,(a+b) / 2]$ or $[(a+b) / 2, b])$ and executes Step 2b, Stop or Continue Root Finding Refinement.
b Stop or Continue Root Finding Refinement - When the block has repeated Step 2a k times (k is the value of the Root finding bisection refinement parameter), the block linearly interpolates the root by using the half-interval's endpoints, outputs the result as an LSP value, and returns to Step 1, Coarse Root Finding. Otherwise, the block repeats Step 2a using the half-interval.

LPC to LSF/LSP Conversion

Coarse Root Finding: LSAs are roots of two partíular polynomiak rebated to the input LPCs. Cheak sigis of the two polynomink at eventy-spaced points to find all intervak containing a sign change. Output any root (LSPs) found.

Root finding coarse gid points $=5$ Divide $[-1,1]$ into five intervals of equal length and check signs of the polynomink' wolues of the endpoints of the intervak: $1,0.6,0.2,-0.2,-0.6,-1$.

Root Finding Refinement: Whenever Coarse Root Finding identifies an interval containing a sign change, repeatedly biseat the interval to better approximate the root (LSP value).

Bisection I: Check the sign of the polynomial at the midpoint of the interval and select the half-interval with endpoints of opposite sign: [0.2, 0.4]

Bisection 2: Similar to B isection 1
Root finding bisection refinememt $=3$
Bisect all sign change intervak found in the Coarse Root Finding up to three fimesto find the root. When the root is not found in the last bisection, linearty interpolate the root.

Bisection 3: The last bisection. Since the midpoint of this interval is not the root, linearly inter polate the root and output the result as an LSP value.

Coarse Root Finding and Root Finding Refinement

Root Finding Method Limitations: Failure to Find Roots

The block root finding method described above can fail, causing the block to produce invalid outputs (for details on invalid outputs, see "Handling and Recognizing Invalid Inputs and Outputs" on page 2-788).
In particular, the block can fail to find some roots if the value of the Root finding coarse grid points parameter, n, is too small. If the polynomials oscillate quickly and have roots that are very close together, the root finding might be too coarse to identify roots that are very close to each other, as illustrated in Fixing a Failed Root Finding on page 2-798.

For higher-order input LPC polynomials, you should increase the Root finding coarse grid points value to ensure the block finds all the roots and produces valid outputs.

LPC to LSF/LSP Conversion

Root Finding Fails: The root search dwides the interval $[-1,1]$ into four intervak, butall three roots are in a single interval. The block can only find one root per interval, so two of the roots are never found.

Fix Root Finding so it Succeeds: Increasing the value of the Root finding coarse gid points parameter to 15 ensures that each root is in its own interval, so all roots are found.

Fixing a Failed Root Finding

Supported
Data
Types

References Kabal, P. and Ramachandran, R. "The Computation of Line Spectral Frequencies Using Chebyshev Polynomials."IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-34 No. 6, December 1986. pp. 1419-1426.

See Also
LSF/LSP to LPC Conversion
LPC to/from RC
LPC/RC to Autocorrelation
poly2lsf

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox

LSF/LSP to LPC Conversion

Purpose	Convert line spectral frequencies or line spectral pairs to linear prediction coefficients
Library	Estimation / Linear Prediction dsplp
Description	The LSF/LSP to LPC Conversion block takes a vector or matrix of line spectral pairs (LSPs) or line spectral frequencies (LSFs) and converts it to a vector or matrix of linear prediction polynomial coefficients (LPCs). When converting LSFs to LPCs, the block outputs match those of the lsf2poly function.
	The block input must be a sample-based row vector, which is treated as a single channel, or a matrix, which is treated as a single channel per column. Each input channel must be in the same format, which you specify in the Input parameter: - LSF in range (0 pi) - Vector of LSF values between 0 and Π radians in increasing order. Do not include the guaranteed LSF values, 0 and $п$. - LSF normalized in range (0 0.5) - Vector of normalized LSF values in increasing order, (compute by dividing the LSF values between 0 and Π radians by 2π). Do not include the guaranteed normalized LSF values, 0 and 0.5. - LSP in range (-1 1) - Vector of LSP values in decreasing order, equal to the cosine of the LSF values between 0 and Π radians. Do not include the guaranteed LSP values, -1 and 1 .

Dialog Box

Input

Specifies whether to convert LSP in range (-1 1), LSF in range (0 pi), or LSF normalized in range (00.5) to linear prediction coefficients (LPCs).

Supported Data Types

References

- Double-precision floating point
- Single-precision floating point

Kabal, P. and Ramachandran, R. "The Computation of Line Spectral Frequencies Using Chebyshev Polynomials." IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-34 No. 6, December 1986. pp. 1419-1426.

See Also

LPC to LSF/LSP Conversion
LPC to/from RC
LPC/RC to Autocorrelation
lsf2poly

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox

LPC to/from Cepstral Coefficients

Purpose	Convert linear prediction coefficients to cepstral coefficients or cepstral coefficients to linear prediction coefficients
Library	Estimation / Linear Prediction dsplp
Description \square $\ggg$$A$ $L P C$ $C C$ P to $C C$ LPC tolfrom Cepstral Coefficients	The LPC to/from Cepstral Coefficients block either converts linear prediction coefficients (LPCs) to cepstral coefficients (CCs) or cepstral coefficients to linear prediction coefficients. Set the Type of conversion parameter to LPCs to cepstral coefficients or Cepstral coefficients to LPCs to select the domain into which you want to convert your coefficients. The LPC port corresponds to LPCs, and the CC port corresponds to the CCs. For more information, see "Algorithm" on page 2-803. The block input must be a sample-based row vector, which is treated as a single channel, or a matrix, which is treated as a single channel per column. Consider a signal $x(n)$ as the input to an FIR analysis filter represented by LPCs. The output of this analysis filter, $e(n)$, is known as the prediction error signal. The power of this error signal is denoted by P , the prediction error power. When you select LPCs to cepstral coefficients from the Type of conversion list, you can specify the prediction error power in two ways. From the Specify P list, choose via input port to input the prediction error power using input port P. The input to the port must be a vector with length equal to the number of input channels. Select assume P equals 1 to set the prediction error power equal to 1 for all channels. When you select LPCs to cepstral coefficients from the Type of conversion list, the Output size same as input size check box appears. When you select this check box, the length of the input vector of LPCs is equal to the output vector of CCs. When you do not select this check box, enter a positive scalar for the Length of output cepstral coefficients parameter.

LPC to/from Cepstral Coefficients

When you select LPCs to cepstral coefficients from the Type of conversion list, you can use the If first input value is not 1 parameter to specify the behavior of the block when the first coefficient of the LPC vector is not 1 . The following options are available:

- Replace it with 1 - Changes the first value of the coefficient vector to 1 . The other coefficient values are unchanged.
- Normalize - Divides the entire vector of coefficients by the first coefficient so that the first coefficient of the LPC vector is 1.
- Normalize and Warn - Divides the entire vector of coefficients by the first coefficient so that the first coefficient of the LPC vector is 1. The block displays a warning message telling you that your vector of coefficients has been normalized.
- Error - Displays an error telling you that the first coefficient of the LPC vector is not 1 .

When you select Cepstral coefficients to LPCs from the Type of conversion list, the Output \mathbf{P} check box appears on the block. Select this check box when you want to output the prediction error power from output port P.

Algorithm

The cepstral coefficients are the coefficients of the Fourier transform representation of the logarithm magnitude spectrum. Consider a sequence, $x(n)$, having a Fourier transform $X(\omega)$. The cepstrum, $c_{x}(n)$, is defined by the inverse Fourier transform of $C_{x}(\omega)$, where $C_{x}(\omega)=\log _{e} X$ (ω). See the Real Cepstrum block reference page for information on computing cepstrum coefficients from time-domain signals.

LPC to CC

When in this mode, this block uses a recursion technique to convert
LPCs to CCs. The LPC vector is defined by $\left[\begin{array}{lllll}a_{0} & a_{1} & a_{2} & \ldots & a_{p}\end{array}\right]$
and the CC vector is defined by $\left[\begin{array}{lllllll}c_{0} & c_{1} & c_{2} & \ldots & c_{p} & \ldots & c_{n-1}\end{array}\right]$. The recursion is defined by the following equations:

LPC to/from Cepstral Coefficients

$$
\begin{aligned}
& c_{0}=\log _{e} P \\
& c_{m}=-a_{m}+\frac{1}{m} \sum_{k=1}^{m-1}\left[-(m-k) \cdot a_{k} \cdot c_{(m-k)}\right], 1 \leq m \leq p \\
& c_{m}=\sum_{k=1}^{p}\left[\frac{-(m-k)}{m} \cdot a_{k} \cdot c_{(m-k)}\right], p<m<n
\end{aligned}
$$

CC to LPC

When in this mode, this block uses a recursion technique to convert CCs to LPCs. The CC vector is defined by $\left[\begin{array}{lllllll}c_{0} & c_{1} & c_{2} & \ldots & c_{p} & \ldots & c_{n}\end{array}\right]$ and the LPC vector is defined by $\left[\begin{array}{lllll}a_{0} & a_{1} & a_{2} & \ldots & a_{p}\end{array}\right]$. The recursion is defined by the following equations

$$
\begin{aligned}
& a_{m}=-c_{m}-\frac{1}{m} \sum_{k=1}^{m-1}\left[(m-k) \cdot c_{(m-k)} \cdot a_{k}\right] \\
& P=\exp \left(C_{0}\right)
\end{aligned}
$$

where $m=1,2, \ldots, p$.

LPC to/from Cepstral Coefficients

Dialog Box

Type of conversion

Choose LPCs to cepstral coefficients or Cepstral coefficients to LPCs to specify the domain into which you want to convert your coefficients.

Specify \mathbf{P}

Choose via input port to input the values of prediction error power using input port P. Select assume P equals 1 to set the prediction error power equal to 1 .

Output size same as input size

When you select this check box, the length of the input vector of LPCs is equal to the output vector of CCs.

LPC to/from Cepstral Coefficients

Length of output cepstral coefficients

Enter a positive scalar that is the length of each output channel of CCs.

If first input value is not 1

Select what you would like the block to do when the first coefficient of the LPC vector is not 1 . You can choose Replace it with 1, Normalize, Normalize and Warn, and Error.

Output \mathbf{P}

Select this check box to output the prediction error power for each channel from output port P.

References Papamichalis, Panos E. Practical Approaches to Speech Coding.

 Englewood Cliffs, NJ: Prentice Hall, 1987.| Supported | - Double-precision floating point |
| :--- | :--- |
| Data | - Single-precision floating point |
| Types | |

See Also	Levinson-Durbin	Signal Processing Blockset
	LPC to LSF/LSP Conversion	Signal Processing Blockset
	LSF/LSP to LPC Conversion	Signal Processing Blockset
	LPC to/from RC	Signal Processing Blockset
	LPC/RC to Autocorrelation	Signal Processing Blockset
Real Cepstrum	Signal Processing Blockset	
	Complex Cepstrum	Signal Processing Blockset

Purpose

Library
 Description

Convert linear prediction coefficients to reflection coefficients or reflection coefficients to linear prediction coefficients

Estimation / Linear Prediction
dsplp

The LPC to/from RC block either converts linear prediction coefficients (LPCs) to reflection coefficients (RCs) or reflection coefficients to linear prediction coefficients. Set the Type of conversion parameter to LPC to RC or RC to LPC to select the domain into which you want to convert your coefficients. The A port corresponds to LPC coefficients, and the K port corresponds to the RC coefficients. For more information, see "Algorithm" on page 2-808.

The block input must be a sample-based row vector, which is treated as a single channel, or a matrix, which is treated as a single channel per column.

Consider a signal $x(n)$ as the input to an FIR analysis filter represented by LPC coefficients. The output of the this analysis filter, $e(n)$, is known as the prediction error signal. The power of this error signal is denoted by P. When the zero lag autocorrelation coefficient of $x(n)$ is one, the autocorrelation sequence and prediction error power are said to be normalized.

Select the Output normalized prediction error power check box to enable port P. The normalized prediction error power output at P is a vector with one element per input channel. Each element varies between zero and one.

Select the Output LPC filter stability check box to output the stability of the filter represented by the LPCs or RCs. The synthesis filter represented by the LPCs is stable when the absolute value of each of the roots of the LPC polynomial is less than one. The lattice filter represented by the RCs is stable when the absolute value of each reflection coefficient is less than 1 . When the filter is stable, the block outputs a Boolean value of 1 for each input channel at the S port. When

LPC to/from RC

the filter is unstable, the block outputs a Boolean value of 0 for each input channel at the S port.

If first input value is not 1 parameter specifies the behavior of the block when the first coefficient of the LPC coefficient vector in any channel is not 1 . The following options are available:

- Replace it with 1 - Changes the first value of the coefficient channel to 1 . The other coefficient values are unchanged.
- Normalize - Divides the entire channel of coefficients by the first coefficient so that the first coefficient of the LPC coefficient vector is 1 .
- Normalize and Warn - Divides the entire channel of coefficients by the first coefficient so that the first coefficient of the LPC coefficient vector is 1 . The block displays a warning message telling you that your vector of coefficients has been normalized.
- Error - Displays an error telling you that the first coefficient of the LPC coefficient channel is not 1 .

Algorithm

LPC to RC

When in this mode, this block uses backward Levinson recursion to convert linear prediction coefficients (LPCs) to reflection coefficients (RCs). For a given Nth order LPC vector
$L P C_{N}=\left[\begin{array}{lllll}1 & a_{N 1} & a_{N 2} & \ldots & a_{N N}\end{array}\right]$, the block calculates the Nth reflection coefficient value using the formula $\gamma_{N}=-a_{N N}$. The block then finds the lower order LPC vectors, $L P C_{N-1}, L P C_{N-2}, \ldots, L P C_{1}$, using the following recursion.
for $p=N, N-1, \ldots, 2$,
$\gamma_{p}=a_{p p}$
$F=1-\gamma_{p}{ }^{2}$
$a_{p-1, m}=\frac{a_{p, m}}{F}-\frac{\gamma_{p} a_{p, p-m}}{F}, 1 \leq m<p$
end
Finally, $\gamma_{1}=-a_{11}$. The reflection coefficient vector is
$\left[\gamma_{1}, \quad \gamma_{2}, \ldots, \gamma_{N}\right]$.

RC to LPC

When in this mode, this block uses Levinson recursion to convert reflection coefficients (RCs) to linear prediction coefficients (LPCs).

In this case, the input to the block is $R C=\left[\begin{array}{llll}\gamma_{1} & \gamma_{2} & \ldots & \gamma_{N}\end{array}\right]$. The zeroth order LPC vector term is 1 . Starting with this term, the block uses recursion to calculate the higher order LPC vectors, $L P C_{2}, L P C_{3}, \ldots L P C_{N}$, until it has calculated the entire LPC matrix.

$$
L P C_{\text {matrix }}=\left[\begin{array}{c}
L P C_{0} \\
L P C_{1} \\
L P C_{2} \\
\cdots \\
L P C_{N}
\end{array}\right]=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & \cdots & 0 \\
1 & a_{11} & 0 & 0 & \cdots & 0 \\
1 & a_{21} & a_{22} & 0 & \cdots & 0 \\
1 & a_{31} & a_{32} & a_{33} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
1 & a_{N 1} & a_{N 2} & a_{N 3} & \cdots & a_{N N}
\end{array}\right]
$$

This LPC matrix consists of LPC vectors of order 0 through N found by using the Levinson recursion. The following are the formulas for the recursion steps, for $p=0,1, \ldots, N-1$.

$$
\begin{aligned}
& a_{p+1, m}=a_{p, m}+\gamma_{p+1} a_{p, p+1-m}, 1 \leq m \leq p \\
& a_{p+1, p+1}=\gamma_{p+1}
\end{aligned}
$$

LPC to/from RC

Dialog
 Box

Type of conversion

Select LPC to RC or RC to LPC to select the domain into which you want to convert your coefficients.

Output normalized prediction error power

Select this check box to output the normalized prediction error power at port P.

Output LPC filter stability

Select this check box to output the stability of the filter. When the filter represented by the LPCs or RCs is stable, the block outputs a Boolean value of 1 for each input channel at the S port. When the filter represented by the LPCs or RCs is unstable, the block outputs a Boolean value of 0 for each input channel at the S port.

If first input value is not 1

Select what you would like the block to do when the first coefficient of the LPC coefficient vector is not 1 . You can choose Replace it with 1, Normalize, Normalize and Warn, and Error.

References	Makhoul, J Linear Prediction: A tutorial review. Proc. IEEE. 63, 63, 56 (1975).
	Markel, J.D. and A. H. Gray, Jr., Linear Prediction of Speech. New York, Springer-Verlag, 1976.
Supported	• Double-precision floating-point
Data	- Single-precision floating-point
Types	

See Also

Levinson-Durbin
LPC to LSF/LSP Conversion
LSF/LSP to LPC Conversion
LPC/RC to Autocorrelation

LPC/RC to Autocorrelation

Purpose	Convert linear prediction coefficients or reflection coefficients to autocorrelation coefficients
Library	Estimation / Linear Prediction dsplp
Description	The LPC/RC to Autocorrelation block either converts linear prediction coefficients (LPCs) to autocorrelation coefficients (ACs) or reflection coefficients (RCs) to autocorrelation coefficients (ACs). Set the Type of conversion parameter to LPC to autocorrelation or RC to
of Autocorrelation	
autocorrelation to select the domain from which you want to convert	
your coefficients. The A port corresponds to LPC coefficients, and the K	
port corresponds to the RC coefficients.	

LPC/RC to Autocorrelation

- Normalize and Warn - The block divides the entire vector of coefficients by the first coefficient so that the first coefficient of the LPC coefficient vector is 1 . The block displays a warning message telling you that your vector of coefficients has been normalized.
- Error - The block displays an error telling you that the first coefficient of the LPC coefficient vector is not 1 .

Type of conversion

From the list select LPC to autocorrelation or RC to autocorrelation to specify the domain from which you want to convert your coefficients.

Specify \mathbf{P}

From the list select Assume $P=1$ or Via input port to specify the value of prediction error power.

LPC/RC to Autocorrelation

If first input value is not 1

Select what you would like the block to do when the first coefficient of the LPC coefficient vector is not 1 . You can choose Replace it with 1, Normalize, Normalize and Warn, and Error.

\author{

References Orfanidis, S.J. Optimum Signal Processing. New York, McGraw-Hill, 1988.
 Makhoul, J. Linear Prediction: A tutorial review. Proc. IEEE. 63, 63, 56 (1975).
 Markel, J.D. and A. H. Gray, Jr., Linear Prediction of Speech. New York, Springer-Verlag, 1976.
 | Supported | - Double-precision floating point |
| :--- | :--- |
| Data | - Single-precision floating point |
| Types | |

}

See Also

Levinson-Durbin Signal Processing Blockset
LPC to LSF/LSP Conversion
LSF/LSP to LPC Conversion
LPC to/from RC

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

Purpose

Factor square matrix into lower and upper triangular components

Library

Description

LU Factorization
Math Functions / Matrices and Linear Algebra / Matrix Factorizations dspfactors

The LU Factorization block factors a row permutation of the square input matrix A as $A_{\mathrm{p}}=L^{*} U$, where L is the unit-lower triangular matrix, and U is the upper triangular matrix. For more information, see the lu function reference page in the MATLAB documentation. The row-pivoted matrix A_{p} contains the rows of A permuted as indicated by the permutation index vector P.

```
Ap = A(P,:) % Equivalent
MATLAB code
```

The output of the LU Factorization block at port LU is a composite matrix with lower subtriangle elements from L and upper triangle elements from U. It is always sample based. The output is not in the same form as the output of the MATLAB lu function. In order to convert the output of the LU Factorization block to the MATLAB form, use the following equations:

```
L = tril(LU,-1)+diag(ones(size(LU,1),1));
U = triu(LU);
```

Here, LU is the output of the LU Factorization block. Due to roundoff error, these equations do not produce a result that is exactly the same as the MATLAB result.

Fixed-Point Data Types

The following diagram shows the data types used within the LU Factorization block for fixed-point signals.

LU Factorization

You can set the product output, accumulator, and output data types in the block dialog as discussed below.

The output of the multiplier is in the product output data type when the input is real. When the input is complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, see "Multiplication Data Types".

Examples The row-pivoted matrix A_{p} and permutation index vector P computed by

 the block are shown below for 3 -by- 3 input matrix A.$$
A=\left[\begin{array}{ccc}
-1 & 8 & -5 \\
9 & -1 & 2 \\
2 & -5 & 7
\end{array}\right] \quad P=\left(\begin{array}{lll}
2 & 1 & 3
\end{array}\right) \quad A_{P}=\left[\begin{array}{ccc}
9 & -1 & 2 \\
-1 & 8 & -5 \\
2 & -5 & 7
\end{array}\right]
$$

The LU output is a composite matrix whose lower subtriangle forms L and whose upper triangle forms U.

See "Example: LU Factorization" in the Signal Processing Blockset User's Guide for another example using the LU Factorization block.

LU Factorization

Dialog
Box

The Main pane of the LU Factorization block dialog appears as follows.

Show singularity status

Select to output the singularity of the input at port S , which outputs Boolean data type values of 1 or 0 . An output of 1 indicates that the current input is singular, and an output of 0 indicates the current input is nonsingular.

The Fixed-point pane of the LU Factorization block dialog appears as follows.

Function Block Parameters: LU Factorization
LU Factorization
LU factorization with row pivoting. Only for use with a square input matrix A. Stores L (a unit-lower triangular matrix) in the lower triangle and U in the upper triangle of the output matrix. Permutation vector P is output separately. Optionally, the block signals the singularity status of the input matrix.

\section*{| Main | Fixed-point |
| :--- | :--- |}

Settings on this pane only apply when block inputs are fixed-point signals.
-Fixed-point operational parameters

Г Lock scaling against changes by the autoscaling tool

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. See "Fixed-Point Data Types" on page 2-815 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block:

LU Factorization

- When you select Inherit via internal rule, the product output word length and fraction length are calculated automatically. For information about how the product output word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to specify how you would like to designate the accumulator word and fraction lengths. See "Fixed-Point Data Types" on page 2-815 and "Multiplication Data Types" for illustrations depicting the use of the accumulator data type in this block.

- When you select Inherit via internal rule, the accumulator word length and fraction length are calculated automatically. For information about how the accumulator word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".
- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.

LU Factorization

- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Use this parameter to specify how you would like to designate the output word and fraction lengths. See "Fixed-Point Data Types" on page 2-815 for an illustration depicting the use of the output data type in this block:

- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling feature of the Fixed-Point Tool. See the fxptdlg reference page for more information.

References
 Supported Data Types

Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.

Port	Supported Data Types
A	• Double-precision floating point
	• Single-precision floating point
	• Fixed point (signed only)
	$\bullet 8-, 16$-, and 32 -bit signed integers

LU Factorization

Port	Supported Data Types
LU	• Double-precision floating point
	- Single-precision floating point
	• Fixed point (signed only)
	- 8-, 16-, and 32-bit signed integers
P	• Double-precision floating point
	- Single-precision floating point
	• 32-bit unsigned integers
S	• Boolean

Autocorrelation LPC
Cholesky Factorization
LDL Factorization
LU Inverse
LU Solver
Permute Matrix
QR Factorization
lu

Signal Processing Blockset
MATLAB

See "Matrix Factorizations" for related information.

Purpose

Compute inverse of square matrix using LU factorization

Library

Description

```
Gieneral Inverse

\section*{Examples}

\section*{Dialog}

Box
Math Functions / Matrices and Linear Algebra / Matrix Inverses dspinverses

The LU Inverse block computes the inverse of the square input matrix \(A\) by factoring and inverting row-pivoted variant \(A_{p}\).
\[
A_{p}^{-1}=(L U)^{-1}
\]
\(L\) is a lower triangular square matrix with unity diagonal elements, and \(U\) is an upper triangular square matrix. The block's output is \(A^{-1}\), and is always sample based.

See "Example: LU Inverse" in the Signal Processing Blockset User's Guide.


Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.
- Double-precision floating point
- Single-precision floating point

\author{
See Also \\ Cholesky Inverse Signal Processing Blockset \\ LDL Inverse Signal Processing Blockset \\ LU Factorization Signal Processing Blockset \\ LU Solver Signal Processing Blockset \\ inv \\ MATLAB
}

See "Matrix Inverses" for related information.

\section*{Purpose}

Solve \(A X=B\) for \(X\) when \(A\) is square matrix

\section*{Library}

\section*{Description}


\section*{Algorithm} dspsolvers factorization to the \(M\)-by- \(M\) matrix at the A port. The input to the B port is the right side \(M\)-by- \(N\) matrix, \(B\). The output is the unique

A length- \(M\) 1-D vector input for right side \(B\) is treated as an \(M\)-by-1 matrix.

Math Functions / Matrices and Linear Algebra / Linear System Solvers

The LU Solver block solves the linear system \(A X=B\) by applying LU solution of the equations, \(M\)-by- \(N\) matrix \(X\), and is always sample based.

The LU algorithm factors a row-permuted variant \(\left(A_{\mathrm{p}}\right)\) of the square input matrix \(A\) as
\[
A_{p}=L U
\]
where \(L\) is a lower triangular square matrix with unity diagonal elements, and \(U\) is an upper triangular square matrix.
The matrix factors are substituted for \(A_{\mathrm{p}}\) in
\[
A_{p} X=B_{p}
\]
where \(B_{\mathrm{p}}\) is the row-permuted variant of \(B\), and the resulting equation
\[
L U X=B_{p}
\]
is solved for \(X\) by making the substitution \(Y=U X\), and solving two triangular systems.
\[
\begin{aligned}
& L Y=B_{p} \\
& U X=Y
\end{aligned}
\]

\section*{LU Solver}

Examples

Dialog
Box
See "Example: LU Solver" in the Signal Processing Blockset User's Guide.

\section*{Supported Data Types}
Block Parameters: LU Solver ..... 区

LU Solver (mask)

Solve \(A X=B\) using LU decomposition. A must be square. B must have
 the same number of rows as \(A\).



Help



See Also
\begin{tabular}{ll} 
Autocorrelation LPC & Signal Processing Blockset \\
Cholesky Solver & Signal Processing Blockset \\
LDL Solver & Signal Processing Blockset \\
Levinson-Durbin & Signal Processing Blockset \\
LU Factorization & Signal Processing Blockset \\
LU Inverse & Signal Processing Blockset
\end{tabular}

QR Solver
Signal Processing Blockset
See "Linear System Solvers" for related information.

\section*{Magnitude FFT}

\section*{Purpose \\ Library \\ Description \\ }

Compute nonparametric estimate of spectrum using periodogram method
- Estimation / Power Spectrum Estimation dspspect3
- Transforms
dspxfrm3

The Magnitude FFT block computes a nonparametric estimate of the spectrum using the periodogram method.

When the Output parameter is set to Magnitude squared, the block output for an \(M\)-by- \(N\) input \(u\) is equivalent to
\[
y=\operatorname{abs}(f f t(u, n f f t)) \cdot{ }^{\wedge} 2 \quad \% M \leq n f f t
\]

When the Output parameter is set to Magnitude, the block output for an input \(u\) is equivalent to
\[
y=\operatorname{abs}(f f t(u, n f f t)) \quad \% M \leq n f f t
\]

When \(M>N_{f f t}\), the block wraps the input to \(N_{f f t}\) before computing the FFT using one of the above equations:
\[
y(:, k)=\text { datawrap }(u(:, k), n f f t) \quad \% 1 \leq k \leq N
\]

Both an \(M\)-by- \(N\) frame-based matrix input and an \(M\)-by- \(N\) sample-based matrix input are treated as \(M\) sequential time samples from \(N\) independent channels. The block computes a separate estimate for each of the \(N\) independent channels and generates an \(N_{f f t}\)-by- \(N\) matrix output. When you select Inherit FFT length from input dimensions, \(N_{f f t}\) is specified by the frame size of the input, which must be a power of 2. When you do not select Inherit FFT length from input dimensions, \(N_{f f t}\) is specified as a power of 2 by the FFT length parameter, and the block zero pads or wraps the input to \(N_{f f t}\) before computing the FFT.

\section*{Magnitude FFT}

Each column of the output matrix contains the estimate of the corresponding input column's power spectral density at \(N_{f f t}\) equally spaced frequency points in the range \(\left[0, F_{s}\right.\) ), where \(F_{s}\) is the signal's sample frequency. The output is always sample based.
The block does not accept sample-based 1-by- \(N\) row vector inputs.
The Magnitude FFT block supports real and complex floating-point inputs. The block also supports real fixed-point inputs in both Magnitude and Magnitude squared modes, and complex fixed-point inputs in the Magnitude squared mode.

The Magnitude FFT block supports real and complex floating-point inputs. The block also supports real fixed-point inputs in both Magnitude and Magnitude squared modes, and complex fixed-point inputs in the Magnitude squared mode.

\section*{Fixed-Point Data Types}

The following diagram shows the data types used within the Magnitude FFT subsystem block for fixed-point signals.


The settings for the fixed-point parameters of the FFT block in the diagram above are as follows:
- Sine table - Same word length as input
- Integer rounding mode - Floor
- Saturate on integer overflow - unchecked
- Product output - Inherit via internal rule
- Accumulator - Inherit via internal rule
- Output - Inherit via internal rule

The settings for the fixed-point parameters of the Magnitude Squared block in the diagram above are as follows:
- Integer rounding mode - Floor
- Saturate on integer overflow - checked
- Output - Inherit via internal rule

Examples The dspsacomp demo compares the periodogram method with several other spectral estimation methods.

\section*{Magnitude FFT}

\section*{Dialog \\ Box}
\begin{tabular}{|c|c|c|c|}
\hline Tijock Parameters: Magnitude FFT & & & ? \(\times\) \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{-Parameters} \\
\hline \multicolumn{4}{|l|}{Output Marnitude squared} \\
\hline \multicolumn{4}{|l|}{Г Inherit FFT length from input dimensions} \\
\hline \multicolumn{4}{|l|}{FFT length:} \\
\hline \multicolumn{4}{|l|}{256} \\
\hline QK Cancel & Help & Apply & \\
\hline
\end{tabular}

\section*{Output}

Specify whether the block computes the magnitude FFT or magnitude-squared FFT of the input.

\section*{Inherit FFT length from input dimensions}

Select to use the input frame size as the number of data points, \(N_{f f t}\), on which to perform the FFT.

\section*{FFT length}

Enter the number of data points on which to perform the FFT, \(N_{f f t}\). When \(N_{f f t}\) is larger than the input frame size, each frame is zero-padded as needed. When \(N_{f f t}\) is smaller than the input frame size, each frame is wrapped as needed. This parameter is enabled when you clear the Inherit FFT length from input dimensions check box.

Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1989.

Orfanidis, S. J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1995.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& - Single-precision floating point \\
& • Fixed point (signed and unsigned) \\
& • 8-, 16-, and 32-bit signed integers \\
\hline Output & - Double-precision floating point \\
& - Single-precision floating point \\
& - Fixed point (signed only) \\
& • 8-, 16-, and 32-bit signed integers \\
\hline
\end{tabular}

\section*{See Also}
\begin{tabular}{ll} 
Burg Method & Signal Processing Blockset \\
Short-Time FFT & Signal Processing Blockset \\
Spectrum Scope & Signal Processing Blockset \\
Yule-Walker Method & Signal Processing Blockset \\
pwelch & Signal Processing Toolbox
\end{tabular}

See "Power Spectrum Estimation" for related information.

\section*{Matrix 1-Norm}

Purpose
Library

\section*{Description}


Matrix
1-Nom

Compute 1-norm of matrix

Math Functions / Matrices and Linear Algebra / Matrix Operations dspmtrx3

The Matrix 1-Norm block computes the 1-norm, or maximum column-sum, of an \(M\)-by- \(N\) input matrix, \(A\).
\[
y=\|A\|_{1}=1 \leq j \leq N \sum_{i=1}^{M}\left|a_{i j}\right|
\]

This is equivalent to
```

y = max(sum(abs(A))) % Equivalent
MATLAB code

```


A length-M 1-D vector input is treated as an \(M\)-by-1 matrix. The output, \(y\), is always a scalar.
The Matrix 1-Norm block supports real and complex floating-point inputs, and real fixed-point inputs.

\section*{Fixed-Point Data Types}

The following diagram shows the data types used within the Matrix 1 -Norm block for fixed-point signals.


The block calculations are all done in the accumulator data type until the max is performed. The result is then cast to the output data type. You can set the accumulator and output data types in the block dialog as discussed in "Dialog Box" on page 2-833 below.

Dialog
Box

There are no parameters on the Main pane of this dialog.
The Data type attributespane of the Matrix 1-Norm block dialog appears as follows.

\section*{Matrix 1-Norm}

Function Block Parameters: Matrix 1-Norm
-Matrix 1-Norm
Compute the matrix 1 -norm, which is the largest column sum of absolute values. Note that unoriented input signals are treated as oriented column vectors. The output of this block is always oriented.

Main Data type attributes
Fixed-point operational parameters
Rounding mode: Floor
Overflow mode:
Wrap

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the block input is floating point, all block data types match the input.
\begin{tabular}{|c|c|c|c|}
\hline Data Type & Assistant & Minimum & Maximum \\
\hline Accumulator: Inherit: Inherit via internal rule & >> & & \\
\hline Output: Inherit: Same as accumulator & >> & [ & [ \\
\hline
\end{tabular}


Note Floating-point inheritance takes precedence over the data type settings defined on this pane. When inputs are floating point, the block ignores these settings, and all internal data types are floating point.

\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Accumulator data type}

Specify the accumulator data type. See "Fixed-Point Data Types" on page 2-832 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:
- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button \(\quad \gg\) to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

\section*{Output data type}

Specify the output data type. See "Fixed-Point Data Types" on page 2-832 for illustrations depicting the use of the output data type in this block. You can set it to:
- A rule that inherits a data type, for example, Inherit: Same as accumulator
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button \(\quad \gg\) to display the Data Type Assistant, which helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in Simulink User's Guide for more information.

\section*{Matrix 1-Norm}

\section*{Minimum}

Specify the minimum value that the block should output. The default value, [ ], is equivalent to - Inf. Simulink software uses this value to perform:
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

\section*{Maximum}

Specify the maximum value that the block should output. The default value, [ ], is equivalent to Inf. Simulink software uses this value to perform:
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

\section*{Lock scaling against changes by the autoscaling tool}

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

\section*{References}

Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point (signed and unsigned) \\
& \(\bullet 8-, 16-\), and 32 -bit signed integers \\
& \(\bullet 8-, 16-\), and 32 -bit unsigned integers \\
\hline
\end{tabular}

\section*{Matrix 1-Norm}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Output & • Double-precision floating point \\
& • Single-precision floating point \\
& - Fixed point (signed and unsigned) \\
& \(\bullet 8-, 16-\) - and 32 -bit signed integers \\
& \(\bullet 8-, 16-\), and 32 -bit unsigned integers \\
\hline
\end{tabular}

\author{
See Also \\ \begin{tabular}{ll} 
Normalization & Signal Processing Blockset \\
Reciprocal Condition & Signal Processing Blockset \\
norm & MATLAB
\end{tabular}
}

\section*{Matrix Concatenate}
\begin{tabular}{ll} 
Purpose & \begin{tabular}{l} 
Concatenate input signals of same data type to create contiguous \\
output signal
\end{tabular} \\
Library & \begin{tabular}{l} 
Math Functions / Matrices and Linear Algebra / Matrix Operations \\
dspmtrx3
\end{tabular} \\
Description & \begin{tabular}{l} 
The Matrix Concatenate block is an implementation of the Simulink \\
Matrix Concatenate block. See Matrix Concatenate for more \\
information.
\end{tabular}
\end{tabular}

\section*{Matrix Exponential}

Purpose

\section*{Library}

Description


Matrix
Exponential

\section*{Dialog Box}

\section*{Supported}

Data
Types

\author{
See Also
}

Compute matrix exponential

Math Functions / Matrices and Linear Algebra / Matrix Operations dspmtrx3

The Matrix Exponential block computes the matrix exponential using a scaling and squaring algorithm with a Pade approximation. The input matrix must be square.

\section*{Block Parameters: Matrix Exponential}

Matrix Exponential (mask) (link)
Compute the matrix exponential, using a scaling and squaring algorithm with a Pade approximation. Matrix must be square.

- Double-precision floating point
- Single-precision floating point

Array-Vector Multiply
expm
Dot Product

Signal Processing Blockset

MATLAB
Simulink

\section*{Matrix Exponential}
Matrix Product
Product
Signal Processing Blockset
Simulink
\begin{tabular}{ll} 
Purpose & Multiply or divide inputs \\
Library & \begin{tabular}{l} 
Math Functions / Matrices and Linear Algebra / Matrix Operations \\
dspmtrx3
\end{tabular} \\
Description & \begin{tabular}{l} 
The Matrix Multiply block is an implementation of the Simulink \\
Product block. See Product for more information.
\end{tabular}
\end{tabular}

Purpose
Library

\section*{Description}

Column
Product

Multiply matrix elements along rows, columns, or entire input
Math Functions / Matrices and Linear Algebra / Matrix Operations dspmtrx3

The Matrix Product block multiplies the elements of an \(M\)-by- \(N\) input matrix \(u\) along its rows, its columns, or over all its elements.

When the Multiply over parameter is set to Rows, the block multiplies across the elements of each row and outputs the resulting \(M\)-by- 1 matrix. A length- \(N\) 1-D vector input is treated as a 1-by- \(N\) matrix.
\[
\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{21} & u_{22} & u_{23} \\
u_{31} & u_{32} & u_{33}
\end{array}\right] \Rightarrow\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
\left(\begin{array}{l}
\left(\prod_{j=1}^{3} u_{1 j}\right.
\end{array}\right) \\
\left(\begin{array}{l}
\prod_{j=1}^{3} u_{2 j}
\end{array}\right) \\
\left(\begin{array}{l}
j=1
\end{array} u_{3 j}\right)
\end{array}\right]
\]

When the Multiply over parameter is set to Columns, the block multiplies down the elements of each column and outputs the resulting 1 -by- \(N\) matrix. A length- \(M\) 1-D vector input is treated as a \(M\)-by-1 matrix.
\[
\begin{aligned}
& {\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{21} & u_{22} & u_{23} \\
u_{31} & u_{32} & u_{33}
\end{array}\right]} \\
& \Downarrow \\
& {\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]=\left[\left(\prod_{i=1}^{3} u_{i 1}\right)\left(\prod_{i=1}^{3} u_{i 2}\right)\left(\prod_{i=1}^{3} u_{i 3}\right)\right]}
\end{aligned}
\]

When the Multiply over parameter is set to Entire input, the block multiplies all the elements of the input together and outputs the resulting scalar.
\[
\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{21} & u_{22} & u_{23} \\
u_{31} & u_{32} & u_{33}
\end{array}\right] \Rightarrow y=\left(\prod_{i=1}^{3} \prod_{j=1}^{3} u_{i j}\right)
\]

The output of the Matrix Product block has the same frame status as the input. This block accepts real and complex fixed-point and floating-point inputs except for complex unsigned fixed-point inputs.

\section*{Fixed-Point Data Types}

The following diagram shows the data types used within the Matrix Product block for fixed-point signals.


The output of the multiplier is in the product output data type when at least one of the inputs to the multiplier is real. When both of the inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, see "Multiplication Data Types". You can set the accumulator, product output, intermediate product, and output data types in the block dialog as discussed in "Dialog Box" on page 2-844 below.

\section*{Matrix Product}

Dialog Box

The Main pane of the Matrix Product block dialog appears as follows.
-Matrix Product
Multiply the elements of a matrix along its rows, its columns, or over all its elements. Note that 1-D input signals produce a single scalar output equal to the product of the individual elements.
Parameters

\section*{Columns}
Main | Data type attributes
Main | Data type attributes
Main | Data type attributes

\section*{Multiply over}

Indicate whether to multiply together the elements of each row, each column, or the entire input.

\section*{Matrix Product}

The Data type attributes pane of the Matrix Product block dialog appears as follows.

\section*{Function Block Parameters: Matrix Product}
-Matrix Product
Multiply the elements of a matrix along its rows, its columns, or over all its elements. Note that 1-D input signals produce a single scalar output equal to the product of the individual elements.
Main Data type attributes
\begin{tabular}{l} 
Fixed-point operational parameters \\
Rounding mode: \\
\hline
\end{tabular} Floor

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the block input is floating point, all block data types match the input.
\begin{tabular}{|c|c|c|c|c|}
\hline & Data Type & Assistant & Minimum & Maximum \\
\hline Intermediate product: & Inherit: Same as input & >> & & \\
\hline Product output: & Inherit: Inherit via internal rule & >> & & \\
\hline Accumulator: & Inherit: Inherit via internal rule & >> & & \\
\hline Output: & Inherit: Same as product output & >> & [ & [ \\
\hline
\end{tabular}

Г Lock scaling against changes by the autoscaling tool

\section*{Matrix Product}

Note Floating-point inheritance takes precedence over the data type settings defined on this pane. When inputs are floating point, the block ignores these settings, and all internal data types are floating point.

\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Intermediate product}

Specify the intermediate product data type. As shown in "Fixed-Point Data Types" on page 2-843, the output of the multiplier is cast to the intermediate product data type before the next element of the input is multiplied into it. You can set it to:
- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

> Click the Show data type assistant button \(\quad \gg\) to \(_{\text {to }}\) display the Data Type Assistant, which helps you set the Product output data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

\section*{Product output data type}

Specify the product output data type. See "Fixed-Point Data Types" on page 2-843 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set it to:
- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button \(\quad \gg\)
display the Data Type Assistant, which helps you set the
Product output data type parameter.
See "Using the Data Type Assistant" in Simulink User's Guide for more information.

\section*{Accumulator data type}

Specify the accumulator data type. See "Fixed-Point Data Types" on page 2-843 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:
- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button \(\quad \gg\) to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

\section*{Output data type}

Specify the output data type. See "Fixed-Point Data Types" on page 2-843 for illustrations depicting the use of the output data type in this block. You can set it to:
- A rule that inherits a data type, for example, Inherit: Same as product output
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

\section*{Matrix Product}

Click the Show data type assistant button \(\quad \gg\) to display the Data Type Assistant, which helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in Simulink User's Guide for more information.

\section*{Minimum}

Specify the minimum value that the block should output. The default value, [ ], is equivalent to - Inf. Simulink software uses this value to perform:
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

\section*{Maximum}

Specify the maximum value that the block should output. The default value, [ ], is equivalent to Inf. Simulink software uses this value to perform:
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

\section*{Lock scaling against changes by the autoscaling tool}

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& - Single-precision floating point \\
& - Fixed point \\
& - 8-, 16-, and 32 -bit signed integers \\
& - 8-, 16-, and 32-bit unsigned integers \\
\hline Output & - Double-precision floating point \\
& - Single-precision floating point \\
& - Fixed point \\
& - 8-, 16-, and 32 -bit signed integers \\
& - 8-, 16-, and 32-bit unsigned integers \\
\hline
\end{tabular}

\author{
See Also
}
\begin{tabular}{ll}
\begin{tabular}{l} 
Array-Vector \\
Multiply
\end{tabular} & Signal Processing Blockset \\
Matrix Square & Signal Processing Blockset \\
Matrix Sum & Signal Processing Blockset \\
prod & MATLAB
\end{tabular}

\section*{Matrix Square}

Purpose
Library

Description


Compute square of input matrix

Math Functions / Matrices and Linear Algebra / Matrix Operations dspmtrx3

The Matrix Square block computes the square of an \(M\)-by- \(N\) input matrix, \(u\), by premultiplying with the Hermitian transpose.
\[
y=u^{\prime} * u \quad \% \text { Equivalent MATLAB code }
\]

A length-M 1-D vector input is treated as an \(M\)-by-1 matrix. For both sample-based and frame-based inputs, output \(y\) is sample based with dimension \(N\)-by- \(N\).

\section*{Applications}

The Matrix Square block is useful in a variety of applications:
- General matrix squares - The Matrix Square block computes the output matrix, \(y\), without explicitly forming \(u\) '. It is therefore more efficient than other methods for computing the matrix square.
- Sum of squares - When the input is a column vector \((N=1)\), the block's operation is equivalent to a multiply-accumulate (MAC) process, or inner product. The output is the sum of the squares of the input, and is always a real scalar.
- Correlation matrix - When the input is a row vector ( \(M=1\) ), the output, \(y\), is the symmetric autocorrelation matrix, or outer product.

\section*{Dialog} Box

\section*{Matrix Square}
\begin{tabular}{lll} 
Supported & - Double-precision floating point \\
Data & - Single-precision floating point \\
Types & & \\
& & \\
See Also & Matrix Multiply & Signal Processing Blockset \\
& Matrix Product & Signal Processing Blockset \\
& Matrix Sum & Signal Processing Blockset \\
& Transpose & Signal Processing Blockset
\end{tabular}

\section*{Matrix Sum}

Purpose Sum matrix elements along rows, columns, or entire input

Library
Math Functions / Matrices and Linear Algebra / Matrix Operations dspmtrx3

Description

The Matrix Sum block is an implementation of the Simulink Sum block. See Sum for more information.

\section*{Matrix Sum (Obsolete)}

\section*{Purpose}

Sum matrix elements along rows, columns, or entire input

\section*{Library}

\section*{Description}

Column
Sum
Math Functions / Matrices and Linear Algebra / Matrix Operations dspobslib

The Matrix Sum block sums the elements of an \(M\)-by- \(N\) input matrix \(u\) along its rows, its columns, or over all its elements.

When the Sum over parameter is set to Rows, the block sums across
the elements of each row and outputs the resulting \(M\)-by- 1 matrix. A length- \(N\) 1-D vector input is treated as a 1 -by- \(N\) matrix.
\[
\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{21} & u_{22} & u_{23} \\
u_{31} & u_{32} & u_{33}
\end{array}\right] \Rightarrow\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
\left.\left.\left.\left(\begin{array}{l}
\left(\sum_{j=1}^{3} u_{1 j}\right) \\
\binom{3}{\sum_{j=1}} \\
\binom{3}{\sum_{j=1} u_{3 j}}
\end{array}\right] .\right] ~\right] . ~\right] ~
\end{array}\right.
\]

When the Sum over parameter is set to Columns, the block sums down the elements of each column and outputs the resulting 1-by- \(N\) matrix. A length-M 1-D vector input is treated as a \(M\)-by- 1 matrix.
\[
\begin{aligned}
& {\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{21} & u_{22} & u_{23} \\
u_{31} & u_{32} & u_{33}
\end{array}\right]} \\
& \Downarrow \\
& {\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]=\left[\left(\sum_{i=1}^{3} u_{i 1}\right)\left(\sum_{i=1}^{3} u_{i 2}\right)\left(\sum_{i=1}^{3} u_{i 3}\right)\right]}
\end{aligned}
\]

\section*{Matrix Sum (Obsolete)}

When the Sum over parameter is set to Entire input, the block sums all the elements of the input together and outputs the resulting scalar.
\[
\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{21} & u_{22} & u_{23} \\
u_{31} & u_{32} & u_{33}
\end{array}\right] \Rightarrow y=\left(\sum_{i=1}^{3} \sum_{j=1}^{3} u_{i j}\right)
\]

The output of the Matrix Sum block has the same frame status as the input. This block accepts real and complex fixed-point and floating-point inputs except for complex unsigned fixed-point inputs.

\section*{Fixed-Point Data Types}

The following diagram shows the data types used within the Matrix Sum block for fixed-point signals.


You can set the accumulator and output data types in the block dialog as discussed in "Dialog Box" on page 2-855 below.

\section*{Matrix Sum (Obsolete)}

Dialog Box

The Main pane of the Matrix Sum block dialog appears as follows.


\section*{Sum over}

Indicate whether to sum the elements of each row, each column, or of the entire input.

The Fixed-point pane of the Matrix Sum block dialog appears as follows.

\section*{Matrix Sum (Obsolete)}


\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Accumulator}

The result of each oddition remairs in the occumulator dato type.


As depicted above, the elements of the block input are cast to the accumulator data type before they are added together. The output of the adder remains in the accumulator data type as each element of the input is added to it. Use this parameter to specify how you would like to designate this accumulator word and fraction lengths:
- When you select Inherit via internal rule, the accumulator word length and fraction length are calculated automatically. For information about how the accumulator word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

\section*{Output}

Choose how you specify the output word length and fraction length:

\section*{Matrix Sum (Obsolete)}
- When you select Same as accumulator, these characteristics match those of the accumulator.
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

\section*{Lock scaling against changes by the autoscaling tool}

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling feature of the Fixed-Point Tool. See the fxptdlg reference page for more information.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& - Single-precision floating point \\
& - Fixed point \\
& - 8-, 16-, and 32 -bit signed integers \\
& - 8-, 16-, and 32-bit unsigned integers \\
\hline Output & - Double-precision floating point \\
& - Single-precision floating point \\
& - Fixed point \\
& - 8-, 16-, and 32 -bit signed integers \\
& - 8-, 16-, and 32-bit unsigned integers \\
\hline
\end{tabular}

\section*{Matrix Sum (Obsolete)}

See Also

\author{
Matrix Product \\ Matrix Multiply
}
sum

Signal Processing Blockset
Signal Processing Blockset

MATLAB

\section*{Matrix Viewer}
\begin{tabular}{ll} 
Purpose & Display matrices as color images \\
Library & Signal Processing Sinks \\
& dspsnks4
\end{tabular}

\section*{Description}

Mastrix
Viener
The Matrix Viewer block displays an \(M\)-by- \(N\) matrix input by mapping the matrix element values to a specified range of colors. The display is updated as each new input is received. This block treats a length \(M\) 1-D vector input as an \(M\)-by- 1 matrix.

\section*{Image Properties}

Select the Image Properties tab to show the image property parameters, which control the colormap and display.

You specify the mapping of matrix element values to colors in the Colormap matrix, Minimum input value, and Maximum input value parameters. For a colormap with \(L\) colors, the colormap matrix has dimension \(L\)-by-3, with one row for each color and one column for each element of the RGB triple that defines the color. Examples of RGB triples are
\(\left[\begin{array}{llll}{\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]} \\
{\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]} & \begin{array}{l}\text { (red) } \\
{[0.8}\end{array} 0.8 & 0.8\end{array}\right] \quad\)\begin{tabular}{l} 
(light gray)
\end{tabular}

See the ColorSpec property in the MATLAB documentation for complete information about defining RGB triples.

MATLAB provides a number of functions for generating predefined colormaps, such as hot, cool, bone, and autumn. Each of these functions accepts the colormap size as an argument, and can be used in the Colormap matrix parameter. For example, when you specify gray (128) for the Colormap matrix parameter, the matrix is displayed in 128 shades of gray. The color in the first row of the colormap matrix represents the value specified by the Minimum input value parameter, and the color in the last row represents the value specified by the Maximum input value parameter. Values
between the minimum and maximum are quantized and mapped to the intermediate rows of the colormap matrix.

The documentation for the MATLAB colormap function provides complete information about specifying colormap matrices, and includes a complete list of the available colormap functions.

\section*{Axis Properties}

Select the Axis Properties tab to show the axis property parameters, which control labeling and positioning.

The Axis origin parameter determines where the first element of the input matrix, \(U(1,1)\), is displayed. When you specify Upper left corner, the matrix is displayed in matrix orientation, with \(U(1,1)\) in the upper-left corner.
\[
\left[\begin{array}{llll}
U_{11} & U_{12} & U_{13} & U_{14} \\
U_{21} & U_{22} & U_{23} & U_{24} \\
U_{31} & U_{32} & U_{33} & U_{34} \\
U_{41} & U_{42} & U_{43} & U_{44}
\end{array}\right]
\]

When you specify Lower left corner, the matrix is flipped vertically to image orientation, with \(U(1,1)\) in the lower-left corner.
\[
\left[\begin{array}{llll}
U_{41} & U_{42} & U_{43} & U_{44} \\
U_{31} & U_{32} & U_{33} & U_{34} \\
U_{21} & U_{22} & U_{23} & U_{24} \\
U_{11} & U_{12} & U_{13} & U_{14}
\end{array}\right]
\]

Axis zoom, when selected, causes the image display to completely fill the figure window. Axis titles are not displayed. This option can also be selected from the pop-up menu that is displayed when you right-click in the figure window. When Axis zoom is cleared, the axis labels and titles are displayed in a gray border surrounding the image axes.

\section*{Matrix Viewer}

\section*{Figure Window}

The image title in the figure title bar is the same as the block title. The axis tick marks reflect the size of the input matrix; the \(x\)-axis is numbered from 1 to \(N\) (number of columns), and the \(y\)-axis is numbered from 1 to \(M\) (number of rows).

Right-click the image in the figure window to access the following menu items:
- Refresh erases all data on the scope display except for the most recent image.
- Autoscale recomputes the minimum and maximum input values to fit the range of values observed in a series of 10 consecutive inputs. The numerical limits selected by the autoscale feature are shown in the Minimum input value and Maximum input value parameters, where you can make further adjustments to them manually.
- Axis zoom, when selected, causes the image to completely fill the figure window. Axis titles are not displayed. When Axis zoom is cleared, the axis labels and titles are displayed in a gray border surrounding the scope axes. This option can also be set in the Axis Properties pane of the parameter dialog.
- Colorbar, when selected, displays a bar with the specified colormap to the right of the image axes.
- Save Position automatically updates the Figure position parameter in the Axis Properties pane to reflect the figure window's current position and size on the screen. To make the scope window open at a particular location on the screen when the simulation runs, drag the window to the desired location, resize it, and select Save Position. The parameter dialog must be closed when you select Save Position for the Figure position parameter to be updated.

Examples See the demo dspstfft.mdl for an example of using the Matrix Viewer block to create a moving spectrogram, or time-frequency plot, of a

\section*{Matrix Viewer}
speech signal by updating just one column of the input matrix at each sample time.

\section*{Dialog Box}


\section*{Colormap matrix}

A 3-column matrix defining the colormap as a set of RGB triples, or a call to a colormap-generating function such as hot or spring. See the ColorSpec property for complete information about defining RGB triples, and the MATLAB colormap function for a list of colormap-generating functions. Tunable.

\section*{Minimum input value}

The input value to be mapped to the color defined in the first row of the colormap matrix. Right-click in the figure window and select Autoscale from pop-up menu to set this parameter to the

\section*{Matrix Viewer}
minimum value observed in a series of 10 consecutive matrix inputs. Tunable.

\section*{Maximum input value}

The input value to be mapped to the color defined in the last row of the colormap matrix. Right-click in the figure window and select Autoscale from the pop-up menu to set this parameter to the maximum value observed in a series of 10 consecutive matrix inputs. Tunable.

\section*{Display colorbar}

Select to display a bar with the selected colormap to the right of the image axes. Tunable.


\section*{Matrix Viewer}

\section*{Axis origin}

The position within the axes where the first element of the input matrix, \(U(1,1)\), is plotted; bottom left or top left. Tunable.

\section*{X -axis title}

The text to be displayed below the \(x\)-axis. Tunable.

\section*{Y-axis title}

The text to be displayed to the left of the \(y\)-axis. Tunable.

\section*{Colorbar title}

The text to be displayed to the right of the color bar, when Display colorbar is currently selected. Tunable.

Figure position, [ \(\mathrm{x} y\) width height]
A 4-element vector of the form [ \(x\) y width height] specifying the position of the figure window, where \((0,0)\) is the lower-left corner of the display. Tunable.

\section*{Axis zoom}

Resizes the image to fill the figure window. Tunable.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & \(\bullet\) Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point (signed and unsigned) \\
& • Boolean \\
& \(\bullet 8-, 16\)-, and 32 -bit signed integers \\
& \(\bullet 8-, 16\)-, and 32 -bit unsigned integers \\
\hline
\end{tabular}

\author{
See Also \\ Spectrum Scope Signal Processing Blockset \\ Vector Scope Signal Processing Blockset \\ colormap MATLAB
}

\section*{Matrix Viewer}
\begin{tabular}{ll} 
ColorSpec & MATLAB \\
image & MATLAB
\end{tabular}

\section*{Purpose}

Find maximum values in input or sequence of inputs

\section*{Library}

Description


Statistics
dspstat3

The Maximum block identifies the value and/or position of the largest element in each row or column of the input, along vectors of a specified dimension of the input, or of the entire input. The Maximum block can also track the maximum values in a sequence of inputs over a period of time. The Mode parameter specifies the block's mode of operation and can be set to Value, Index, Value and Index, or Running.
The Maximum block supports real and complex floating-point,
fixed-point, and Boolean inputs. Real fixed-point inputs can be either signed or unsigned, while complex fixed-point inputs must be signed. The data type of the maximum values output by the block match the data type of the input. The index values output by the block are double when the input is double, and uint32 otherwise.

The frame status of the block output is the same as that of the input, except when the Find the maximum value of parameter is set to Entire input. The output is always sample based when Entire input is selected.

For the Value, Index, and Value and Index modes, the Maximum block produces identical results as the MATLAB max function when it is called as [y I] \(=\max (\mathrm{u},[\mathrm{l}, \mathrm{D})\), where \(u\) and \(y\) are the input and output, respectively, \(D\) is the dimension, and \(I\) is the index.

\section*{Value Mode}

When the Mode parameter is set to Value, the block computes the maximum value in each row or column of the input, along vectors of a specified dimension of the input, or of the entire input at each sample time, and outputs the array \(y\). Each element in \(y\) is the maximum value in the corresponding column, row, vector, or entire input. The output \(y\) depends on the setting of the Find the maximum value

\section*{Maximum}
over parameter. For example, consider a 3-dimensional input signal of size \(M\)-by- \(N\)-by- \(P\) :
- Each row - The output at each sample time consists of an \(M\)-by-1-by- \(P\) array, where each element contains the maximum value of each vector over the second dimension of the input. For an input that is an \(M\)-by- \(N\) matrix, the output at each sample time is an \(M\)-by- 1 column vector. In this mode, the frame status of the output is the same as that of the input.
- Each column - The output at each sample time consists of a 1-by- \(N\)-by- \(P\) array, where each element contains the maximum value of each vector over the first dimension of the input. For an input that is an \(M\)-by- \(N\) matrix, the output at each sample time is a 1 -by \(-N\) row vector. In this mode, the frame status of the output is the same as that of the input.

For convenience, length-M 1-D vector inputs are treated as \(M\)-by-1 column vectors when the block is in this mode. Sample-based length- \(M\) row vector inputs are also treated as \(M\)-by- 1 column vectors when the Treat sample-based row input as a column check box is selected.
- Entire input - The output at each sample time is a scalar that contains the maximum value in the \(M\)-by- \(N\)-by- \(P\) input matrix. In this mode, the block output is always sample based.
- Specified dimension - The output at each sample time depends on Dimension. If Dimension is set to 1, the output is the same as that when you select Each column. If Dimension is set to 2 , the output is the same as when you select Each row. If Dimension is set to 3 , the output at each sample time is an \(M\)-by- \(N\) matrix containing the maximum value of each vector over the third dimension of the input. In this mode, the frame status of the output is the same as that of the input.

For complex inputs, the block selects the value in each row or column of the input, along vectors of a specified dimension of the input, or of
the entire input that has the maximum magnitude squared as shown below. For complex value \(u=a+b i\), the magnitude squared is \(a^{2}+b^{2}\).


\section*{Index Mode}

When Mode is set to Index, the block computes the maximum value in each row or column of the input, along vectors of a specified dimension of the input, or of the entire input, and outputs the index array \(I\). Each element in \(I\) is an integer indexing the maximum value in the corresponding column, row, vector, or entire input. The output \(I\) depends on the setting of the Find the maximum value over parameter. For example, consider a 3 -dimensional input signal of size \(M\)-by- \(N\)-by- \(P\) :
- Each row - The output at each sample time consists of an \(M\)-by-1-by- \(P\) array, where each element contains the index of the maximum value of each vector over the second dimension of the input. For an input that is an \(M\)-by- \(N\) matrix, the output at each sample time is an \(M\)-by- 1 column vector. In this mode, the frame status of the output is the same as that of the input.
- Each column - The output at each sample time consists of a 1 -by- \(N\)-by- \(P\) array, where each element contains the index of the maximum value of each vector over the first dimension of the input. For an input that is an \(M\)-by- \(N\) matrix, the output at each sample time is a 1 -by- \(N\) row vector. In this mode, the frame status of the output is the same as that of the input.

For convenience, length- \(M\) 1-D vector inputs are treated as \(M\)-by-1 column vectors when the block is in this mode. Sample-based length- \(M\) row vector inputs are also treated as \(M\)-by- 1 column vectors

\section*{Maximum}
when the Treat sample-based row input as a column check box is selected.
- Entire input - The output at each sample time is a 1-by-3 vector that contains the location of the maximum value in the \(M\)-by- \(N\)-by- \(P\) input matrix. In this mode, the block output is always sample based. For an input that is an \(M\)-by- \(N\) matrix, the output will be a 1 -by- 2 vector.
- Specified dimension - The output at each sample time depends on Dimension. If Dimension is set to 1, the output is the same as when you select Each column. If Dimension is set to 2, the output is the same as when you select Each row. If Dimension is set to 3 , the output at each sample time is an \(M\)-by- \(N\) matrix containing the indices of the maximum values of each vector over the third dimension of the input. In this mode, the frame status of the output is the same as that of the input.

When a maximum value occurs more than once, the computed index corresponds to the first occurrence. For example, when the input is the column vector [lllll \(\left.\begin{array}{llll}3 & 1 & 2 & 3\end{array}\right]\) ', the computed one-based index of the maximum value is 1 rather than 5 when Each column is selected.

When inputs to the block are double-precision values, the index values are double-precision values. Otherwise, the index values are 32 -bit unsigned integer values.

\section*{Value and Index Mode}

When Mode is set to Value and Index, the block outputs both the maxima and the indices.

\section*{Running Mode}

When Mode is set to Running, the block tracks the maximum value of each channel in a time sequence of \(M\)-by- \(N\) inputs. For sample-based inputs, the output is a sample-based \(M\)-by- \(N\) array with each element \(y_{i j}\) containing the maximum value observed in element \(u_{i j}\) for all inputs since the last reset. For frame-based inputs, the output is a frame-based \(M\)-by- \(N\) matrix with each element \(y_{i j}\) containing the maximum value
observed in the \(j\) th column of all inputs since the last reset, up to and including element \(u_{i j}\) of the current input.
N-D signals cannot be frame based. When the block is set to Running mode, each element of the N-D signal is treated as a separate channel.

There are \(\prod d_{i}\) channels, where \(d_{i}\) is the size of the \(i\) th dimension.

\section*{Resetting the Running Maximum}

The block resets the running maximum whenever a reset event is detected at the optional Rst port. The reset sample time must be a positive integer multiple of the input sample time.
For sample-based inputs, a reset event causes the running maximum for each channel to be initialized to the value in the corresponding channel of the current input. For frame-based inputs, a reset event causes the running maximum for each channel to be initialized to the earliest value in each channel of the current input.

You specify the reset event in the Reset port menu:
- None - Disables the Rst port.
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above)
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

\begin{abstract}
Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port rate before the block applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.
\end{abstract}

\section*{ROI Processing}

To calculate the statistical value within a particular region of interest (ROI) of the input, select the Enable ROI processing check box. This option is only available when the Find the maximum value over parameter is set to Entire input and the Enable ROI processing check box is selected. ROI processing is only supported for 2-D inputs.

Note Full ROI processing is only available to users who have a Video and Image Processing Blockset license. If you only have a Signal Processing Blockset license, you can still use ROI processing, but are limited to the ROI type Rectangles.

Use the ROI type parameter to specify whether the ROI is a rectangle, line, label matrix, or binary mask. A binary mask is a binary image that enables you to specify which pixels to highlight, or select. In a label matrix, pixels equal to 0 represent the background, pixels equal to 1 represent the first object, pixels equal to 2 represent the second object, and so on. When the ROI type parameter is set to Label matrix, the Label and Label Numbers ports appear on the block. Use the Label Numbers port to specify the objects in the label matrix for which the block calculates statistics. The input to this port must be a vector of scalar values that correspond to the labeled regions in the label matrix. For more information about the format of the input to the ROI port when the ROI is a rectangle or a line, see the Draw Shapes block reference page.

\section*{Maximum}

For rectangular ROIs, use the ROI portion to process parameter to specify whether to calculate the statistical value for the entire ROI or just the ROI perimeter.

Use the Output parameter to specify the block output. The block can output separate statistical values for each ROI or the statistical value for all specified ROIs. This parameter is not available if, for the ROI type parameter, you select Binary mask.

If, for the ROI type parameter, you select Rectangles or Lines, the Output flag indicating if ROI is within image bounds check box appears in the dialog box. If you select this check box, the Flag port appears on the block. The following tables describe the Flag port output based on the block parameters.

\section*{Output = Individual statistics for each ROI}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Flag \\
Port \\
Output
\end{tabular} & Description \\
\hline 0 & ROI is completely outside the input image. \\
\hline 1 & ROI is completely or partially inside the input image. \\
\hline
\end{tabular}

\section*{Output \(\boldsymbol{=}\) Single statistic for all ROIs}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Flag \\
Port \\
Output
\end{tabular} & Description \\
\hline 0 & All ROIs are completely outside the input image. \\
\hline 1 & \begin{tabular}{l} 
At least one ROI is completely or partially inside the \\
input image.
\end{tabular} \\
\hline
\end{tabular}

If the ROI is partially outside the image, the block only computes the statistical values for the portion of the ROI that is within the image.

If, for the ROI type parameter, you select Label matrix, the Output flag indicating if input label numbers are valid check box appears in the dialog box. If you select this check box, the Flag port appears on the block. The following tables describe the Flag port output based on the block parameters.

\section*{Output = Individual statistics for each ROI}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Flag \\
Port \\
Output
\end{tabular} & Description \\
\hline 0 & Label number is not in the label matrix. \\
\hline 1 & Label number is in the label matrix. \\
\hline
\end{tabular}

\section*{Output = Single statistic for all ROIs}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Flag \\
Port \\
Output
\end{tabular} & Description \\
\hline 0 & None of the label numbers are in the label matrix. \\
\hline 1 & At least one of the label numbers is in the label matrix. \\
\hline
\end{tabular}

\section*{Fixed-Point Data Types}

The parameters on the Data type attributes pane of the block dialog are only used for complex fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input are formed before a comparison is made, as described in "Value Mode" on page 2-867. The results of the squares of the real and imaginary parts are placed into the product output data type. The result of the sum of the squares is placed into the accumulator data type. These parameters are ignored for other types of inputs.

\section*{Maximum}

Examples The Maximum block in the following model calculates the running maximum of a frame-based 3-by-2 (two-channel) matrix input, \(u\). The running maximum is reset at \(t=2\) by an impulse to the block's Rst port.


The Maximum block has the following settings:
- Mode = Running
- Reset port \(=\) Non-zero signal

The Signal From Workspace block has the following settings:
- \(\operatorname{Signal}=u\)
- Sample time \(=1 / 3\)
- Samples per frame \(=3\)
where
```

u
= [6 1 3 -7 2 5 8 0 - - -3 2 1;1 3 9 2 4 1 6 2 5 0 4 17]'

```

The Discrete Impulse block has the following settings:
- Delay (samples) \(=2\)
- Sample time \(=1\)
- Samples per frame \(=1\)

The block's operation is shown in the figure below.


\section*{Maximum}

Dialog Box

The Main pane of the Maximum block dialog appears as follows.

\section*{Function Block Parameters: Maximum}
-Maximum
Returns the value and/or index of the maximum elements of the input signal. The output can be the maximum of the entire input, of each row, of each column, or over the dimension of the input signal specified in the 'Dimension' parameter. Indices are the locations of maximums, counting from either zero or one. If the 'Mode' parameter is set to 'Running', the block returns the maximum of the input elements over time.

\section*{Main Data type attributes}

Parameters
Mode: Value and Index
Index base: One
Find the maximum value over: Each column
Treat sample-based row input as a column


\section*{Mode}

Specify the block's mode of operation:
- Value - Output the maximum value of each input
- Index - Output the index of the maximum value
- Value and index - Output both the value and the index
- Running - Track the maximum value of the input sequence over time

For more information, see Description.

\section*{Index base}

Specify whether the index of the maximum value is reported using one-based or zero-based numbering. This parameter is only visible when the Mode parameter is set to Index or Value and index.

\section*{Find the maximum value over}

Specify whether to find the maximum value along rows, columns, entire input, or the dimension specified in the Dimension parameter. For more information, see Description.

\section*{Treat sample-based row input as a column}

Select to treat sample-based length- \(M\) row vector inputs as \(M\)-by- 1 column vectors. This parameter is only visible when the Find the maximum value of parameter is set to Each column.

\section*{Reset port}

Specify the reset event detected at the Rst input port when you select Running for the Mode parameter. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input. For information about the possible values of this parameter, see "Resetting the Running Maximum" on page 2-871.

\section*{Dimension}

Specify the dimension (one-based value) of the input signal, over which the maximum is computed. The value of this parameter cannot exceed the number of dimensions in the input signal. This parameter is only visible when the Find the maximum value over parameter is set to Specified dimension.

\section*{Enable ROI processing}

Select this check box to calculate the statistical value within a particular region of each image. This parameter appears only when you set the Find the maximum value over parameter to Entire input, and the block is not in running mode.

\section*{Maximum}

Note Full ROI processing is only available to users who have a Video and Image Processing Blockset license. If you only have a Signal Processing Blockset license, you can still use ROI processing, but are limited to the ROI type Rectangles.

The ROI processing parameters appear on the dialog box as follows.
- Maximum

Returns the value and/or index of the maximum elements of the input signal. The output can be the maximum of the entire input, of each row, of each column, or over the dimension of the input signal specified in the 'Dimension' parameter. Indices are the locations of maximums, counting from either zero or one. If the 'Mode' parameter is set to 'Running', the block returns the maximum of the input elements over time.
\begin{tabular}{|c|c|}
\hline Main Data type attributes & \\
\hline \multicolumn{2}{|l|}{-Parameters} \\
\hline Mode: Value and Index & \(\checkmark\) \\
\hline Index base: One & \(\pm\) \\
\hline Find the maximum value over: Entire input & \(\pm\) \\
\hline ROI Processing & \\
\hline \(\sqrt{\checkmark}\) Enable ROI processing & \\
\hline ROI type: Rectangles & \(\nabla\) \\
\hline ROI portion to process: Entire ROI & - \\
\hline Output: Individual statistics for each ROI & \(\checkmark\) \\
\hline T Output flag indicating if ROI is within image bounds & \\
\hline
\end{tabular}


\section*{ROI type}

Specify the type of ROI you want to use. Your choices are Rectangles, Lines, Label matrix, or Binary mask.

\section*{ROI portion to process}

Specify whether you want to calculate the statistical value for the entire ROI or just the ROI perimeter. This parameter appears only if you specify an ROI type of Rectangles.

\section*{Output}

Specify the block output. The block can output a vector of separate statistical values for each ROI or a scalar value that represents the statistical value for all the specified ROIs. This parameter is not available if, for the ROI type parameter, you select Binary mask.

\section*{Output flag}
\(\sqrt{ } \sqrt{ }\) Output flag indicating if ROI is within image bounds
F Output flag indicating if label numbers are valid
When you select either of these check boxes, the Flag port appears on the block. For a description of the Flag port output, see the tables in "ROI Processing" on page 2-873.

The Output flag indicating if ROI is within image bounds check box is only visible when you select Rectangles or Lines as the ROI type.

The Output flag indicating if label numbers are valid check box is only visible when you select Label matrix for the ROI type parameter.

The Data type attributes pane of the Maximum block dialog appears as follows.

\section*{Maximum}

\section*{Function Block Parameters: Макіmum}
-Maximum
Returns the value andjor index of the maximum elements of the input signal. The output can be the maximum of the entire input, of each row, of each column, or over the dimension of the input signal specified in the 'Dimension' parameter. Indices are the locations of maximums, counting from either zero or one. If the 'Mode' parameter is set to 'Running', the block returns the maximum of the input elements over time.

\section*{Main Data type attributes}

Fixed-point operational parameters
Rounding mode: Floor
Overflow mode:
```

Wrap

```

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the block input is floating point, all block data types match the input.


「 Lock scaling against changes by the autoscaling tool

\(\square\) OK Cancel \(\square\) Apply

\section*{Maximum}

Note The parameters on the Data type attributespane are only used for complex fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input are formed before a comparison is made, as described in "Value Mode" on page 2-867. The results of the squares of the real and imaginary parts are placed into the product output data type. The result of the sum of the squares is placed into the accumulator data type. These parameters are ignored for other types of inputs.

\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Product output data type}

Specify the product output data type. See "Fixed-Point Data Types" on page 2-875 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set it to:
- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

> Click the Show data type assistant button \(\quad \gg\) So \(_{\text {to }}\) display the Data Type Assistant, which helps you set the Product output data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

\section*{Accumulator data type}

Specify the accumulator data type. See "Fixed-Point Data Types" on page 2-875 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:
- A rule that inherits a data type, for example, Inherit: Same as product output
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button \(\quad \gg\) to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

\section*{Lock scaling against changes by the autoscaling tool}

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & \(\bullet\) Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point (signed and unsigned) \\
& \(\bullet\) Boolean \\
& \(\bullet 8-, 16-\)-, and 32 -bit signed integers \\
& \(\bullet 8-, 16\)-, and 32 -bit unsigned integers \\
\hline
\end{tabular}

\section*{Maximum}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Reset & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Boolean \\
- 8 -, 16 -, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline Idx & \begin{tabular}{l}
- Double-precision floating point \\
- 32-bit unsigned integers
\end{tabular} \\
\hline Val & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}
\begin{tabular}{ll} 
Mean & Signal Processing Blockset \\
Minimum & Signal Processing Blockset \\
MinMax & Simulink \\
\(\max\) & MATLAB
\end{tabular}

\section*{Purpose \\ Library \\ Description \\ }

Find mean value of input or sequence of inputs

Statistics
dspstat3

The Mean block computes the mean of each row or column of the input, along vectors of a specified dimension of the input, or of the entire input. The Mean block can also track the mean value in a sequence of inputs over a period of time. The Running mean parameter selects between basic operation and running operation.

The Mean block accepts real and complex fixed-point and floating-point inputs.

\section*{Basic Operation}

When you do not select the Running mean check box, the block computes the mean value in each row or column of the input, along vectors of a specified dimension of the input, or of the entire input at each individual sample time. Each element in the output array y is the mean value of the corresponding column, row, vector, or entire input. The output array y depends on the setting of the Find the mean value over parameter. For example, consider a 3 -dimensional input signal of size \(M\)-by- \(N\)-by- \(P\) :
- Entire input - The output at each sample time is a scalar that contains the mean value of the \(M\)-by- \(N\)-by- \(P\) input matrix. In this mode, the block output is always sample based.
\[
y=\text { mean }(u(:)) \quad \% \text { Equivalent MATLAB code }
\]
- Each row - The output at each sample time consists of an \(M\)-by-1-by- \(P\) array, where each element contains the mean value of each vector over the second dimension of the input. For an input that is an \(M\)-by- \(N\) matrix, the output at each sample time is an \(M\)-by- 1 column vector. In this mode, the frame status of the output is the same as that of the input.
```

y = mean(u,2) % Equivalent MATLAB code

```
- Each column - The output at each sample time consists of a 1 -by- \(N\)-by- \(P\) array, where each element contains the mean value of each vector over the first dimension of the input. For an input that is an \(M\)-by- \(N\) matrix, the output at each sample time is a 1 -by- \(N\) row vector. In this mode, the frame status of the output is the same as that of the input.
```

y = mean(u) % Equivalent MATLAB code

```

For convenience, length- \(M 1-\mathrm{D}\) vector inputs are treated as \(M-\) by- 1 column vectors when the block is in this mode. Sample-based length- \(M\) row vector inputs are also treated as \(M\)-by- 1 column vectors when the Treat sample-based row input as a column check box is selected.
- Specified dimension - The output at each sample time depends on Dimension. If Dimension is set to 1, the output is the same as when you select Each column. If Dimension is set to 2 , the output is the same as when you select Each row. If Dimension is set to 3, the output at each sample time is an \(M\)-by- \(N\) matrix containing the mean value of each vector over the third dimension of the input. In this mode, the frame status of the output is the same as that of the input.
\[
y=\operatorname{mean}(u, D i m e n s i o n) \quad \% \text { Equivalent MATLAB code }
\]

The mean of a complex input is computed independently for the real and imaginary components, as shown in the next figure.

Complex
input (u)


\section*{Running Operation}

When the Running mean check box is selected, the block tracks the mean value of each channel in a time sequence of inputs. For sample-based \(M\)-by- \(N\) inputs, the output is a sample-based \(M\)-by- \(N\) array with each element \(y_{i j}\) containing the mean value of the elements \(u_{i j}\) for all inputs since the last reset. For frame-based \(M\)-by- \(N\) inputs, the output is a frame-based \(M\)-by- \(N\) matrix with each element \(y_{i j}\) containing the mean of the values in the \(j\) th column of all inputs since the last reset, up to and including element \(u_{i j}\) of the current input.
N -D signals cannot be frame based. When the block is set to Running mode, each element of the N-D signal is treated as a separate channel.

There are \(\prod d_{i}\) channels, where \(d_{i}\) is the size of the \(i\) th dimension.

\section*{Resetting the Running Mean}

The block resets the running mean whenever a reset event is detected at the optional Rst port. The reset sample time must be a positive integer multiple of the input sample time.

When the block is reset for sample-based inputs, the running mean for each channel is initialized to the value in the corresponding channel of the current input. For frame-based inputs, the running mean for each channel is initialized to the earliest value in each channel of the current input.

You specify the reset event by the Reset port parameter:
- None disables the Rst port.
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described earlier)
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port rate before the block applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

\section*{ROI Processing}

To calculate the statistical value within a particular region of interest (ROI) of the input, select the Enable ROI processing check box. This option is only available when the Find the mean value over parameter is set to Entire input and the Running mean check box is not selected. ROI processing is only supported for 2-D inputs.

Note Full ROI processing is only available to users who have a Video and Image Processing Blockset license. If you only have a Signal Processing Blockset license, you can still use ROI processing, but are limited to the ROI type Rectangles.

Use the ROI type parameter to specify whether the ROI is a rectangle, line, label matrix, or binary mask. A binary mask is a binary image that enables you to specify which pixels to highlight, or select. In a label matrix, pixels equal to 0 represent the background, pixels equal to 1 represent the first object, pixels equal to 2 represent the second object, and so on. When the ROI type parameter is set to Label matrix, the Label and Label Numbers ports appear on the block. Use the Label Numbers port to specify the objects in the label matrix for which the block calculates statistics. The input to this port must be a vector of scalar values that correspond to the labeled regions in the label matrix. For more information about the format of the input to the ROI port when the ROI is a rectangle or a line, see the Draw Shapes block reference page.

For rectangular ROIs, use the ROI portion to process parameter to specify whether to calculate the statistical value for the entire ROI or just the ROI perimeter.
Use the Output parameter to specify the block output. The block can output separate statistical values for each ROI or the statistical value for all specified ROIs. This parameter is not available if, for the ROI type parameter, you select Binary mask.

If, for the ROI type parameter, you select Rectangles or Lines, the Output flag indicating if ROI is within image bounds check box appears in the dialog box. If you select this check box, the Flag port appears on the block. The following tables describe the Flag port output based on the block parameters.

\section*{Output = Individual statistics for each ROI}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Flag \\
Port \\
Output
\end{tabular} & Description \\
\hline 0 & ROI is completely outside the input image. \\
\hline 1 & ROI is completely or partially inside the input image. \\
\hline
\end{tabular}

\section*{Output \(=\) Single statistic for all ROIs}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Flag \\
Port \\
Output
\end{tabular} & Description \\
\hline 0 & All ROIs are completely outside the input image. \\
\hline 1 & \begin{tabular}{l} 
At least one ROI is completely or partially inside the \\
input image.
\end{tabular} \\
\hline
\end{tabular}

If the ROI is partially outside the image, the block only computes the statistical values for the portion of the ROI that is within the image.

If, for the ROI type parameter, you select Label matrix, the Output flag indicating if input label numbers are valid check box appears in the dialog box. If you select this check box, the Flag port appears on the block. The following tables describe the Flag port output based on the block parameters.

Output = Individual statistics for each ROI
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Flag \\
Port \\
Output
\end{tabular} & Description \\
\hline 0 & Label number is not in the label matrix. \\
\hline 1 & Label number is in the label matrix. \\
\hline
\end{tabular}

Output \(\boldsymbol{=}\) Single statistic for all ROIs
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Flag \\
Port \\
Output
\end{tabular} & Description \\
\hline 0 & None of the label numbers are in the label matrix. \\
\hline 1 & At least one of the label numbers is in the label matrix. \\
\hline
\end{tabular}

\section*{Fixed-Point Data Types}

The following diagram shows the data types used within the Mean block for fixed-point signals.


You can set the accumulator and output data types in the block dialog, as discussed in "Dialog Box" on page 2-896.

\section*{Examples}

The Mean block in the following model calculates the running mean of a frame-based 3-by-2 (two-channel) matrix input, \(u\). The running mean is reset at \(t=2\) by an impulse to the block's Rst port.


The Mean block has the following settings:
- Running mean \(=\) Select this check box
- Reset port \(=\) Non-zero sample

The Signal From Workspace block has the following settings:
- Signal = dsp_examples_u
- Sample time \(=1 / 3\)
- Samples per frame \(=3\)
where
```

dsp_examples_u = [$$
\begin{array}{llllllllllllllllllllllllllll}{6}&{1}&{3}&{-7}&{2}&{5}&{8}&{0}&{-1}&{-3}&{2}&{1;}&{1}&{3}&{9}&{2}&{4}&{1}&{6}&{2}&{5}&{0}&{4}&{17}\end{array}
$$]

```

The Discrete Impulse block has the following settings:
- Delay (samples) \(=2\)
- Sample time \(=1\)
- Samples per frame \(=1\)

The block's operation is shown in the next figure.


\section*{Mean}

Dialog The Main pane of the Mean block dialog appears as follows.
Box


\section*{Running mean}

Enables running operation when selected.

\section*{Reset port}

Determines the reset event that causes the block to reset the running mean. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input. This parameter is enabled only when you set the Running mean
parameter. For more information, see "Resetting the Running Mean" on page 2-889.

\section*{Find the mean value over}

Specify whether to find the mean value along rows, columns, entire input, or the dimension specified in the Dimension parameter. For more information, see "Basic Operation" on page 2-887.

\section*{Treat sample-based row input as a column}

Select to treat sample-based length-M row vector inputs as M-by-1 column vectors. This parameter is only visible when the Find the mean value over parameter is set to Each column.

\section*{Dimension}

Specify the dimension (one-based value) of the input signal, over which the mean is computed. The value of this parameter cannot exceed the number of dimensions in the input signal. This parameter is only visible when the Find the mean value over parameter is set to Specified dimension.

\section*{Enable ROI Processing}

Select this check box to calculate the statistical value within a particular region of each image. This parameter is only available when the Find the mean value over parameter is set to Entire input, and the block is not in running mode.

Note Full ROI processing is only available to users who have a Video and Image Processing Blockset license. If you only have a Signal Processing Blockset license, you can still use ROI processing, but are limited to the ROI type Rectangles.

\section*{ROI type}

Specify the type of ROI you want to use. Your choices are Rectangles, Lines, Label matrix, or Binary mask.

\section*{ROI portion to process}

Specify whether you want to calculate the statistical value for the entire ROI or just the ROI perimeter. This parameter is only visible if, for the ROI type parameter, you specify Rectangles.

\section*{Output}

Specify the block output. The block can output a vector of separate statistical values for each ROI or a scalar value that represents the statistical value for all the specified ROIs. This parameter is not available if, for the ROI type parameter, you select Binary mask.

\section*{Output flag}
\(\sqrt{ } \sqrt{ }\) Output flag indicating if ROI is within image bounds
F Output flag indicating if label numbers are valid
When you select either of these check boxes, the Flag port appears on the block. For a description of the Flag port output, see the tables in "ROI Processing" on page 2-891.

The Output flag indicating if ROI is within image bounds check box is only visible when you select Rectangles or Lines as the ROI type.

The Output flag indicating if label numbers are valid check box is only visible when you select Label matrix for the ROI type parameter.

The Data type attributes pane of the Mean block dialog appears as follows.

Function Block Parameters: Mean
Mean
Mean of the vector elements. If "Running mean" is selected, the block returns the mean of the input elements over time.

Main Data type attributes
Fixed-point operational parameters
Rounding mode: Floor
Overflow mode: Wrap

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the block input is floating point, all block data types match the input.



\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Accumulator data type}

Specify the accumulator data type. See "Fixed-Point Data Types" on page 2-893 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:
- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button \(\quad \gg\) to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

\section*{Output data type}

Specify the output data type. See "Fixed-Point Data Types" on page 2-893 for illustrations depicting the use of the output data type in this block. You can set it to:
- A rule that inherits a data type, for example, Inherit: Same as accumulator
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button \(\quad \gg\) to display the Data Type Assistant, which helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in Simulink User's Guide for more information.

\section*{Minimum}

Specify the minimum value that the block should output. The default value, [ ], is equivalent to -Inf. Simulink software uses this value to perform:
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

\section*{Maximum}

Specify the maximum value that the block should output. The default value, [ ], is equivalent to Inf. Simulink software uses this value to perform:
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Input & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- 8-, 16 -, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline Reset & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Boolean \\
- 8 -, 16 -, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline ROI & \begin{tabular}{l}
Rectangles and lines: \\
- Double-precision floating point \\
- Single-precision floating point \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers \\
Binary Mask: \\
- Boolean
\end{tabular} \\
\hline Label & - 8-, 16-, and 32-bit unsigned integers \\
\hline Label Numbers & - 8-, 16-, and 32-bit unsigned integers \\
\hline Output & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- 8 -, 16 -, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline Flag & - Boolean \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Maximum & Signal Processing Blockset \\
Median & Signal Processing Blockset \\
Minimum & Signal Processing Blockset \\
Standard Deviation & Signal Processing Blockset \\
mean & MATLAB
\end{tabular}

\section*{Purpose \\ Library \\ Description \\ }

Find median value of input
Statistics
dspstat3

The Median block computes the median value of each row or column of the input, along vectors of a specified dimension of the input, or of the entire input. The median of a set of input values is calculated as follows:

1 The values are sorted.
2 If the number of values is odd, the median is the middle value.
3 If the number of values is even, the median is the average of the two middle values.

For a given input \(u\), the size of the output array y depends on the setting of the Find the median value over parameter. For example, consider a 3 -dimensional input signal of size \(M\)-by- \(N\)-by- \(P\) :
- Entire input - The output at each sample time is a scalar that contains the median value of the \(M\)-by- \(N\)-by- \(P\) input matrix. In this mode, the block output is always sample based.
\[
y=\operatorname{median}(u(:)) \quad \% \text { Equivalent MATLAB code }
\]
- Each row - The output at each sample time consists of an \(M\)-by-1-by- \(P\) array, where each element contains the median value of each vector over the second dimension of the input. For an input that is an \(M\)-by- \(N\) matrix, the output is an \(M\)-by- 1 column vector. In this mode, the frame status of the output is the same as that of the input.
\[
y=\operatorname{median}(u, 2) \quad \% \text { Equivalent MATLAB code }
\]
- Each column - The output at each sample time consists of a 1 -by- \(N\)-by- \(P\) array, where each element contains the median value of each vector over the first dimension of the input. For an input that

\section*{Median}
is an \(M\)-by- \(N\) matrix, the output at each sample time is a 1 -by- \(N\) row vector. In this mode, the frame status of the output is the same as that of the input.
\[
y=\operatorname{median}(u) \quad \% \text { Equivalent MATLAB code }
\]

For convenience, length-M 1-D vector inputs are treated as \(M\)-by-1 column vectors when the block is in this mode. Sample-based length- \(M\) row vector inputs are also treated as \(M\)-by- 1 column vectors when the Treat sample-based row input as a column check box is selected.
- Specified dimension - The output at each sample time depends on Dimension. If Dimension is set to 1 , the output is the same as when you select Each column. If Dimension is set to 2, the output is the same as when you select Each row. If Dimension is set to 3, the output at each sample time is an \(M\)-by- \(N\) matrix containing the median value of each vector over the third dimension of the input. In this mode, the frame status of the output is the same as that of the input.
```

y = median(u,Dimension) % Equivalent MATLAB code

```

Complex inputs are sorted by magnitude squared. For complex value \(u=a+b i\), the magnitude squared is \(a^{2}+b^{2}\).

The Median block accepts real and complex fixed-point and floating-point inputs.

\section*{Fixed-Point Data Types}

For fixed-point inputs, you can specify accumulator, product output, and output data types as discussed in "Dialog Box" on page 2-905. Not all these fixed-point parameters are applicable for all types of fixed-point inputs. The following table shows when each kind of data type and scaling is used.
\begin{tabular}{l|l|l|l}
\hline & Output data type & \begin{tabular}{c} 
Accumulator data \\
type
\end{tabular} & \begin{tabular}{c} 
Product output \\
data type
\end{tabular} \\
\hline Even \(M\) & X & X & \\
\hline Odd \(M\) & X & X & X \\
\hline \begin{tabular}{l} 
Odd \(M\) and \\
complex
\end{tabular} & X & X & X \\
\hline \begin{tabular}{l} 
Even \(M\) and \\
complex
\end{tabular} & X & \\
\hline
\end{tabular}

The accumulator and output data types and scalings are used for fixed-point signals when \(M\) is even. The result of the sum performed while calculating the average of the two central rows of the input matrix is stored in the accumulator data type and scaling. The total result of the average is then put into the output data type and scaling.
The accumulator and product output parameters are used for complex fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input are formed before the input elements are sorted, as described in Description. The results of the squares of the real and imaginary parts are placed into the product output data type and scaling. The result of the sum of the squares is placed into the accumulator data type and scaling.
For fixed-point inputs that are both complex and have even \(M\), the data types are used in all of the ways described. Therefore, in such cases, the accumulator type is used in two different ways.

Dialog
Box
The Main pane of the Median block dialog appears as follows.

\section*{Median}


\section*{Sort algorithm}

Specify whether to sort the elements of the input using a Quick sort or an Insertion sort algorithm.

\section*{Find the median value over}

Specify whether to find the median value along rows, columns, entire input, or the dimension specified in the Dimension parameter. For more information, see Description.

\section*{Treat sample-based row input as a column}

Select to treat sample-based length- \(M\) row vector inputs as \(M\)-by- 1 column vectors. This parameter is only visible when the Find the median value over parameter is set to Each column.

\section*{Dimension}

Specify the dimension (one-based value) of the input signal, over which the median is computed. The value of this parameter cannot exceed the number of dimensions in the input signal. This parameter is only visible when the Find the median value over parameter is set to Specified dimension.

The Data type attributes pane of the Median block dialog appears as follows.

\section*{Median}


Note Floating-point inheritance takes precedence over the data type settings defined on this pane. When inputs are floating point, the block ignores these settings, and all internal data types are floating point.

\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Product output data type}

Specify the product output data type. See "Fixed-Point Data Types" on page 2-904 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set it to:
- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

> Click the Show data type assistant button \(\quad \gg\) display the Data Type Assistant, which helps you set the Product output data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

\section*{Accumulator data type}

Specify the accumulator data type. See "Fixed-Point Data Types" on page 2-904 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:
- A rule that inherits a data type, for example, Inherit: Same as product output
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button \(\quad \ggg\) to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

\section*{Median}

\section*{Output data type}

Specify the output data type. See "Fixed-Point Data Types" on page 2-904 for illustrations depicting the use of the output data type in this block. You can set it to:
- A rule that inherits a data type, for example, Inherit: Same as accumulator
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button \(\quad \ggg\) to display the Data Type Assistant, which helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in Simulink User's Guide for more information.

\section*{Minimum}

Specify the minimum value that the block should output. The default value, [ ], is equivalent to - Inf. Simulink software uses this value to perform:
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

\section*{Maximum}

Specify the maximum value that the block should output. The default value, [ ], is equivalent to Inf. Simulink software uses this value to perform:
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

\section*{Lock scaling against changes by the autoscaling tool}

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Input & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- 8 -, 16 -, 32 -, and 128 -bit signed integers \\
- 8 -, 16-, 32 -, and 128 -bit unsigned integers
\end{tabular} \\
\hline Output & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- 8 -, 16 -, 32 -, and 128 -bit signed integers \\
- 8-, 16-, 32 -, and 128 -bit unsigned integers
\end{tabular} \\
\hline
\end{tabular}

\author{
See Also
}
\begin{tabular}{ll} 
Maximum & Signal Processing Blockset \\
Mean & Signal Processing Blockset \\
Minimum & Signal Processing Blockset \\
Sort & Signal Processing Blockset \\
Standard Deviation & Signal Processing Blockset \\
Variance & Signal Processing Blockset \\
median & MATLAB
\end{tabular}

Purpose
Library
Description
\(I_{\text {laxal }}^{v a}\)
\(=1 I=\)

Find minimum values in input or sequence of inputs
Statistics
dspstat3

The Minimum block identifies the value and/or position of the smallest element in each row or column of the input, along vectors of a specified dimension of the input, or of the entire input. The Minimum block can also track the minimum values in a sequence of inputs over a period of time. The Mode parameter specifies the block's mode of operation, and can be set to Value, Index, Value and Index, or Running.
The Minimum block supports real and complex floating-point, fixed-point, and Boolean inputs. Real fixed-point inputs can be either signed or unsigned, while complex fixed-point inputs must be signed. The data type of the minimum values output by the block match the data type of the input. The index values output by the block are double when the input is double, and uint32 otherwise.

The frame status of the block output is the same as that of the input, except when the Find the minimum value of parameter is set to Entire input. The output is always sample-based when Entire input is selected.
For the Value, Index, and Value and Index modes, the Minimum block produces identical results as the MATLAB min function when it is called as [y I] \(=\min (\mathrm{u},[\mathrm{l}, \mathrm{D})\), where \(u\) and \(y\) are the input and output, respectively, \(D\) is the dimension, and \(I\) is the index.

\section*{Value Mode}

When the Mode parameter is set to Value, the block computes the minimum value in each row or column of the input, along vectors of a specified dimension of the input, or of the entire input at each sample time, and outputs the array \(y\). Each element in \(y\) is the minimum value in the corresponding column, row, vector, or entire input. The output \(y\) depends on the setting of the Find the minimum value
over parameter. For example, consider a 3 -dimensional input signal of size \(M\)-by- \(N\)-by- \(P\) :
- Each row - The output at each sample time consists of an \(M\)-by- 1 -by- \(P\) array, where each element contains the minimum value of each vector over the second dimension of the input. For an input that is an \(M\)-by- \(N\) matrix, the output at each sample time is an \(M\)-by- 1 column vector. In this mode, the frame status of the output is the same as that of the input.
- Each column - The output at each sample time consists of a 1 -by- \(N\)-by- \(P\) array, where each element contains the minimum value of each vector over the first dimension of the input. For an input that is an \(M\)-by- \(N\) matrix, the output at each sample time is a 1 -by- \(N\) row vector. In this mode, the frame status of the output is the same as that of the input.

For convenience, length- \(M\) 1-D vector inputs are treated as \(M\)-by-1 column vectors when the block is in this mode. Sample-based length- \(M\) row vector inputs are also treated as \(M\)-by- 1 column vectors when the Treat sample-based row input as a column check box is selected.
- Entire input - The output at each sample time is a scalar that contains the minimum value in the \(M\)-by- \(N\)-by- \(P\) input matrix. In this mode, the block output is always sample based.
- Specified dimension - The output at each sample time depends on Dimension. If Dimension is set to 1, the output is the same as when you select Each column. If Dimension is set to 2, the output is the same as when you select Each row. If Dimension is set to 3, the output at each sample time is an \(M\)-by- \(N\) matrix containing the minimum value of each vector over the third dimension of the input. In this mode, the frame status of the output is the same as that of the input.

For complex inputs, the block selects the value in each row or column of the input, along vectors of a specified dimension of the input, or of the

\section*{Minimum}
entire input that has the minimum magnitude squared as shown below. For complex value \(u=a+b i\), the magnitude squared is \(a^{2}+b^{2}\).

> Complex


\section*{Index Mode}

When Mode is set to Index, the block computes the minimum value in each row or column of the input, along vectors of a specified dimension of the input, or of the entire input, and outputs the index array \(I\). Each element in \(I\) is an integer indexing the minimum value in the corresponding column, row, vector, or entire input. The output \(I\) depends on the setting of the Find the minimum value over parameter. For example, consider a 3 -dimensional input signal of size \(M\)-by- \(N\)-by- \(P\) :
- Each row - The output at each sample time consists of an \(M\)-by-1-by- \(P\) array, where each element contains the index of the minimum value of each vector over the second dimension of the input. For an input that is an \(M\)-by- \(N\) matrix, the output at each sample time is an \(M\)-by- 1 column vector. In this mode, the frame status of the output is the same as that of the input.
- Each column - The output at each sample time consists of a 1 -by- N -by- P array, where each element contains the index of the minimum value of each vector over the first dimension of the input. For an input that is an \(M\)-by- \(N\) matrix, the output at each sample time is a 1 -by- \(N\) row vector. In this mode, the frame status of the output is the same as that of the input.
For convenience, length-M 1-D vector inputs are treated as \(M\)-by-1 column vectors when the block is in this mode. Sample-based length- \(M\) row vector inputs are also treated as \(M\)-by- 1 column vectors
when the Treat sample-based row input as a column check box is selected.
- Entire input - The output at each sample time is a 1-by-3 vector that contains the location of the minimum value in the \(M\)-by- \(N\)-by- \(P\) input matrix. In this mode, the block output is always sample based. For an input that is an \(M\)-by- \(N\) matrix, the output will be a 1 -by- 2 vector.
- Specified dimension - The output at each sample time depends on Dimension. If Dimension is set to 1, the output is the same as when you select Each column. If Dimension is set to 2, the output is the same as when you select Each row. If Dimension is set to 3 , the output at each sample time is an \(M\)-by- \(N\) matrix containing the indices of the minimum values of each vector over the third dimension of the input. In this mode, the frame status of the output is the same as that of the input.

When a minimum value occurs more than once, the computed index corresponds to the first occurrence. For example, when the input is the column vector \(\left[\begin{array}{lllll}-1 & 2 & 3 & 2 & -1\end{array}\right]\) ', the computed one-based index of the minimum value is 1 rather than 5 when Each column is selected.

\section*{Value and Index Mode}

When Mode is set to Value and Index, the block outputs both the minima and the indices.

\section*{Running Mode}

When Mode is set to Running, the block tracks the minimum value of each channel in a time sequence of \(M\)-by- \(N\) inputs. For sample-based inputs, the output is a sample-based \(M\)-by- \(N\) array with each element \(y_{i j}\) containing the minimum value observed in element \(u_{i j}\) for all inputs since the last reset. For frame-based inputs, the output is a frame-based \(M\)-by- \(N\) array with each element \(y_{i j}\) containing the minimum value observed in the \(j\) th column of all inputs since the last reset, up to and including element \(u_{i j}\) of the current input.

\section*{Minimum}

N-D signals cannot be frame based. When the block is set to Running mode, each element of the N-D signal is considered as a separate channel. There are \(\prod d_{i}\) channels, where \(d_{i}\) is the size of the \(i\) th dimension.

\section*{Resetting the Running Minimum}

The block resets the running minimum whenever a reset event is detected at the optional Rst port. The reset sample time must be a positive integer multiple of the input sample time.
When the block is reset for sample-based inputs, the running minimum for each channel is initialized to the value in the corresponding channel of the current input. For frame-based inputs, the running minimum for each channel is initialized to the earliest value in each channel of the current input.

You specify the reset event by the Reset port parameter:
- None - Disables the Rst port
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above)
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port rate before the block applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

\section*{ROI Processing}

To calculate the statistical value within a particular region of interest (ROI) of the input, select the Enable ROI processing check box. This option is only available when the Find the minimum value over parameter is set to Entire input and the Enable ROI processing check box is selected. ROI processing is only supported for 2-D inputs.

Note Full ROI processing is only available to users who have a Video and Image Processing Blockset license. If you only have a Signal Processing Blockset license, you can still use ROI processing, but are limited to the ROI type Rectangles.

Use the ROI type parameter to specify whether the ROI is a rectangle, line, label matrix, or binary mask. A binary mask is a binary image that enables you to specify which pixels to highlight, or select. In a label matrix, pixels equal to 0 represent the background, pixels equal to 1 represent the first object, pixels equal to 2 represent the second object, and so on. When the ROI type parameter is set to Label matrix, the Label and Label Numbers ports appear on the block. Use the Label Numbers port to specify the objects in the label matrix for which the block calculates statistics. The input to this port must be a vector of scalar values that correspond to the labeled regions in the label matrix. For more information about the format of the input to the ROI port when the ROI is a rectangle or a line, see the Draw Shapes block reference page.

For rectangular ROIs, use the ROI portion to process parameter to specify whether to calculate the statistical value for the entire ROI or just the ROI perimeter.
Use the Output parameter to specify the block output. The block can output separate statistical values for each ROI or the statistical value for all specified ROIs. This parameter is not available if, for the ROI type parameter, you select Binary mask.

If, for the ROI type parameter, you select Rectangles or Lines, the Output flag indicating if ROI is within image bounds check box appears in the dialog box. If you select this check box, the Flag port appears on the block. The following tables describe the Flag port output based on the block parameters.

\section*{Output = Individual statistics for each ROI}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Flag \\
Port \\
Output
\end{tabular} & Description \\
\hline 0 & ROI is completely outside the input image. \\
\hline 1 & ROI is completely or partially inside the input image. \\
\hline
\end{tabular}

\section*{Output = Single statistic for all ROIs}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Flag \\
Port \\
Output
\end{tabular} & Description \\
\hline 0 & All ROIs are completely outside the input image. \\
\hline 1 & \begin{tabular}{l} 
At least one ROI is completely or partially inside the \\
input image.
\end{tabular} \\
\hline
\end{tabular}

If the ROI is partially outside the image, the block only computes the statistical values for the portion of the ROI that is within the image.

\section*{Minimum}

If, for the ROI type parameter, you select Label matrix, the Output flag indicating if input label numbers are valid check box appears in the dialog box. If you select this check box, the Flag port appears on the block. The following tables describe the Flag port output based on the block parameters.

\section*{Output = Individual statistics for each ROI}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Flag \\
Port \\
Output
\end{tabular} & Description \\
\hline 0 & Label number is not in the label matrix. \\
\hline 1 & Label number is in the label matrix. \\
\hline
\end{tabular}

Output \(=\) Single statistic for all ROIs
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Flag \\
Port \\
Output
\end{tabular} & Description \\
\hline 0 & None of the label numbers are in the label matrix. \\
\hline 1 & At least one of the label numbers is in the label matrix. \\
\hline
\end{tabular}

\section*{Fixed-Point Data Types}

The parameters on the Data type attributes pane of the block dialog are only used for complex fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input are formed before a comparison is made, as described in "Value Mode" on page 2-912. The results of the squares of the real and imaginary parts are placed into the product output data type. The result of the sum of the squares is placed into the accumulator data type. These parameters are ignored for other types of inputs.

\section*{Examples}

The Minimum block in the following model calculates the running minimum of a frame-based 3 -by- 2 (two-channel) matrix input. The running minimum is reset at \(t=2\) by an impulse to the block's Rst port.


The Minimum block has the following settings:
- Mode \(=\) Running
- Reset port \(=\) Non-zero sample

The Signal From Workspace block has the following settings:
- \(\operatorname{Signal}=u\)
- Sample time \(=1 / 3\)
- Samples per frame \(=3\)
where
\[
u=\left[\begin{array}{llllllllllllllllllllll}
6 & 1 & 3 & -7 & 2 & 5 & 8 & 0 & -1 & -3 & 2 & 1 ; & 1 & 3 & 9 & 2 & 4 & 2 & 6 & 2 & 5 & 0 \\
4 & 17
\end{array}\right]
\]

The Discrete Impulse block has the following settings:
- Delay \((\) samples \()=2\)
- Sample time \(=1\)
- Samples per frame \(=1\)

The block's operation is shown in the figure below.

Minimum


Dialog Box

The Main pane of the Minimum block dialog appears as follows.

\section*{Function Block Parameters: Minimum}

Minimum
Returns the value and/or index of the minimum elements of the input signal. The output can be the minimum of the entire input, of each row, of each column, or over the dimension of the input signal specified in the 'Dimension' parameter. Indices are the locations of minimums, counting from either zero or one. If the 'Mode' parameter is set to 'Running', the block returns the minimum of the input elements over time.



\section*{Mode}

Specify the block's mode of operation:
- Value - Output the minimum value of each input
- Index - Output the index of the minimum value

\section*{Minimum}
- Value and index - Output both the value and the index
- Running - Track the minimum value of the input sequence over time

For more information, see Description.

\section*{Index base}

Specify whether the index of the minimum value is reported using one-based or zero-based numbering. This parameter is only visible when the Mode parameter is set to Index or Value and index.

\section*{Find the minimum value over}

Specify whether to find the minimum value along rows, columns, entire input, or the dimension specified in the Dimension parameter. For more information, see Description.

\section*{Reset port}

Specify the reset event detected at the RST input port when you select Running for the Mode parameter. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input. This parameter is enabled only when you set the Mode parameter to Running. For information about the possible values of this parameter, see "Resetting the Running Minimum" on page 2-916.

\section*{Treat sample-based row input as a column}

Select to treat sample-based length- \(M\) row vector inputs as \(M\)-by- 1 column vectors. This parameter is only visible when the Find the minimum value of parameter is set to Each column.

\section*{Dimension}

Specify the dimension (one-based value) of the input signal, over which the minimum is computed. The value of this parameter cannot exceed the number of dimensions in the input signal. This parameter is only visible when the Find the minimum value over parameter is set to Specified dimension.

\section*{Minimum}

\section*{Enable ROI processing}

Select this check box to calculate the statistical value within a particular region of each image. This parameter is only available when the Find the minimum value over parameter is set to Entire input, and the block is not in running mode.

Note Full ROI processing is only available to users who have a Video and Image Processing Blockset license. If you only have a Signal Processing Blockset license, you can still use ROI processing, but are limited to the ROI type Rectangles.

The ROI processing parameters appear as follows.

\section*{Minimum}

\section*{Function Block Parameters: Minimum}

Minimum
Returns the value andjor index of the minimum elements of the input signal. The output can be the minimum of the entire input, of each row, of each column, or over the dimension of the input signal specified in the 'Dimension' parameter. Indices are the locations of minimums, counting from either zero or one. If the 'Mode' parameter is set to 'Running', the block returns the minimum of the input elements over time.



\section*{ROI type}

Specify the type of ROI you want to use. Your choices are Rectangles, Lines, Label matrix, or Binary mask.

\section*{ROI portion to process}

Specify whether you want to calculate the statistical value for the entire ROI or just the ROI perimeter. This parameter is only visible if, for the ROI type parameter, you specify Rectangles.

\section*{Output}

Specify the block output. The block can output a vector of separate statistical values for each ROI or a scalar value that represents the statistical value for all the specified ROIs. This parameter is not available if, for the ROI type parameter, you select Binary mask.

\section*{Output flag}

\section*{Output flag indicating if ROI is within image bounds}

\section*{Output flag indicating if label numbers are valid}

When you select either of these check boxes, the Flag port appears on the block. For a description of the Flag port output, see the tables in "ROI Processing" on page 2-918.

The Output flag indicating if ROI is within image bounds check box is only visible when you select Rectangles or Lines as the ROI type.

The Output flag indicating if label numbers are valid check box is only visible when you select Label matrix for the ROI type parameter.

The Data type attributes pane of the Minimum block dialog appears as follows.

\section*{Minimum}

Function Block Parameters: Minimum
Minimum
Returns the value andjor index of the minimum elements of the input signal. The output can be the minimum of the entire input, of each row, of each column, or over the dimension of the input signal specified in the 'Dimension' parameter. Indices are the locations of minimums, counting from either zero or one. If the 'Mode' parameter is set to 'Running', the block returns the minimum of the input elements over time.

\section*{Main Data type attributes}
-Fixed-point operational parameters
Rounding mode: Floor \(\quad\) Overflow mode: Wrap

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the block input is floating point, all block data types match the input.


T Lock scaling against changes by the autoscaling tool


Note The parameters on the Data type attributes pane are only used for complex fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input are formed before a comparison is made, as described in "Value Mode" on page 2-912. The results of the squares of the real and imaginary parts are placed into the product output data type. The result of the sum of the squares is placed into the accumulator data type. These parameters are ignored for other types of inputs.

\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Product output data type}

Specify the product output data type. See "Fixed-Point Data Types" on page 2-920 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set it to:
- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button \(\quad \ggg\) to display the Data Type Assistant, which helps you set the Product output data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

\section*{Minimum}

\section*{Accumulator data type}

Specify the accumulator data type. See "Fixed-Point Data Types" on page 2-920 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:
- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button \(\quad \ggg\) to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

\section*{Lock scaling against changes by the autoscaling tool}

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point (signed and unsigned) \\
& • Boolean \\
& \(\bullet 8-, 16-\), and 32 -bit signed integers \\
& \(\bullet 8-, 16\)-, and 32 -bit unsigned integers \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Reset & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Boolean \\
- 8-, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Idx & \begin{tabular}{l}
- Double-precision floating point \\
- 32-bit unsigned integers
\end{tabular} \\
\hline Val & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16 -, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}
\begin{tabular}{ll} 
Maximum & Signal Processing Blockset \\
Mean & Signal Processing Blockset \\
MinMax & Simulink \\
Histogram & Signal Processing Blockset \\
min & MATLAB
\end{tabular}

\section*{Modified Covariance AR Estimator}

\footnotetext{
Purpose

Library

\section*{Description}

MGovAR A Estimator

Estimation / Parametric Estimation
dspparest3
Compute estimate of autoregressive (AR) model parameters using modified covariance method

The Modified Covariance AR Estimator block uses the modified covariance method to fit an autoregressive (AR) model to the input data. This method minimizes the forward and backward prediction errors in the least squares sense. The input is a frame of consecutive time samples, which is assumed to be the output of an AR system driven by white noise. The block computes the normalized estimate of the AR system parameters, \(A(z)\), independently for each successive input.
\[
H(z)=\frac{G}{A(z)}=\frac{G}{1+a(2) z^{-1}+\ldots+a(p+1) z^{-p}}
\]

You specify the order, \(p\), of the all-pole model in the Estimation order parameter. To guarantee a valid output, you must set the Estimation order parameter to be less than or equal to two thirds the input vector length.

The output port labeled A outputs the normalized estimate of the AR model coefficients in descending powers of \(z\).
\[
\left[\begin{array}{llll}
1 & a(2) & \ldots & a(p+1)]
\end{array}\right.
\]

The scalar gain, \(G\), is output from the output port labeled \(G\).
See the Burg AR Estimator block reference page for a comparison of the Burg AR Estimator, Covariance AR Estimator, Modified Covariance AR Estimator, and Yule-Walker AR Estimator blocks.
}

\section*{Modified Covariance AR Estimator}

Dialog
Box


\section*{Estimation order}

Specify the order of the AR model, \(p\).

\section*{References Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1988. \\ Marple, S. L., Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall, 1987.}

Supported Data Types
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & \begin{tabular}{l} 
- Double-precision floating point \\
- Single-precision floating point
\end{tabular} \\
\hline A & \begin{tabular}{l} 
- Double-precision floating point \\
- Single-precision floating point
\end{tabular} \\
\hline G & \begin{tabular}{l} 
- Double-precision floating point \\
\\
- Single-precision floating point
\end{tabular} \\
\hline
\end{tabular}

The output data type is the same as the input data type.

\section*{Modified Covariance AR Estimator}

\author{
See Also \\ Burg AR Estimator \\ Covariance AR Estimator \\ Modified Covariance Method \\ Yule-Walker AR Estimator \\ armcov
}

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox

\section*{Modified Covariance Method}

\section*{Purpose}

Power spectral density estimate using modified covariance method

\section*{Library}

Description


Estimation / Power Spectrum Estimation
dspspect3
The Modified Covariance Method block estimates the power spectral density (PSD) of the input using the modified covariance method. This method fits an autoregressive (AR) model to the signal. It does so by minimizing the forward and backward prediction errors in the least squares sense. The Estimation order parameter value specifies
the order of the all-pole model. To guarantee a valid output, the Estimation order parameter must be less than or equal to two thirds of the input vector length. The block computes the spectrum from the FFT of the estimated AR model parameters.
The input must be a sample-based vector (row, column, or 1-D) or frame-based vector (column only). This input represents a frame of consecutive time samples from a single-channel signal. The block outputs a column vector containing the estimate of the power spectral density of the signal at \(N_{f f t}\) equally spaced frequency points. The frequency points are in the range \(\left[0, F_{s}\right.\) ), where \(F_{s}\) is the sampling frequency of the signal.
Selecting Inherit FFT length from estimation order, specifies that \(N_{f f t}\) is one greater than the estimation order. Clearing the Inherit FFT length from estimation order check box allows you to use the FFT length parameter to specify \(N_{f f t}\) as a power of 2 . The block zero-pads or wraps the input to \(N_{f f t}\) before computing the FFT. The output is always sample based.

When you select the Inherit sample time from input check box, the block computes the frequency data from the sample period of the input signal. For the block to produce valid output, the following conditions must hold:
- The input to the block is the original signal, with no samples added or deleted (by insertion of zeros, for example).

\section*{Modified Covariance Method}
- The sample period of the time-domain signal in the simulation equals the sample period of the original time series.

If these conditions do not hold, clear the Inherit sample time from input check box. You can then specify a sample time using the Sample time of original time series parameter.

See the Burg Method block reference for a comparison of the Burg Method, Covariance Method, Modified Covariance Method, and Yule-Walker Method blocks.

\section*{Examples}

Dialog Box

The dspsacomp demo compares the modified covariance method with several other spectral estimation methods.


\section*{Estimation order}

Specify the order of the AR model. To guarantee a valid output, the Estimation order parameter must be less than or equal to two thirds of the input vector length.

\section*{Inherit FFT length from estimation order}

When you select this check box, the option specifies that the FFT length is one greater than the estimation order. To specify the number of points on which to perform the FFT, clear this check box. You can then specify a power of two FFT length using the FFT length parameter.

\section*{FFT length}

Enter the number of data points, \(N_{f f t}\), on which to perform the FFT. When \(N_{f f t}\) is larger than the input frame size, the block zero-pads each frame as needed. When \(N_{f f t}\) is smaller than the input frame size, the block wraps each frame as needed. This parameter becomes visible only when you clear the Inherit FFT length from estimation order check box.

\section*{Inherit sample time from input}

If you select the Inherit sample time from input check box, the block computes the frequency data from the sample period of the input signal. For the block to produce valid output, the following conditions must hold:
- The input to the block is the original signal, with no samples added or deleted (by insertion of zeros, for example).
- The sample period of the time-domain signal in the simulation equals the sample period of the original time series.

If these conditions do not hold, clear the Inherit sample time from input check box. You can then specify a sample time using the Sample time of original time series parameter.

\section*{Sample time of original time series}

Specify the sample time of the original time-domain signal. This parameter becomes visible only when you clear the Inherit sample time from input check box.

\section*{Modified Covariance Method}

\author{
References \\ Supported \\ Data \\ Types
}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& • Single-precision floating point
\end{tabular}

The output data type is the same as the input data type.

\section*{See Also}
\begin{tabular}{ll} 
Burg Method & Signal Processing Blockset \\
Covariance Method & Signal Processing Blockset \\
Modified Covariance & Signal Processing Blockset \\
AR Estimator & \\
Short-Time FFT & Signal Processing Blockset \\
Yule-Walker Method & Signal Processing Blockset \\
spectrum.mcov & Signal Processing Toolbox
\end{tabular}

See "Power Spectrum Estimation" for related information.

\section*{Multiphase Clock}
\begin{tabular}{ll} 
Purpose & Generate multiple binary clock signals \\
Library & - \\
& Signal Processing Sources \\
& dspsrcs4 \\
& - \\
& Signal Management / Switches and Counters \\
& dspswit3
\end{tabular}

\section*{Description}
```

4-Phase
Glock

```

\section*{Examples}

The Multiphase Clock block generates a sample-based 1-by- \(N\) vector of clock signals, where you specify the integer \(N\) in the Number of phases parameter. Each of the \(N\) phases has the same frequency, \(f\), specified in hertz by the Clock frequency parameter.

The clock signal indexed by the Starting phase parameter is the first to become active, at \(t=0\). The other signals in the output vector become active in turn, each one lagging the preceding signal's activation by \(1 /\left(N^{*} f\right)\) seconds, the phase interval. The period of the sample-based output is therefore \(1 /\left(N^{*} f\right)\) seconds.

The active level can be either high (1) or low (0), as specified by the Active level (polarity) parameter. The duration of the active level, \(D\), is set by the Number of phase intervals over which the clock is active. This value, which can be an integer value between 1 and \(N-1\), specifies the number of phase intervals that each signal should remain in the active state after becoming active. The active duty cycle of the signal is \(D / N\).

Configure the Multiphase Clock block in the model below to generate a 100 Hz five-phase output in which the third signal is first to become active. Use a high active level with a duration of one interval.


\section*{Multiphase Clock}

The corresponding settings are as follows:
- Clock frequency \(=100\)
- Number of phases \(=5\)
- Starting phase \(=3\)
- Number of phase intervals over which the clock is active \(=1\)
- Active level (polarity) = High (1)

The Scope window below shows the Multiphase Clock block's output for these settings. Note that the first active level appears at \(t=0\) on y (3), the second active level appears at \(t=0.002\) on \(\mathrm{y}(4)\), the third active level appears at \(t=0.004\) on \(\mathrm{y}(5)\), the fourth active level appears at \(t=0.006\) on \(y(1)\), and the fifth active level appears at \(t=0.008\) on \(y(2)\). Each signal becomes active \(1 /(5 * 100)\) seconds after the previous signal.


\section*{Multiphase Clock}

To experiment further, try changing the Number of phase intervals over which clock is active setting to 3 so that the active-level duration is three phase intervals ( \(60 \%\) duty cycle).

\section*{Dialog Box}


Opening this dialog causes a running simulation to pause. See "Changing Source Block Parameters During Simulation" in the online Simulink documentation for details.

\section*{Clock frequency}

The frequency of all output clock signals.

\section*{Number of phases}

The number of different phases, \(N\), in the output vector.

\section*{Starting phase}

The vector index of the output signal to first become active.

\section*{Multiphase Clock}

Number of phase intervals over which clock is active The duration of the active level for every output signal.

\section*{Active level}

The active level, High (1) or Low (0).

\section*{Output data type}

The output data type.
\begin{tabular}{ll} 
Supported & - Double-precision floating point \\
Data & - Single-precision floating point \\
Types & - Boolean
\end{tabular}

See Also
\begin{tabular}{ll} 
Clock & Simulink \\
Counter & Signal Processing Blockset \\
Pulse Generator & Simulink \\
Event-Count Comparator & Signal Processing Blockset
\end{tabular}

\section*{Multiport Selector}

\section*{Purpose}

\section*{Library}

\section*{Description}


Distribute arbitrary subsets of input rows or columns to multiple output ports

Signal Management / Indexing
```

dspindex

```

The Multiport Selector block extracts multiple subsets of rows or columns from \(M\)-by- \(N\) input matrix \(u\), and propagates each new submatrix to a distinct output port. A length-M 1-D vector input is treated as an \(M\)-by- 1 matrix.

The Indices to output parameter is a cell array whose \(k\) th cell contains a one-dimensional indexing expression specifying the subset of input rows or columns to be propagated to the \(k\) th output port. The total number of cells in the array determines the number of output ports on the block.
When the Select parameter is set to Rows, the specified one-dimensional indices are used to select matrix rows, and all elements on the chosen rows are included. When the Select parameter is set to Columns, the specified one-dimensional indices are used to select matrix columns, and all elements on the chosen columns are included. A given input row or column can appear any number of times in any of the outputs, or not at all.

When an index references a nonexistent row or column of the input, the block reacts with the behavior specified by the Invalid index parameter. The following options are available:
- Clip index - Clip the index to the nearest valid value, and do not issue an alert.

Example: For a 64 -by- 4 input with Select = Rows, an index of 72 is clipped to 64; with Select = Columns, an index of 72 is clipped to 4 . In both cases, an index of -2 is clipped to 1 .
- Clip and warn - Display a warning message in the MATLAB Command Window, and clip as above.

\section*{Multiport Selector}
- Generate error - Display an error dialog and terminate the simulation.

\section*{Examples Example 1}

Consider the following Indices to output cell array:
\[
\{4,[1: 25],[7 ; 8], 10:-1: 6\}
\]

This is a four-cell array, which requires the block to generate four independent outputs (each at a distinct port). The table below shows the dimensions of these outputs when Select = Rows and the input dimension is \(M\)-by- \(N\).
\begin{tabular}{l|l|l|l}
\hline Cell & Expression & Description & Output Size \\
\hline 1 & 4 & Row 4 of input & 1 -by- \(N\) \\
\hline 2 & {\([1: 25]\)} & Rows 1,2, and 5 of input & 3 -by- \(N\) \\
\hline 3 & {\([7 ; 8]\)} & Rows 7 and 8 of input & 2 -by- \(N\) \\
\hline 4 & \(10:-1: 6\) & \begin{tabular}{l} 
Rows \(10,9,8,7\), and 6 of \\
input
\end{tabular} & 5 -by- \(N\) \\
\hline
\end{tabular}

\section*{Example 2}

To see the Multiport Selector block used in a model, see "Splitting Multichannel Sample-Based Signals into Individual Signals", and "Splitting Multichannel Frame-Based Signals into Individual Signals" in the Signal Processing Blockset User's Guide.

Dialog Box


\section*{Select}

The dimension of the input to select, Rows or Columns.

\section*{Indices to output}

A cell array specifying the row- or column-subsets to propagate to each of the output ports. The number of cells in the array determines the number of output ports on the block.

\section*{Invalid index}

Response to an invalid index value.

\section*{Multiport Selector}

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Input & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8-, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers \\
- Enumerated
\end{tabular} \\
\hline Outputs & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8-, 16-, and 32 -bit unsigned integers \\
- Enumerated
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}
\begin{tabular}{ll} 
Permute Matrix & Signal Processing Blockset \\
Selector & Simulink \\
Submatrix & Signal Processing Blockset \\
Variable Selector & Signal Processing Blockset
\end{tabular}

\section*{Purpose \\ Output ones or zeros for specified number of sample times \\ Library \\ - Signal Processing Sources dspsrcs4 \\ - Signal Management / Switches and Counters dspswit3}

Description


The N-Sample Enable block outputs the inactive value (0 or 1, whichever is not selected in the Active level parameter) during the first \(N\) sample times, where \(N\) is the Trigger count value. Beginning with output sample \(N+1\), the block outputs the active value (1 or 0 ,
whichever you select in the Active level parameter) until a reset event occurs or the simulation terminates.

The output is always sample based.
The Reset input check box enables the Rst input port. At any time during the count, a trigger event at the input port resets the counter to its initial state. The reset sample time must be a positive integer multiple of the input sample time. This block supports triggered subsystems when you select the Reset input check box.

You specify the triggering event in the Trigger type pop-up menu:
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

\section*{N-Sample Enable}

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above).
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero.

Note When running simulations in the Simulink MultiTasking mode, sample-based reset signals have a one-sample latency, and frame-based reset signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a reset event, and when it applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

\section*{Dialog Box}


Opening this dialog causes a running simulation to pause. See "Changing Source Block Parameters During Simulation" in the online Simulink documentation for details.

\section*{N-Sample Enable}

\section*{Trigger count}

Specify the number of samples for which the block outputs the active value. Tunable.

\section*{Active level}

Specify the value to output after the first \(N\) sample times, 0 or 1. Tunable.

\section*{Reset input}

Select to enable the Rst input port. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input.

\section*{Trigger type}

Select type of event that triggers a reset when the Rst port is enabled.

\section*{Sample time}

Specify the sample period, \(\mathrm{T}_{\mathrm{s}}\), for the block's counter. The block switches from the active value to the inactive value at \(t=\mathrm{T}_{\mathrm{s}}{ }^{*}(N+1)\).

\section*{Output data type}

Select the output data type.

\section*{Supported Data Types}
- Double-precision floating point
- Boolean - The block accepts Boolean inputs to the Rst port, which is enabled when you set the Reset input parameter.

\author{
See Also
}

Counter
N-Sample Switch

Signal Processing Blockset
Signal Processing Blockset

\section*{Purpose}

Switch between two inputs after specified number of sample periods
Library

Description


Signal Management / Switches and Counters
dspswit3
The N-Sample Switch block outputs the signal connected to the top input port during the first \(N\) sample times after the simulation begins or the block is reset, where you specify \(N\) in the Switch count parameter. Beginning with output sample \(N+1\), the block outputs the signal connected to the bottom input until the next reset event or the end of the simulation.

You specify the sample period of the output in the Sample time parameter (that is, the output sample period is not inherited from the sample period of either input). The block applies a zero-order hold at the input ports, so the value the block reads from a given port between input sample times is the value of the most recent input to that port.
Both inputs must have the same dimension, except in the following two cases:
- When one input is a scalar, the block expands the scalar input to match the size of the other input.
- When one input is a 1-D vector and the other input is a row or column vector with the same number of elements, the block reshapes the 1-D vector to match the dimension of the other input.

The inputs must either both be frame based or both be sample based.
The Reset input check box enables the Rst input port. At any time during the count, a trigger event at the Rst port resets the counter to zero. The reset sample time must be a positive integer multiple of the input sample time. This block supports triggered subsystems when you select the Reset input check box.
You specify the triggering event in the Trigger type pop-up menu, and can be one of the following:

\section*{N-Sample Switch}
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)


Not a rising edge because it continues

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above).
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero.

Note When running simulations in the Simulink MultiTasking mode, sample-based reset signals have a one-sample latency, and frame-based reset signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a reset event, and when it applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

\section*{N-Sample Switch}

\section*{Dialog \\ Box}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
耳 Block Parameters: N-Sample Switch \\
- N-Sample Switch (mask) (link) \\
Output \(N\) samples from the top port. Thereatter, output samples from the bottom port.
\end{tabular}}} \\
\hline & & & \\
\hline Parameters
Switch count, N :
|
Г Reset input
Trigger type: Rising edge
Sample time:
0.1 & & &  \\
\hline QK & Cancel & Help & Apply \\
\hline
\end{tabular}

\section*{Switch count}

The number of sample periods, \(N\), for which the output is connected to the top input before switching to the bottom input. Tunable.

\section*{Reset input}

Enables the Rst input port when selected. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input.

\section*{Trigger type}

The type of event at the Rst port that resets the block's counter.
This parameter is enabled when you select Reset input. Tunable.

\section*{Sample time}

The sample period, \(T_{s}\), for the block's counter. The block switches inputs at \(t=T_{s}^{*}(N+1)\).

\section*{Supported Data \\ Types}
- Double-precision floating point
- Single-precision floating point
- Fixed point (signed and unsigned)
- Boolean - The block accepts Boolean inputs to the Rst port, which is enabled when you set the Reset input parameter.
- 8 -, 16-, and 32 -bit signed integers
- 8-, 16-, and 32 -bit unsigned integers

See Also
Counter
N-Sample Enable

\section*{Purpose Generate real or complex sinusoidal signals}

\section*{Library Signal Operations}
dspsigops

Description


The NCO block generates a multichannel real or complex sinusoidal signal, with independent frequency and phase in each output channel. The amplitude of the created signal is always 1 . The block implements the algorithm as shown in the following diagram:


The implementation of a numerically controlled oscillator (NCO) has two distinct parts. First, a phase accumulator accumulates the phase increment and adds in the phase offset. In this stage, an optional internal dither signal can also be added. The NCO output is then calculated by quantizing the results of the phase accumulator section and using them to select values from a lookup table.

Given a desired output frequency \(F_{0}\), calculate the value of the Phase increment block parameter with
\[
\text { phase increment }=\left(\frac{F_{0} \cdot 2^{N}}{F_{s}}\right)
\]
where \(N\) is the accumulator word length and
\[
F_{s}=\frac{1}{T_{s}}=\frac{1}{\text { sample time }}
\]

The frequency resolution of an NCO is defined by
\[
\Delta f=\frac{1}{T_{s} \cdot 2^{N}} \mathrm{~Hz}
\]

Given a desired phase offset (in radians), calculate the Phase offset block parameter with
\[
\text { phase offset }=\frac{2^{N} \cdot \text { desired phase offset }}{2 \pi}
\]

The spurious free dynamic range (SFDR) is estimated as follows for a lookup table with \(2^{P}\) entries, where \(P\) is the number of quantized accumulator bits:
\[
\begin{array}{ll}
S F D R=(6 P) \mathrm{dB} & \\
\text { without dither } \\
S F D R=(6 P+12) \mathrm{dB} & \\
\text { with dither }
\end{array}
\]

This block uses a quarter-wave lookup table technique that stores table values from 0 to \(\Pi / 2\). The block calculates other values on demand using the accumulator data type, then casts them into the output data type. This can lead to quantization effects at the range limits of a given data type. For example, consider a case where you would expect the value of the sine wave to be -1 at п. Because the lookup table value at that point must be calculated, the block might not yield exactly -1 , depending on the precision of the accumulator and output data types.

The NCO block supports real inputs only. All outputs are real except for the output signal in Complex exponential mode.

To produce a multichannel output, specify a vector quantity for the Phase increment and Phase offset parameters. Both parameters must have the same length, which defines the number of output channels. Each element of each vector is applied to a different output channel.

\section*{Fixed-Point \\ The following diagram shows the data types used within the NCO block. Data Types}
```

1 = Integer
A = Accumulator dato type
$D=$ Dither bits
$Q=$ Quontized occumultor bits
$\mathrm{P}=$ Phese quantization dato type
$0=$ Output dato type

```


DITHER
- You can set the accumulator and output data types in the block dialog as discussed in "Dialog Box" on page 2-966 below.
- The phase increment and phase offset inputs must be integers or fixed-point data types with zero fraction length.
- You specify the number of quantized accumulator bits in the Number of quantized accumulator bits parameter.
- The phase quantization error word length is equal to the accumulator word length minus the number of quantized accumulator bits, and the fraction length is zero.

\section*{Examples}

The NCO block is used in the GSM Digital Down Converter product demo. Open this demo by typing dspddc at the MATLAB command line.
You can also try the following example. Design an NCO source with the following specifications:
- Desired output frequency \(F_{0}=510 \mathrm{~Hz}\)
- Frequency resolution \(\Delta f=0.05 \mathrm{~Hz}\)
- Spurious free dynamic range \(S F D R \geq 90 \mathrm{~dB}\)
- Sample period \(T_{s}=1 / 8000 \mathrm{~s}\)
- Desired phase offset \(\pi / 2\)

1
Calculate the number of required accumulator bits from the equation for frequency resolution:
\[
\begin{aligned}
& \Delta f=\frac{1}{T_{s} \cdot 2^{N}} \mathrm{~Hz} \\
& 0.05=\frac{1}{\frac{1}{8000} \cdot 2^{N}} \mathrm{~Hz} \\
& N=18
\end{aligned}
\]

Note that \(N\) must be an integer value. The value of \(N\) is rounded up to the nearest integer; 18 accumulator bits are needed to accommodate the value of the frequency resolution.

2
Using this best value of \(N\), calculate the frequency resolution that will be achieved by the NCO block:
\[
\begin{aligned}
& \Delta f=\frac{1}{T_{s} \cdot 2^{N}} \mathrm{~Hz} \\
& \Delta f=\frac{1}{\frac{1}{8000} \cdot 2^{18}} \mathrm{~Hz} \\
& \Delta f=0.0305
\end{aligned}
\]

3
Calculate the number of quantized accumulator bits from the equation for spurious free dynamic range and the fact that for a lookup table with \(2^{P}\) entries, \(P\) is the number of quantized accumulator bits:
\[
\begin{aligned}
& S F D R=(6 P+12) \mathrm{dB} \\
& 96 \mathrm{~dB}=(6 P+12) \mathrm{dB} \\
& P=14
\end{aligned}
\]

4
Select the number of dither bits. In general, a good choice for the number of dither bits is the accumulator word length minus the output word length; in this case 4.

5
Calculate the phase increment:
\[
\begin{aligned}
& \text { phase increment }=\operatorname{round}\left(\frac{F_{0} \cdot 2^{N}}{F_{s}}\right) \\
& \text { phase increment }=\operatorname{round}\left(\frac{501 \cdot 2^{18}}{8000}\right) \\
& \text { phase increment }=16417
\end{aligned}
\]

\section*{6}

Calculate the phase offset:
\[
\begin{aligned}
& \text { phase offset }=\frac{2^{\text {accumulator word length }} \cdot \text { desired phase offset }}{2 \pi} \\
& \text { phase offset }=\frac{2^{18} \cdot \frac{\pi}{2}}{2 \pi} \\
& \text { phase offset }=65536
\end{aligned}
\]

7
Type doc_nco_example at the MATLAB command line to open the following model:


The NCO block in the model is populated with the specifications and quantities you just calculated. The output word length and fraction length depend on the constraints of your hardware; this example uses a word length of 16 and a fraction length of 14 . The three panes of the block mask appear as follows.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Source Block Parameters: NCO} & X \\
\hline \multicolumn{6}{|l|}{NCO} \\
\hline \multicolumn{6}{|l|}{Outputs samples of a sinusoid.} \\
\hline \multicolumn{6}{|l|}{The implementation of an \(N C O\) is comprised of two distinct parts. A phase accumulator accumulates the phase increment and adds the phase offset to this result. The desired NCO signal is calculated by the trigonometric function.} \\
\hline Main & Data Types & NCO Characterization & & & \\
\hline \multicolumn{6}{|l|}{-Phase adder parameters} \\
\hline \multicolumn{5}{|l|}{Phase increment source: Specify via dialog} & \\
\hline \multicolumn{6}{|c|}{Phase increment: 16417} \\
\hline \multicolumn{6}{|c|}{Phase offset source: Specify via dialog} \\
\hline \multicolumn{6}{|c|}{Phase offset: 65536} \\
\hline \multicolumn{6}{|l|}{\(\checkmark\) Add internal dither} \\
\hline \multicolumn{6}{|c|}{Number of dither bits: 4} \\
\hline \multicolumn{6}{|l|}{\(\sqrt{\checkmark}\) Quantize phase} \\
\hline \multicolumn{6}{|c|}{Number of quantized accumulator bits: 14} \\
\hline \multicolumn{6}{|l|}{- Show phase quantization error port} \\
\hline \multicolumn{6}{|l|}{Output parameters} \\
\hline Outp & signal: Sine & & & - & \\
\hline \multicolumn{6}{|c|}{Sample time: \(1 / 8000\)} \\
\hline \multicolumn{6}{|c|}{Samples per frame: 8000} \\
\hline & & OK & Cancel & Help & \\
\hline
\end{tabular}



Looking at the NCO Characterization pane, you can verify that the specifications of this problem have been met.

Experiment with the model to observe the effects on the output shown on the Spectrum Scope. For example, try turning dithering on and off, and try changing the number of dither bits.

The Main pane of the NCO dialog appears as follows.


\section*{Phase increment source}

Choose how you specify the phase increment. The phase increment can come from an input port or from the dialog.
- If you select Input port, the inc port appears on the block icon.
- If you select Specify via dialog, the Phase increment parameter appears.

\section*{Phase increment}

Specify the phase increment. Only integer data types, including fixed-point data types with zero fraction length, are allowed. The dimensions of the phase increment are dictated by those of the phase offset:
- When you specify the phase offset on the block dialog box, the phase increment must be a scalar or vector with the same length as the phase offset. Each element of the vector is applied to a different channel, and therefore the vector length defines the number of output channels.
- When you specify the phase offset via an input port, the phase increment length must be the same as the number of channels of a frame-based phase offset. If the phase offset is sample-based, the phase increment must have the same number of elements as the phase offset.

This parameter is visible only if Specify via dialog is selected for the Phase increment source parameter.

\section*{Phase offset source}

Choose how you specify the phase offset. The phase offset can come from an input port or from the dialog.
- If you select Input port, the offset port appears on the block icon.
- If you select Specify via dialog, the Phase offset parameter appears.

When the phase offset comes in via an input port, it can be a scalar, a vector, or a full matrix. The frame status and dimensionality of the phase offset dictate that of the output. When a vector or matrix phase offset is sample based, the number of elements of the phase offset must match the number of channels of the data input. When a vector or matrix phase offset is frame
based, different phase offsets are applied to each sample and channel per frame of the input. Only integer data types, including fixed-point data types with zero fraction length, are allowed.

\section*{Phase offset}

Specify the phase offset. When you specify the phase offset using this parameter rather than via an input port, it must be a scalar or vector with the same length as the phase increment. Scalars are expanded to a vector with the same length as the phase increment. Each element of the phase offset vector is applied to a different channel of the input, and therefore the vector length defines the number of output channels. Only integer data types, including fixed-point data types with zero fraction length, are allowed.

This parameter is visible only if Specify via dialog is selected for the Phase offset source parameter.

\section*{Add internal dither}

Select to add internal dithering to the NCO algorithm.
Dithering is added using the PN Sequence Generator from the Communications Blockset \({ }^{\text {TM }}\) product.

\section*{Number of dither bits}

Specify the number of dither bits.
This parameter is visible only if Add internal dither is selected.

\section*{Quantize phase}

Select to enable quantization of the accumulated phase.

\section*{Number of quantized accumulator bits}

Specify the number of quantized accumulator bits. This determines the number of entries in the lookup table. The number of quantized accumulator bits must be less than the accumulator word length.

This parameter is visible only if Quantize phase is selected.

\section*{Show phase quantization error port}

Select to output the phase quantization error. When you select this, the Qerr port appears on the block icon.

This parameter is visible only if Quantize phase is selected.

\section*{Output signal}

Choose whether the block should output a Sine, Cosine, Complex exponential, or Sine and cosine signals. If you select Sine and cosine, the two signals output on different ports.

\section*{Sample time}

Specify the sample time in seconds when the block is acting as a source. When either the phase increment or phase offset come in via block input ports, the sample time is inherited and this parameter is not visible.

\section*{Samples per frame}

Specify the number of samples per frame. When the value of this parameter is 1 , the block outputs a sample-based signal. When the value is greater than 1 , the block outputs a frame-based signal of the specified size. In frame-based mode, the phase increment and phase offset can vary from channel to channel and from frame to frame, but they are constant along each channel in a given frame.

When the phase offset input port exists, it has the same frame status as any output port present. When the phase increment input port exists, it does not support frames.

This parameter is only visible if either Phase increment source or Phase offset source is set to Specify via dialog.

The Data Types pane of the NCO dialog appears as follows.


\section*{Rounding mode}

The rounding mode used for this block when inputs are fixed point is always Floor.

\section*{Overflow mode}

The overflow mode used for this block when inputs are fixed point is always Wrap.

\section*{Accumulator}

Specify the word length of the accumulator data type. The fraction length is always zero; this is an integer data type.

\section*{Output}

Specify the output data type.
- Choose double or single for a floating-point implementation.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.

The NCO Characterization pane of the NCO dialog appears as follows.


The NCO Characterization pane does not have any parameters. Instead, it provides you with details on the NCO signal currently being implemented by the block:
- Number of data points for lookup table - The lookup table is implemented as a quarter-wave sine table. The number of lookup table data points is defined by
\[
2^{\text {number of quantized accumulator bits- }-2}+1
\]
- Quarter wave sine lookup table size - The quarter wave sine lookup table size is defined by
\[
\frac{(\text { number of data points for lookup table) } \cdot(\text { output word length })}{8} \text { bytes }
\]
- Theoretical spurious free dynamic range - The spurious free dynamic range (SFDR) is calculated as follows for a lookup table with \(2^{P}\) entries:
\[
\begin{array}{ll}
S F D R=(6 P) \mathrm{dB} & \text { without dither } \\
S F D R=(6 P+12) \mathrm{dB} & \text { with dither }
\end{array}
\]

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline inc & • Fixed point with zero fraction length \\
& \(\bullet 8-, 16-\), and 32 -bit signed integers \\
& \(\bullet 8-, 16\)-, and 32 -bit unsigned integers \\
\hline offset & • Fixed point with zero fraction length \\
& • 8-, 16-, and 32 -bit signed integers \\
& \(\bullet 8-, 16\)-, and 32 -bit unsigned integers \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline \(\sin\) & \(\bullet\) Double-precision floating point \\
& • Single-precision floating point \\
& \(\bullet\) Fixed point \\
\hline Qerr & \(\bullet 8-, 16-\), and 32 -bit signed integers \\
& \(\bullet 8-, 16-\), and 32 -bit unsigned integers \\
\hline
\end{tabular}

\section*{See Also}
\begin{tabular}{ll} 
PN Sequence & Communications Blockset \\
Generator
\end{tabular}\(\quad\) Signal Processing Blockset

\section*{Normalization}

Purpose Perform vector normalization along rows, columns, or specified dimension

Library
Math Functions / Math Operations

\section*{dspmathops}

\section*{Description}


The Normalization block independently normalizes each row, column, or vector of the specified dimension of the input. The Normalization block accepts real and complex floating-point and fixed-point inputs except for complex unsigned fixed-point inputs. The block only accepts floating-point signals for the 2 -norm mode, and both fixed-point and floating-point signals for the squared 2 -norm mode. The output always has the same dimensions and frame status as the input.

This block treats an arbitrarily dimensioned input \(U\) as a collection of vectors oriented along the specified dimension. The block normalizes these vectors by either their norm or the square of their norm.

For example, consider a 3 -dimensional input \(U(i, j, k)\) and assume that you want to normalize along the second dimension. First, define the 2 -dimensional intermediate quantity \(V(i, k)\) such that each element of \(V\) is the norm of one of the vectors in \(U\) :
\[
V(i, k)=\left(\sum_{j=1}^{J} U^{2}(i, j, k)\right)^{1 / 2}
\]

Given \(V\), the output of the block \(Y(i, j, k)\) in 2-norm mode is
\[
Y(i, j, k) \frac{U(i, j, k)}{V(i, k)+b}
\]

In squared 2 -norm mode, the block output is
\[
Y(i, j, k)=\frac{U(i, j, k)}{V(i, k)^{2}+b}
\]

\section*{Normalization}

The normalization bias, \(b\), is typically chosen to be a small positive constant (for example, 1e-10) that prevents potential division by zero.

\section*{Fixed-Point Data Types}

The following diagram shows the data types used within the Normalization block for fixed-point signals (squared 2 -norm mode only).


\section*{Examples}

Dialog Box

See "Zero Algorithmic Delay" in the Signal Processing Blockset User's Guide for an example.

The Main pane of the Normalization dialog appears as follows.

\section*{Normalization}


\section*{Norm}

Specify the type of normalization to perform, 2-norm or Squared 2 -norm. 2-norm mode supports floating-point signals only. Squared 2-norm supports both fixed-point and floating-point signals.

\section*{Normalization bias}

Specify the real value \(b\) to be added in the denominator to avoid division by zero. Tunable.

\section*{Normalize over}

Specify whether to normalize along rows, columns, or the dimension specified in the Dimension parameter.

\section*{Dimension}

Specify the one-based value of the dimension over which to normalize. The value of this parameter cannot exceed the number of dimensions in the input signal. This parameter is only visible if Specified dimension is selected for the Normalize over parameter.

\section*{Treat sample-based row input as column}

Select to treat a sample-based row input as a column.
The Data type attributes pane of the Normalization dialog appears as follows.

\section*{Normalization}

\section*{Function Block Parameters: Normalization}
-Normalization
Normalize the input over the specified dimension by the vector 2 -norm, sqrt(u'u) +b , or by the squared 2 -norm, \(u^{\prime} u+b\), where \(b\) is a bias used to protect against divide-by-zero. Normalization is performed over rows, columns, or the dimension of the input signal specified in the 'Dimension' parameter.
Main Data type attributes
\begin{tabular}{l} 
Fixed-point operational parameters - \\
Rounding mode: \\
\hline
\end{tabular} Floor \(\quad\) Overflow mode: \begin{tabular}{ll} 
Wrap & - \\
\hline
\end{tabular}

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the block input is floating point, all block data types match the input.


「 Lock scaling against changes by the autoscaling tool


Note The parameters on this pane are only applicable to fixed-point signals when the block is in squared 2 -norm mode. See "Fixed-Point Data Types" on page 2-975 for a diagram of how the product output, accumulator, and output data types are used in this case.

\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Product output data type}

Specify the product output data type. See "Fixed-Point Data Types" on page 2-975 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set it to:
- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button \(\quad \gg \quad\) to display the Data Type Assistant, which helps you set the Product output data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

\section*{Accumulator data type}

Specify the accumulator data type. See "Fixed-Point Data Types" on page 2-975 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:
- A rule that inherits a data type, for example, Inherit: Same as product output
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button \(\quad \gg \quad\) to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

\section*{Output data type}

Specify the output data type. See "Fixed-Point Data Types" on page 2-975 for illustrations depicting the use of the output data type in this block. You can set it to:
- A rule that inherits a data type, for example, Inherit: Same as product output
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button \(\quad \ggg\) to display the Data Type Assistant, which helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in Simulink User's Guide for more information.

\section*{Minimum}

Specify the minimum value that the block should output. The default value, [ ], is equivalent to - Inf. Simulink software uses this value to perform:
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

\section*{Maximum}

Specify the maximum value that the block should output. The default value, [ ], is equivalent to Inf. Simulink software uses this value to perform:
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Input & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- 8 -, 16 -, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Output & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- 8 -, 16 -, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}
\begin{tabular}{ll} 
Array-Vector & Signal Processing Blockset \\
Multiply & \\
Reciprocal Condition & Signal Processing Blockset \\
norm & MATLAB
\end{tabular}

\section*{Nyquist Filter}
\begin{tabular}{|c|c|}
\hline Purpose & Design Nyquist filter \\
\hline Library & Filtering / Filter Design Toolbox dspfdesign \\
\hline Description & This block brings the functionality of the Filter Design Toolbox \\
\hline Nyquist & a Filter Design Toolbox product license to design filters with this block. However, you can run models containing this block without a license. This allows you to run a model sent to you by a colleague who has designed a filter using this block, even if you do not have the Filter Design Toolbox product. \\
\hline \multirow[t]{2}{*}{Dialog Box} & See "Nyquist Filter Design Dialog Box - Main Pane" in the Filter Design Toolbox documentation for more information about the parameters of this block. The Data Types pane is not available for Filter Design Toolbox blocks in the Signal Processing Blockset product. \\
\hline & Parameters of this block that do not change filter order or structure are tunable. Tunable parameters are enabled during simulation; nontunable parameters are not. \\
\hline
\end{tabular}

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point \\
& • 8-, 16-, and 32 -bit signed integers \\
& • 8-, 16-, and 32-bit unsigned integers \\
\hline Output & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point
\end{tabular}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline & \(\bullet 8-, 16\)-, and 32 -bit signed integers \\
& \(\bullet 8\)-, 16-, and 32-bit unsigned integers \\
\hline
\end{tabular}

\section*{Octave Filter}
\begin{tabular}{ll} 
Purpose & Design octave filter \\
Library & Filtering / Filter Design Toolbox \\
& dspfdesign
\end{tabular}

\section*{Description}

This block brings the functionality of the Filter Design Toolbox filterbuilder function to the Simulink environment. You must have a Filter Design Toolbox product license to design filters with this block. However, you can run models containing this block without a license. This allows you to run a model sent to you by a colleague who has designed a filter using this block, even if you do not have the Filter Design Toolbox product.

Dialog Box

\section*{Supported Data Types}

See "Octave Filter Design Dialog Box - Main Pane" in the Filter Design Toolbox documentation for more information about the parameters of this block. The Data Types pane is not available for Filter Design Toolbox blocks in the Signal Processing Blockset product.

Parameters of this block that do not change filter order or structure are tunable. Tunable parameters are enabled during simulation; nontunable parameters are not.
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point \\
& • 8 -, 16-, and 32 -bit signed integers \\
& • 8-, 16-, and 32 -bit unsigned integers \\
\hline Output & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point
\end{tabular}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline & \(\bullet 8-, 16\)-, and 32 -bit signed integers \\
& \(\bullet 8-, 16\)-, and 32-bit unsigned integers \\
\hline
\end{tabular}

\begin{abstract}
Purpose
Library

Description

Truncate vectors by removing or keeping beginning or ending values
Signal Operations
dspsigops
The Offset block removes or keeps values from the beginning or end of a vector and outputs the result in a vector of user-specified length. The inputs to the In ports (In1, In2, ...) can be scalars or vectors, but they must be the same size and data type. The offset values are the inputs to the O ports ( \(\mathrm{O} 1, \mathrm{O} 2, \ldots\) ); they must be scalar values with the same data type. These offset values should be integer values because they determine the number of values the block discards or retains from each input vector. The block rounds any offset value that is a noninteger value to the nearest integer value. There is one output port for each pair of In and O ports. This block supports sample-based and frame-based signals.

Use the Mode parameter to determine which values the block discards or retains from the input vector. To discard the initial values of the vector, select Remove beginning samples. To discard the final values of the vector, select Remove ending samples. To retain the initial values of the vector, select Keep beginning samples. To retain the final values of a vector, select Keep ending samples.

Use the Number of input data-offset pairs parameter to specify the number of inputs to the block. The number of input ports is twice the scalar value you enter. For example, if you enter 3, ports In1, O1, In2, O2, In3, and O3 appear on the block.

The block uses the Output port length parameter to determine the length of the output vectors. If you select Same as input, the block outputs vectors that are the same length as the input to the In ports. If you select User-defined, the Output length parameter appears. Enter a scalar that represents the desired length of the output vectors. If your desired output length is greater than the number of values you extracted from your input vector, the block zero-pads the end of the vector to reach the length you specified.
\end{abstract}

Use the Action for out of range offset value parameter to determine how the block behaves when an offset value is not in the range \(0 \leq\) offset value \(\leq N\), where \(N\) is the input vector length. Select Clip if you want any offset values less than 0 to be set to 0 and any offset values greater than \(N\) to be set to \(N\). Select Clip and warn if you want to be warned when any offset values less than 0 are set to 0 and any offset values greater than \(N\) are set to \(N\). Select Error if you want the simulation to stop and display an error when the offset values are out of range.

\section*{Dialog Box}


\section*{Mode}

Use this parameter to determine which values the block discards or retains from the input vector. Your choices are Remove beginning samples, Remove ending samples, Keep beginning samples, and Keep ending samples.

\section*{Number of input data-offset pairs}

Specify the number of inputs to the block. The number of input ports is twice the scalar value you enter.

\section*{Offset}

\section*{Output port length}

Use this parameter to specify the length of the output vectors. If you select Same as input, the output vectors are the same length as the input vectors. If you select User-defined, you can enter the desired length of the output vectors.

\section*{Output length}

Enter a scalar that represents the desired length of the output vectors. This parameter is visible if, for the Output port length parameter, you select User-defined.

\section*{Action for out of range offset value}

Use this parameter to determine how the block behaves when an offset value is not in the range such that \(0 \leq\) offset value \(\leq N\), where \(N\) is the input vector length. When you want any offset values less than 0 to be set to 0 and any offset values greater than \(N\) to be set to \(N\), select Clip. When you want to be warned when any offset values less than 0 are set to 0 and any offset values greater than \(N\) are set to \(N\), select Clip and warn. When you want the simulation to stop and display an error when the offset values are out of range, select Error.

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline In & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed only) \\
- 8 -, 16-, and 32 -bit signed integers
\end{tabular} \\
\hline O & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline Out & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed only) \\
- 8 -, 16-, and 32 -bit signed integers
\end{tabular} \\
\hline
\end{tabular}

\section*{Overlap-Add FFT Filter}
\begin{tabular}{ll} 
Purpose & Implement overlap-add method of frequency-domain filtering \\
Library & Filtering / Filter Designs \\
& dsparch4
\end{tabular}

\section*{Description}
\(\left.\begin{array}{c}\text { Overlap } \\ \text { Add }\end{array}\right\}\)

The Overlap-Add FFT Filter block uses an FFT to implement the overlap-add method, a technique that combines successive frequency-domain filtered sections of an input sequence.

Valid inputs to this block are 1-D vectors, sample-based vectors, frame-based vectors, and frame-based full matrices. All outputs are unbuffered into sample-based row vectors. The length of the output vector is equal to the number of channels in the input vector. An M-by-1 sample-based input has M channels, so it would result in a length-M sample-based output vector. An M-by-1 frame-based input has only one channel, so would result in a 1-by-1 (scalar) output.

The block's data output rate is M times faster than its data input rate, where M is the input frame-size. Thus, the block's data input and output rates are the same when the inputs are 1-D vectors, sample-based vectors, or frame-based row vectors. For frame-based column and frame-based full-matrix inputs, the block's data output rate is M times greater than the block's data input rate.

1-D vectors are treated as length-N sample-based vectors, and result in sample-based length-N row vectors.

The block breaks the scalar input sequence \(u\), of length nu, into length- \(L\) nonoverlapping data sections,
\(u\)

which it linearly convolves with the filter's FIR coefficients,
\[
H(z)=B(z)=b_{1}+b_{2} z^{-1}+\ldots+b_{n+1} z^{-n}
\]

The numerator coefficients for \(\mathrm{H}(z)\) are specified as a vector by the FIR coefficients parameter. The coefficient vector, \(b=[b(1) b(2) \ldots\)
\(b(n+1)]\), can be generated by one of the filter design functions in the Signal Processing Toolbox product, such as fir1. All filter states are internally initialized to zero.

When either the filter coefficients or the inputs to the block are complex, the Output parameter should be set to Complex. Otherwise, the default Output setting, Real, instructs the block to take only the real part of the solution.

The block's overlap-add operation is equivalent to
```

y = ifft(fft(u(i:i+L-1),nfft) .* fft(b,nfft))

```
where you specify nfft in the FFT size parameter as a power-of-two value greater (typically much greater) than \(\mathrm{n}+1\). Values for FFT size that are not powers of two are rounded upwards to the nearest power-of-two value to obtain nfft.

The block overlaps successive output sections by n points and sums them.


The first \(L\) samples of each summation are output in sequence. The block chooses the parameter L based on the filter order and the FFT size.
\(\mathrm{L}=\mathrm{nfft}-\mathrm{n}\)

\section*{Latency}

In single-tasking operation, the Overlap-Add FFT Filter block has a latency of \(n f f t-n+1\) samples. The first \(n f f t-n+1\) consecutive outputs from the block are zero; the first filtered input value appears at the output as sample nfft-n+2.

\section*{Overlap-Add FFT Filter}

In multitasking operation, the Overlap-Add FFT Filter block has a latency of \(2^{*}(n f f t-n+1)\) samples. The first \(2^{*}(n f f t-n+1)\) consecutive outputs from the block are zero; the first filtered input value appears at the output as sample \(2^{*}(n f f t-n)+3\).

Note For more information on latency and the Simulink software tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.
\begin{tabular}{l}
\hline Block Parameters: Overlap-Add FFT Filter \\
\begin{tabular}{|l|l|}
\hline Overlap-Add FFT Filter (mask) (link) - \\
FFT based filtering using the overlap-add algorithm. Set 'Output' to 'Complex' if either \\
the input signal or the filter coefficients are complex. \\
'FFT Size' must equal or exceed the number of filter coefficients. Smaller FFT sizes \\
lead to less latency but also less computational efficiency, decreasing the benefits of \\
frequency domain processing. \\
\begin{tabular}{|l|l|l|}
\hline Parameters - \\
FFT size: \\
\begin{tabular}{|l|l|l|}
\hline G4
\end{tabular} \\
\begin{tabular}{|l|l|l|}
\hline FIR coefficients: \\
fir1(20,0.2] & Cutput: & Real \\
\hline
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{FFT size}

The size of the FFT, which should be a power-of-two value greater than the length of the specified FIR filter.

\section*{FIR coefficients}

The filter numerator coefficients.

\section*{Output}

The complexity of the output; Real or Complex. When the input signal or the filter coefficients are complex, this should be set to Complex.

\author{
References Englewood Cliffs, NJ: Prentice Hall, 1989. Englewood Cliffs, NJ: Prentice-Hall, 1996. \\ Supported - Double-precision floating point \\ Data Types \\ - Single-precision floating point
}

Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed.

See Also
Overlap-Save FFT Filter
Signal Processing Blockset product

\section*{Overlap-Save FFT Filter}

\section*{Purpose \\ Library \\ Description \\ }

Implement overlap-save method of frequency-domain filtering

Filtering / Filter Designs
dsparch4
The Overlap-Save FFT Filter block uses an FFT to implement the overlap-save method, a technique that combines successive frequency-domain filtered sections of an input sequence.
Valid inputs to this block are 1-D vectors, sample-based vectors, frame-based vectors, and frame-based full matrices. All outputs are unbuffered into sample-based row vectors. The length of the output vector is equal to the number of channels in the input vector. An M-by-1 sample-based input has M channels, so it would result in a length-M sample-based output vector. An M-by-1 frame-based input has only one channel, so would result in a 1-by-1 (scalar) output.
The block's data output rate is M times faster than its data input rate, where M is the input frame-size. Thus, the block's data input and output rates are the same when the inputs are 1-D vectors, sample-based vectors, or frame-based row vectors. For frame-based column and frame-based full-matrix inputs, the block's data output rate is M times greater than the block's data input rate.

1-D vectors are treated as length-N sample-based vectors, and result in sample-based length-N row vectors.

Overlapping sections of input \(u\) are circularly convolved with the FIR filter coefficients
\[
H(z)=B(z)=b_{1}+b_{2} z^{-1}+\ldots+b_{n+1} z^{-n}
\]

The numerator coefficients for \(H(z)\) are specified as a vector by the FIR coefficients parameter. The coefficient vector, \(b=[b(1) b(2) \ldots\) \(b(n+1)]\), can be generated by one of the filter design functions in the Signal Processing Toolbox product, such as fir1. All filter states are internally initialized to zero.

\section*{Overlap-Save FFT Filter}

When either the filter coefficients or the inputs to the block are complex, the Output parameter should be set to Complex. Otherwise, the default Output setting, Real, instructs the block to take only the real part of the solution.

The circular convolution of each section is computed by multiplying the FFTs of the input section and filter coefficients, and computing the inverse FFT of the product.
\[
y=i f f t(f f t(u(i: i+(L-1)), n f f t) . * \text { fft }(b, n f f t))
\]
where you specify nfft in the FFT size parameter as a power of two value greater (typically much greater) than \(\mathrm{n}+1\). Values for FFT size that are not powers of two are rounded upwards to the nearest power-of-two value to obtain nfft.

The first n points of the circular convolution are invalid and are discarded. The Overlap-Save FFT Filter block outputs the remaining \(\mathrm{nfft}-\mathrm{n}\) points, which are equivalent to the linear convolution.

\section*{Latency}

In single-tasking operation, the Overlap-Save FFT Filter block has a latency of \(n f f t-n+1\) samples. The first \(n f f t-n+1\) consecutive outputs from the block are zero; the first filtered input value appears at the output as sample nfft-n+2.

In multitasking operation, the Overlap-Save FFT Filter block has a latency of \(2^{*}(n f f t-n+1)\) samples. The first \(2^{*}(n f f t-n+1)\) consecutive outputs from the block are zero; the first filtered input value appears at the output as sample \(2^{*}(n f f t-n)+3\).

Note For more information on latency and the Simulink environment tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

\section*{Overlap-Save FFT Filter}

\section*{Dialog \\ Box}


\section*{FFT size}

The size of the FFT, which should be a power of two value greater than the length of the specified FIR filter.

\section*{FIR coefficients}

The filter numerator coefficients.

\section*{Output}

The complexity of the output; Real or Complex. When the input signal or the filter coefficients are complex, this should be set to Complex.

\author{
References \\ Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989. \\ Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.
}
\begin{tabular}{ll} 
Supported & - Double-precision floating point \\
Data & - Single-precision floating point \\
Types &
\end{tabular}

See Also
Overlap-Add FFT Signal Processing Blockset Filter

\section*{Overwrite Values}

Purpose
Library

\section*{Description}


Overwrite submatrix or subdiagonal of input
- Math Functions / Matrices and Linear Algebra / Matrix Operations dspmtrx3
- Signal Management / Indexing dspindex

The Overwrite Values block overwrites a contiguous submatrix or subdiagonal of an input matrix. You can provide the overwriting values by typing them in a block parameter, or through an additional input port, which is useful for providing overwriting values that change at each time step.


The block accepts both sample- and frame-based vectors and matrices. The output has the same size and frame status as the original input signal, not necessarily the same size and frame status as the signal containing the overwriting values. The input(s) and output of this block must have the same data type.

\section*{Specifying the Overwriting Values}

The Source of overwriting value(s) parameter determines how you must provide the overwriting values, and has the following settings.
- Specify via dialog - You must provide the overwriting value(s) in the Overwrite with parameter. The block uses the same overwriting values to overwrite the specified portion of the input at each time step. To learn how to specify valid overwriting values, see "Valid Overwriting Values" on page 2-999.
- Second input port - You must provide overwriting values through a second block input port, V. Use this setting to provide different

\section*{Overwrite Values}
overwriting values at each time step. The output inherits its size, rate, and frame status from the input signal, not the overwriting values.


The rate at which you provide the overwriting values through input port V must match the rate at which the block receives each input matrix at input port A. The rate requirements depend on whether the input signal and overwriting values signal have the same frame status:
- When both signals are sample based, their sample rates must be the same.
- When both signals are frame based, their frame rates must be the same.
- When one signal is sample based and one signal is frame based, the sample rate of the sample-based signal must be the same as the frame rate of the frame-based signal.

\section*{Valid Overwriting Values}

The overwriting values can be a single constant, vector, or matrix, depending on the portion of the input you are overwriting, regardless of whether you provide the overwriting values through an input port or by providing them in the Overwrite with parameter.

\section*{Overwrite Values}

\section*{Valid Overwriting Values}
\begin{tabular}{|c|c|c|}
\hline Portion of Input to Overwrite & Valid Overwriting Values & Example \\
\hline A single element in the input
\[
\left[\begin{array}{lllll}
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x
\end{array}\right]
\] & Any constant value, \(v\) & \[
\begin{aligned}
& v=1: \begin{array}{l}
9
\end{array} \\
& {\left[\begin{array}{lllll}
x & x & x & x & x \\
x & x & x & 9 & x \\
x & x & x & x & x \\
x & x & x & x & x
\end{array}\right]}
\end{aligned}
\] \\
\hline A length- \(k\) portion of the diagonal
\[
\left[\begin{array}{lllll}
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x
\end{array}\right]
\] & Any length \(-k\) column or row vector, \(v\) & \[
\begin{aligned}
& k=3 \\
& k
\end{aligned} \quad v=\left[\begin{array}{lll}
2 & 4 & 6
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right],\left[\begin{array}{lllll}
2 & x & x & x & x \\
x & 4 & x & x & x \\
x & x & 6 & x & x \\
x & x & x & x & x
\end{array}\right] \quad .
\] \\
\hline A length- \(k\) portion of a row
\[
\left[\begin{array}{lllll}
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x
\end{array}\right]
\] & Any length- \(k\) row vector, \(v\) & \[
\begin{aligned}
& k=3 \\
& \hline
\end{aligned} 3 \quad \begin{gathered}
v \\
{\left[\begin{array}{lllll}
x & x & x & x & x \\
x & 2 & 4 & 6 & x \\
x & x & x & x & x \\
x & x & x & x & x
\end{array}\right]}
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{Overwrite Values}

\section*{Valid Overwriting Values (Continued)}
\begin{tabular}{|c|c|c|}
\hline Portion of Input to Overwrite & Valid Overwriting Values & Example \\
\hline A length- \(k\) portion of a column
\[
\left[\begin{array}{lllll}
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x
\end{array}\right]
\] & Any length- \(k\) column vector, \(v\) & \[
\begin{aligned}
& k=2 \\
& =2
\end{aligned} \quad v=\left[\begin{array}{l}
4 \\
6
\end{array}\right]
\] \\
\hline An \(m\)-by- \(n\) submatrix
\[
\left[\begin{array}{lllll}
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x
\end{array}\right]
\] & Any \(m\)-by- \(n\) matrix, \(v\) & \[
\begin{aligned}
& m=2 \\
& n=3 \\
& {\left[\begin{array}{lllll}
x & x & x & x & x \\
x & x & 4 & 5 & 6 \\
x & x & 7 & 8 & 9 \\
x & x & x & x & x
\end{array}\right]}
\end{aligned}
\] \\
\hline
\end{tabular}

This block supports Simulink virtual buses.

\section*{Overwrite Values}

Dialog


\section*{Overwrite Values}

Note Only some of the following parameters are visible in the dialog box at any one time.

\section*{Overwrite}

Determines whether to overwrite a specified submatrix or a specified portion of the diagonal.

\section*{Source of overwriting value(s)}

Determines where you must provide the overwriting values: either through an input port, or by providing them in the Overwrite with parameter. For more information, see "Specifying the Overwriting Values" on page 2-998.

\section*{Overwrite with}

The value(s) with which to overwrite the specified portion of the input matrix. Enabled only when Source of overwriting value(s) is set to Specify via dialog. To learn how to specify valid overwriting values, see "Valid Overwriting Values" on page 2-999.

\section*{Row span}

The range of input rows to be overwritten. Options are All rows, One row, or Range of rows. For descriptions of these options, see "Dialog Box" on page 2-1002.

\section*{Row/Starting row}

The input row that is the first row of the submatrix that the block overwrites. For a description of the options for the Row and Starting row parameters, see Settings for Row, Column, Starting Row, and Starting Column Parameters on page 2-1008.
Row is enabled when Row span is set to One row, and Starting row when Row span is set to Range of rows.

\section*{Row index/Starting row index}

Index of the input row that is the first row of the submatrix that the block overwrites. See how to use these parameters in Settings for Row, Column, Starting Row, and Starting Column Parameters

\section*{Overwrite Values}
on page 2-1008. Row index is enabled when Row is set to Index, and Starting row index when Starting row is set to Index.

\section*{Row offset/Starting row offset}

The offset of the input row that is the first row of the submatrix that the block overwrites. See how to use these parameters in Settings for Row, Column, Starting Row, and Starting Column Parameters on page 2-1008. Row offset is enabled when Row is set to Offset from middle or Offset from last, and Starting row offset is enabled when Starting row is set to Offset from middle or Offset from last.

\section*{Ending row}

The input row that is the last row of the submatrix that the block overwrites. For a description of this parameter's options, see Settings for Ending Row and Ending Column Parameters on page 2-1009. This parameter is enabled when Row span is set to Range of rows, and Starting row is set to any option but Last.

\section*{Ending row index}

Index of the input row that is the last row of the submatrix that the block overwrites. See how to use this parameter in Settings for Ending Row and Ending Column Parameters on page 2-1009. Enabled when Ending row is set to Index.

\section*{Ending row offset}

The offset of the input row that is the last row of the submatrix that the block overwrites. See how to use this parameter in Settings for Ending Row and Ending Column Parameters on page 2-1009. Enabled when Ending row is set to Offset from middle or Offset from last.

\section*{Column span}

The range of input columns to be overwritten. Options are All columns, One column, or Range of columns. For descriptions of the analogous row options, see "Dialog Box" on page 2-1002.

\section*{Column/Starting column}

The input column that is the first column of the submatrix that the block overwrites. For a description of the options for the

\section*{Overwrite Values}

Column and Starting column parameters, see Settings for Row, Column, Starting Row, and Starting Column Parameters on page 2-1008. Column is enabled when Column span is set to One column, and Starting column when Column span is set to Range of columns.

\section*{Column index/Starting column index}

Index of the input column that is the first column of the submatrix that the block overwrites. See how to use these parameters in Settings for Row, Column, Starting Row, and Starting Column Parameters on page 2-1008. Column index is enabled when Column is set to Index, and Starting column index when Starting column is set to Index.

\section*{Column offset/Starting column offset}

The offset of the input column that is the first column of the submatrix that the block overwrites. See how to use these parameters in Settings for Row, Column, Starting Row, and Starting Column Parameters on page 2-1008. Column offset is enabled when Column is set to Offset from middle or Offset from last, and Starting column offset is enabled when Starting column is set to Offset from middle or Offset from last.

\section*{Ending column}

The input column that is the last column of the submatrix that the block overwrites. For a description of this parameter's options, see Settings for Ending Row and Ending Column Parameters on page 2-1009. This parameter is enabled when Column span is set to Range of columns, and Starting column is set to any option but Last.

\section*{Ending column index}

Index of the input column that is the last column of the submatrix that the block overwrites. See how to use this parameter in Settings for Ending Row and Ending Column Parameters on page 2-1009. This parameter is enabled when Ending column is set to Index.

\section*{Overwrite Values}

\section*{Ending column offset}

The offset of the input column that is the last column of the submatrix that the block overwrites. See how to use this parameter in Settings for Ending Row and Ending Column Parameters on page 2-1009. This parameter is enabled when Ending column is set to Offset from middle or Offset from last.

\section*{Diagonal span}

The range of diagonal elements to be overwritten. Options are All elements, One element, or Range of elements. For descriptions of these options, see "Overwriting a Subdiagonal" on page 2-1012.

\section*{Element/Starting element}

The input diagonal element that is the first element in the subdiagonal that the block overwrites. For a description of the options for the Element and Starting element parameters, see Element and Starting Element Parameters on page 2-1012. Element is enabled when Element span is set to One element, and Starting element when Element span is set to Range of elements.

\section*{Element index/Starting element index}

Index of the input diagonal element that is the first element of the subdiagonal that the block overwrites. See how to use these parameters in Element and Starting Element Parameters on page 2-1012. Element index is enabled when Element is set to Index, and Starting element index when Starting element is set to Index.

\section*{Element offset/Starting element offset}

The offset of the input diagonal element that is the first element of the subdiagonal that the block overwrites. See how to use these parameters in Element and Starting Element Parameters on page 2-1012. Element offset is enabled when Element is set to Offset from middle or Offset from last, and Starting element offset is enabled when Starting element is set to Offset from middle or Offset from last.

\section*{Overwrite Values}

\section*{Ending element}

The input diagonal element that is the last element of the subdiagonal that the block overwrites. For a description of this parameter's options, see Ending Element Parameters on page 2-1013. This parameter is enabled when Element span is set to Range of elements, and Starting element is set to any option but Last.

\section*{Ending element index}

Index of the input diagonal element that is the last element of the subdiagonal that the block overwrites. See how to use this parameter in Ending Element Parameters on page 2-1013. This parameter is enabled when Ending element is set to Index.

\section*{Ending element offset}

The offset of the input diagonal element that is the last element of the subdiagonal that the block overwrites. See how to use this parameter in Ending Element Parameters on page 2-1013. This parameter is enabled when Ending element is set to Offset from middle or Offset from last.

\section*{Examples Overwriting a Submatrix}

To overwrite a submatrix, follow these steps:
1 Set the Overwrite parameter to Submatrix.
2 Specify the overwriting values as described in "Specifying the Overwriting Values" on page 2-998.

3 Specify which rows and columns of the input matrix are contained in the submatrix that you want to overwrite by setting the Row span parameter to one of the following options and the Column span to the analogous column-related options:
- All rows - The submatrix contains all rows of the input matrix.
- One row - The submatrix contains only one row of the input matrix, which you must specify in the Row parameter, as described in the following table.

\section*{Overwrite Values}
- Range of rows - The submatrix contains one or more rows of the input, which you must specify in the Starting Row and Ending row parameters, as described in the following tables.

4 When you set Row span to One row or Range of rows, you need to further specify the row(s) contained in the submatrix by setting the Row or Starting row and Ending row parameters. Likewise, when you set Column span to One column or Range of columns, you must further specify the column(s) contained in the submatrix by setting the Column or Starting column and Ending column parameters. For descriptions of the settings for these parameters, see the following tables.

\section*{Settings for Row, Column, Starting Row, and Starting Column Parameters}
\begin{tabular}{l|l|l}
\hline \begin{tabular}{l} 
Settings for \\
Specifying \\
the \\
Submatrix's \\
First Row or \\
Column
\end{tabular} & \begin{tabular}{l} 
First Row of Submatrix \\
(Only row for Row span = One \\
row)
\end{tabular} & \begin{tabular}{l} 
First Column of Submatrix \\
(Only row for Row span = One \\
row)
\end{tabular} \\
\hline First & First row of the input & First column of the input \\
\hline Index & \begin{tabular}{l} 
Input row specified in the Row \\
index parameter
\end{tabular} & \begin{tabular}{l} 
Input column specified in the \\
Column index parameter
\end{tabular} \\
\hline Offset from & \begin{tabular}{l} 
Input row with the index \\
M- rowOffset \\
where M is the number of input \\
rows, and rowOffset is the value of \\
the Row offset or Starting row \\
offset parameter
\end{tabular} & \begin{tabular}{l} 
Input column with the index \\
N-colOffset \\
where N is the number of input \\
columns, and colOffset is the value \\
of the Column offset or Starting \\
column offset parameter
\end{tabular} \\
\hline Last & Last row of the input & Last column of the input \\
\hline
\end{tabular}

\section*{Overwrite Values}

\section*{Settings for Row, Column, Starting Row, and Starting Column Parameters} (Continued)
\begin{tabular}{l|l|l}
\hline \begin{tabular}{l} 
Settings for \\
Specifying \\
the \\
Submatrix's \\
First Row or \\
Column
\end{tabular} & \begin{tabular}{l} 
First Row of Submatrix \\
(Only row for Row span = One \\
row)
\end{tabular} & \begin{tabular}{l} 
First Column of Submatrix \\
(Only row for Row span = One \\
row)
\end{tabular} \\
\hline \begin{tabular}{l} 
Offset from \\
middle
\end{tabular} & \begin{tabular}{l} 
Input row with the index \\
floor (M/2 + 1 - rowOffset) \\
where \(M\) is the number of input \\
rows, and rowoffset is the value of \\
the Row offset or Starting row \\
offset parameter
\end{tabular} & \begin{tabular}{l} 
Input column with the index \\
floor \((N / 2+1-r o w O f f s e t)\) \\
where N is the number of input \\
columns, and colOffset is the value \\
of the or Column offset or Starting \\
column offset parameter
\end{tabular} \\
\hline Middle & \begin{tabular}{l} 
Input row with the index \\
floor(M/2 + 1) \\
where \(M\) is the number of input rows
\end{tabular} & \begin{tabular}{l} 
Input columns with the index \\
floor \((N / 2+1)\) where \(N\) is the \\
number of input columns
\end{tabular} \\
\hline
\end{tabular}

\section*{Settings for Ending Row and Ending Column Parameters}
\begin{tabular}{l|l|l}
\hline \begin{tabular}{l} 
Settings for \\
Specifying \\
the
\end{tabular} & & \\
\begin{tabular}{l} 
Submatrix's \\
Last Row or \\
Column
\end{tabular} & Last Row of Submatrix & Last Column of Submatrix
\end{tabular} \begin{tabular}{l} 
Index
\end{tabular} \begin{tabular}{l} 
Input row specified in the Ending \\
row index parameter
\end{tabular}\(~\)\begin{tabular}{l} 
Input column specified in the \\
Ending column index parameter \\
\hline
\end{tabular}

\section*{Overwrite Values}

\section*{Settings for Ending Row and Ending Column Parameters (Continued)}
\begin{tabular}{|c|c|c|}
\hline Settings for Specifying the Submatrix's Last Row or Column & Last Row of Submatrix & Last Column of Submatrix \\
\hline Offset from last & Input row with the index M - rowOffset where \(M\) is the number of input rows, and rowOffset is the value of the Ending row offset parameter & \begin{tabular}{l}
Input column with the index N - colOffset \\
where \(N\) is the number of input columns, and colOffset is the value of the Ending column offset parameter
\end{tabular} \\
\hline Last & Last row of the input & Last column of the input \\
\hline Offset from middle & Input row with the index floor(M/2 + 1 - rowOffset) where \(M\) is the number of input rows, and rowOffset is the value of the Ending row offset parameter & Input column with the index floor(N/2 + 1 - rowOffset) where \(N\) is the number of input columns, and colOffset is the value of the Ending column offset parameter \\
\hline Middle & Input row with the index floor(M/2 + 1) where \(M\) is the number of input rows & Input columns with the index floor (N/2 + 1) where \(N\) is the number of input columns \\
\hline
\end{tabular}

For example, to overwrite the lower-right 2-by-3 submatrix of a 3-by-5 input matrix with all zeros, enter the following set of parameters:
- Overwrite = Submatrix
- Source of overwriting value(s) = Specify via dialog
- Overwrite with \(=0\)
- Row span = Range of rows
- Starting row \(=\) Index

\section*{Overwrite Values}
- Starting row index \(=2\)
- Ending row \(=\) Last
- Column span \(=\) Range of columns
- Starting column \(=\) Offset from last
- Starting column offset \(=2\)
- Ending column = Last

The following figure shows the block with the above settings overwriting a portion of a 3 -by- 5 input matrix.


There are often several possible parameter combinations that select the same submatrix from the input. For example, instead of specifying Last for Ending column, you could select the same submatrix by specifying
- Ending column = Index
- Ending column index = 5

\section*{Overwrite Values}

\section*{Overwriting a Subdiagonal}

To overwrite a subdiagonal, follow these steps:
1 Set the Overwrite parameter to Diagonal.
2 Specify the overwriting values as described in "Specifying the Overwriting Values" on page 2-998.

3 Specify the subdiagonal that you want to overwrite by setting the Diagonal span parameter to one of the following options:
- All elements - Overwrite the entire input diagonal.
- One element - Overwrite one element in the diagonal, which you must specify in the Element parameter (described below).
- Range of elements - Overwrite a portion of the input diagonal, which you must specify in the Starting element and Ending element parameters, as described in the following table.

4 When you set Diagonal span to One element or Range of elements, you need to further specify which diagonal element(s) to overwrite by setting the Element or Starting element and Ending element parameters. See the following tables.

\section*{Element and Starting Element Parameters}
\begin{tabular}{l|l}
\begin{tabular}{l} 
Settings for Element \\
and Starting Element \\
Parameters
\end{tabular} & \begin{tabular}{l} 
First Element in Subdiagonal \\
(Only element when Diagonal span = One element)
\end{tabular} \\
\hline First & Diagonal element in first row of the input \\
\hline Index & \begin{tabular}{l}
\(k\) th diagonal element, where \(k\) is the value of the Element \\
index or Starting element index parameter
\end{tabular} \\
\hline
\end{tabular}

\section*{Overwrite Values}

Element and Starting Element Parameters (Continued)
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Settings for Element \\
and Starting Element \\
Parameters
\end{tabular} & \begin{tabular}{l} 
First Element in Subdiagonal \\
(Only element when Diagonal span = One element)
\end{tabular} \\
\hline Offset from last & \begin{tabular}{l} 
Diagonal element in the row with the index \\
\(M\)-offset \\
where \(M\) is the number of input rows, and offset is the value of \\
the Element offset or Starting element offset parameter
\end{tabular} \\
\hline Last & Diagonal element in the last row of the input \\
\hline Offset from middle & \begin{tabular}{l} 
Diagonal element in the input row with the index \\
floor \((M / 2+1-\) offset \()\) \\
where \(M\) is the number of input rows, and offset is the value of \\
the Element offset or Starting element offset parameter
\end{tabular} \\
\hline Middle & \begin{tabular}{l} 
Diagonal element in the input row with the index \\
floor \((M / 2+1)\) \\
where \(M\) is the number of input rows
\end{tabular} \\
\hline
\end{tabular}

Ending Element Parameters
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Setfings for Ending \\
Element Parameter
\end{tabular} & Last Element in Subdiagonal \\
\hline Index & \begin{tabular}{l}
\(k\) th diagonal element, where \(k\) is the value of the Ending \\
element index parameter
\end{tabular} \\
\hline Offset from last & \begin{tabular}{l} 
Diagonal element in the row with the index \\
\(M\)-offset \\
where \(M\) is the number of input rows, and offset is the value of \\
the Ending element offset parameter
\end{tabular} \\
\hline Last & Diagonal element in the last row of the input \\
\hline
\end{tabular}

\section*{Overwrite Values}

\section*{Ending Element Parameters (Continued)}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Settings for Ending \\
Element Parameter
\end{tabular} & Last Element in Subdiagonal \\
\hline Offset from middle & \begin{tabular}{l} 
Diagonal element in the input row with the index \\
floor \((M / 2+1-\) offset \()\) \\
where \(M\) is the number of input rows, and offset is the value of \\
the Ending element offset parameter
\end{tabular} \\
\hline Middle & \begin{tabular}{l} 
Diagonal element in the input row with the index \\
floor \((M / 2+1)\) \\
where \(M\) is the number of input rows
\end{tabular} \\
\hline
\end{tabular}

Supported Data Types

The input(s) and output of this block must have the same data type.
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline A & \(\bullet\) Double-precision floating point \\
& - Single-precision floating point \\
& - Fixed point (signed and unsigned) \\
& • Boolean \\
& • 8-, 16-, and 32-bit signed integers \\
& \(\bullet 8-, 16-\), and 32 -bit unsigned integers \\
\hline
\end{tabular}

\section*{Overwrite Values}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline V & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8-, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline B & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}

Reshape
Selector
Submatrix
Variable Selector
reshape

Simulink
Simulink
Signal Processing Blockset
Signal Processing Blockset
MATLAB

Purpose Pad or truncate specified dimension(s)
Library Signal Operations
dspsigops

Description


The Pad block extends or crops the dimensions of the input by padding or truncating along its columns, rows, columns and rows, or any dimension(s) you specify. Truncation occurs when you specify output dimensions that are shorter than the corresponding input dimensions. If the input and output lengths are the same, the block is a pass-through.

You can enter the pad value in the block mask or via an input port. You can enter output sizes in the block mask, or have the block pad the specified dimensions until their length is the next highest power of two. The Pad signal at parameter controls whether the specified input dimensions are padded or truncated at their beginning, end, or both. For odd pad or truncation lengths, the extra pad value or truncation is applied to the end of the signal. When the block is in Specified dimensions mode, you can specify either the output size or the pad size.

You can have the block warn or error when an input signal is truncated using the Action when truncation occurs parameter.

\section*{Dialog Box}


\section*{Pad over}

Specify the dimensions over which to pad or truncate: Columns, Rows, Columns and rows, None, or Specified dimensions.

\section*{Dimensions to pad}

Specify the one-based dimension(s) over which to pad or truncate. The value for this parameter can be a scalar or a vector. For example, specify 1 to pad columns. Specify [112] to pad columns and rows. Specify [ \(\left.\begin{array}{lll}1 & 3 & 5\end{array}\right]\) to pad the first, third, and fifth dimensions.

This parameter is only visible when Specified dimensions is selected for the Pad over parameter.

\section*{Pad}

\section*{Pad value source}

Choose how you specify the pad value. The pad value can come from an input port or from the dialog:
- If you select Input port, the PVal port appears on the block icon.
- If you select Specify via dialog, the Pad value parameter appears.

\section*{Pad value}

Specify the constant scalar value with which to pad the input. Tunable.

This parameter is only visible when Specify via dialog is selected for the Pad value source parameter.

\section*{Output column mode}

Choose how you specify the column length of the output:
- If you select User-specified, the Column size parameter appears.
- If you select Next power of two, the block pads the output columns until their length is the next highest power of two. If the column length is already a power of two, the columns are not padded.

This parameter is only visible when Columns or Columns and rows is selected for the Pad over parameter.

\section*{Column size}

Specify the column length of the output. If the specified column length is longer than the input column length, the columns are padded. If the specified column length is shorter than the input column length, the columns are truncated. This parameter is only visible when User-specified is selected for the Output column mode parameter.

\section*{Output row mode}

Choose how you specify the output row length of the output:
- If you select User-specified, the Row size parameter appears.
- If you select Next power of two, the block pads the output rows until their length is the next highest power of two. If the row length is already a power of two, the rows are not padded.

This parameter is only visible when Rows or Columns and rows is selected for the Pad over parameter.

\section*{Row size}

Specify the row length of the output. If the specified row length is longer than the input row length, the rows are padded. If the specified row length is shorter than the input row length, the rows are truncated. This parameter is only visible when User-specified is selected for the Output row mode parameter.

\section*{Specify}

Choose whether you want to control the output length of the specified dimensions by specifying the pad size or the output size.

This parameter is only visible when Specified dimensions is selected for the Pad over parameter.

\section*{Pad size at beginning}

Specify how many values to add to the beginning of the input signal along the specified dimension(s). This parameter must be a scalar or a vector with the same number of elements as the Dimensions to pad parameter. Each element in the Pad size at beginning parameter gives the pad length for the beginning of the corresponding dimension in the Dimensions to pad parameter. Values of this parameter must be zero or a positive integer.

This parameter is only visible if Pad size is selected for the Specify parameter.

\section*{Pad}

\section*{Pad size at end}

Specify how many values to add to the end of the input signal along the specified dimension(s). This parameter must be a scalar or a vector with the same number of elements as the Dimensions to pad parameter. Each element in the Pad size at end parameter gives the pad length for the end of the corresponding dimension in the Dimensions to pad parameter. Values of this parameter must be zero or a positive integer.

This parameter is only visible if Pad size is selected for the Specify parameter.

Output size mode
Choose how you specify the output length of the specified dimensions:
- If you select User-specified, the Output size parameter appears.
- If you select Next power of two, the block pads the specified dimensions until their length is the next highest power of two. If the dimension length is already a power of two, no padding occurs in that dimension.

This parameter is only visible if Output size is selected for the Specify parameter.

\section*{Output size}

Specify the output length of the specified dimension(s). This parameter must be a scalar or a vector with the same number of elements as the Dimensions to pad parameter. Each element in the Output size vector gives the output length for the corresponding dimension in the Dimensions to pad vector. If the specified length is longer than the input length for a given dimensions, that dimension is padded. If the specified length is shorter than the input length for a given dimension, that dimension is truncated.

This parameter is only visible if Output size is selected for the Specify parameter.

\section*{Pad signal at}

Specify whether to pad or truncate the signal at the Beginning, End, or Beginning and end of the specified dimension(s). When you select Beginning and end, half the pad length is added to the beginning of the signal, and half is added to the end of the signal. For an odd pad length, the extra value is added to the end of the signal. This also applies to truncation. In this mode, an equal number of values are truncated from the beginning and the end of the signal. In the case of an odd truncation length, the extra value is removed from the end of the signal.

\section*{Action when truncation occurs}

Choose None when you do not want to be notified that the input is truncated. Select Warning to display a warning when the input is truncated. Choose Error when to display an error and terminate the simulation when the input is truncated.

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Input & \begin{tabular}{l}
- Double-precision floating-point \\
- Single-precision floating-point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Output & \begin{tabular}{l}
- Double-precision floating-point \\
- Single-precision floating-point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline
\end{tabular}
See Also \begin{tabular}{lll} 
Concatenate & Simulink \\
Repeat & Signal Processing Blockset \\
Submatrix & Signal Processing Blockset \\
& Upsample & Signal Processing Blockset \\
& Variable Selector & Signal Processing Blockset
\end{tabular}

\section*{Parametric Equalizer}
\begin{tabular}{|c|c|c|}
\hline Purpose & \multicolumn{2}{|l|}{Design parametric equalizer} \\
\hline Library & \multicolumn{2}{|l|}{Filtering / Filter Design Toolbox dspfdesign} \\
\hline Description & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{This block brings the functionality of the Filter Design Toolbox filterbuilder function to the Simulink environment. You must have a Filter Design Toolbox product license to design filters with this block. However, you can run models containing this block without a license. This allows you to run a model sent to you by a colleague who has designed a filter using this block, even if you do not have Filter Design Toolbox product.}} \\
\hline Param Eq & & \\
\hline Dialog Box & \multicolumn{2}{|l|}{See "Parametric Equalizer Filter Design Dialog Box - Main Pane" in the Filter Design Toolbox documentation for more information about the parameters of this block. The Data Types pane is not available for Filter Design Toolbox blocks in the Signal Processing Blockset product.} \\
\hline & \multicolumn{2}{|l|}{Parameters of this block that do not change filter order or structure are tunable. Tunable parameters are enabled during simulation; nontunable parameters are not.} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Supported \\
Data \\
Types
\end{tabular}} & Port & Supported Data Types \\
\hline & Input & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline & Output & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point
\end{tabular} \\
\hline
\end{tabular}

\section*{Parametric Equalizer}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
& •8-, 16-, and 32 -bit signed integers \\
& \(\bullet 8\)-, 16-, and 32-bit unsigned integers \\
\hline
\end{tabular}

\section*{Purpose}

\section*{Library}

Description

Determine whether each value of input signal is local minimum or maximum

Signal Operations
dspsigops
The Peak Finder block outputs the number of local extrema in the input signal at the Cnt port. Optionally, it can also output the extrema indices, the extrema values, and a binary indicator of whether or not the extrema are maxima or minima.

The Peak Finder block compares the current signal value to the previous and next values to determine if the current value is an extremum. Use the Peak type(s) parameter to specify whether you are looking for maxima, minima, or both.
If you select the Output peak indices check box, the Idx port appears on the block. The block outputs the zero-based extrema indices at the Idx port. If you select the Output peak values check box, the Val port appears on the block. The block outputs the extrema values at the Val port. If you select either of these check boxes and Maxima and Minima is selected for the Peak type(s), the Pol port also appears on the block. If the signal value is a maximum, the block outputs a 1 at the Pol ("Polarity") port. If the signal value is a minimum, the block outputs a 0 at the Pol port.

Note that nothing is output at the Idx, Val, and Pol ports for an input signal value that is not an extremum.
Use the Maximum number of peaks to find parameter to specify how many extrema to look for in each input signal. The block stops searching the input signal once this maximum number of extrema has been found.

If you select the Ignore peaks within threshold of neighboring values check box, the block no longer detects low-amplitude peaks. This feature allows the block to ignore noise within a threshold value that you define. Enter a threshold value for the Threshold parameter. Now, the current value is a maximum if (current - previous) \(>\) threshold

\section*{Peak Finder}
and (current - next) \(>\) threshold. The current value is a minimum if (current - previous) <-threshold and (current - next) <-threshold.
This block supports single-channel, multichannel, sample-based, and frame-based inputs. These input signals must be real-valued fixed-point or floating-point scalars or vectors.

\section*{Examples}

\section*{Example 1}

Consider the input vector


The table below shows the analysis made by the Peak Finder block. Note that the first and last input signal values are not considered:
\begin{tabular}{l|l|l|l|l|l|l}
\hline Previous, current, and next values & 9610 & 6103 & 1034 & 345 & 45 & 5012 \\
0
\end{tabular}\(|\)

Therefore, for this example the outputs at the block ports are
Cnt: 5
Idx: \(\left.\begin{array}{lllll}1 & 2 & 3 & 5 & 6\end{array}\right]\)
Val: [llllll \(\left.\begin{array}{lllll}6 & 10 & 3 & 5 & 0\end{array}\right]\)
Pol: [ \(\left.\begin{array}{lllll}0 & 1 & 0 & 1 & 0\end{array}\right]\)

\section*{Example 2}

Note that the Overflow mode parameter can affect the output of the block when the input is fixed point. Consider the following model:


In this model, the settings in the Constant block are
- Constant value - [ \(\left.\begin{array}{lll}-1 & 0.5 & -1\end{array}\right]\)
- Interpret vector parameters as 1-D — not selected
- Sampling mode - Sample based
- Sample time - 1
- Output data type - <data type expression>
- Mode - Fixed point
- Sign - Signed

\section*{Peak Finder}
- Scaling - Binary point
- Word length - 16
- Fraction length - 15

The settings in the Peak Finder blocks are
- Peak type(s) - Maxima
- Output peak indices - not selected
- Output peak values - selected
- Maximum number of peaks to find - 2
- Ignore peaks within threshold of neighboring values selected
- Threshold - 0.25
- Rounding mode - Floor
- Overflow mode - Wrap for Peak Finder Wrap, Saturate for Peak Finder Saturate

Setting the Overflow mode parameter of the Peak Finder Wrap block to Wrap causes the calculations (current - previous) > threshold and (current - next) > threshold to wrap on overflow, thereby causing the maximum to be missed.

Dialog Box

The Main pane of the Peak Finder block dialog appears as follows.


\section*{Peak type(s)}

Specify whether you are looking for maxima, minima, or both.

\section*{Output peak indices}

Select this check box if you want the block to output the extrema indices at the Idx port.

\section*{Output peak values}

Select this check box if you want the block to output the extrema values at the Val port.

\section*{Maximum number of peaks to find}

Enter the number of extrema to look for in each input signal. The block stops searching the input signal for extrema once the maximum number of extrema has been found. The value of this parameter must be an integer greater than or equal to one.

\section*{Peak Finder}

\section*{Ignore peaks within threshold of neighboring values}

Select this check box if you want to eliminate the detection of peaks whose amplitudes are within a specified threshold of neighboring values.

\section*{Threshold}

Enter your threshold value. This parameter appears if you select the Ignore peaks within threshold of neighboring values check box.

The Fixed-point pane of the Peak Finder block dialog appears as follows.


\section*{Rounding mode}

The rounding mode of this block is always Floor.

\section*{Overflow mode}

Select the overflow mode to be used when block inputs are fixed point.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point (signed and unsigned) \\
& - 8-, 16-, and 32-bit signed integers \\
& • 8-, 16-, and 32-bit unsigned integers \\
\hline Cnt & • 32-bit unsigned integers \\
\hline Idx & • 32-bit unsigned integers \\
\hline Val & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point (signed and unsigned) \\
& • 8-, 16-, and 32-bit signed integers \\
& • 8-, 16-, and 32-bit unsigned integers \\
\hline Pol & • Boolean \\
\hline
\end{tabular}

\section*{See Also}

Maximum
Signal Processing Blockset
Minimum
Signal Processing Blockset

\section*{Peak-Notch Filter}
\begin{tabular}{ll} 
Purpose & Design peak or notch filter \\
Library & Filtering / Filter Design Toolbox \\
& dspfdesign
\end{tabular}

\section*{Description}
Peak-Notch

This block brings the functionality of the Filter Design Toolbox filterbuilder function to the Simulink environment. You must have a Filter Design Toolbox product license to design filters with this block. However, you can run models containing this block without a license. This allows you to run a model sent to you by a colleague who has designed a filter using this block, even if you do not have the Filter Design Toolbox product.

Dialog Box

See "Peak/Notch Filter Design Dialog Box - Main Pane" in the Filter Design Toolbox documentation for more information about the parameters of this block. The Data Types pane is not available for Filter Design Toolbox blocks in the Signal Processing Blockset product.

Parameters of this block that do not change filter order or structure are tunable. Tunable parameters are enabled during simulation; nontunable parameters are not.

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Input & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Output & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point
\end{tabular} \\
\hline
\end{tabular}

\section*{Peak-Notch Filter}

\section*{Port Supported Data Types}
- 8 -, 16 -, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

\section*{Periodogram}
\begin{tabular}{ll} 
Purpose & \begin{tabular}{l} 
Power spectral density or mean-square spectrum estimate using \\
periodogram method
\end{tabular} \\
Library & \begin{tabular}{l} 
Estimation / Power Spectrum Estimation \\
dspspect3
\end{tabular}
\end{tabular}

\section*{Description}

The Periodogram block estimates the power spectral density (PSD) or mean-square spectrum (MSS) of the input. It does so by using the periodogram method and Welch's averaged, modified periodogram method. When you set the Number of spectral averages parameter to 1 , the block computes the periodogram of the input. When the Number of spectral averages is greater than 1 , the block uses the Welch method to compute a modified periodogram of the input. The block averages the squared magnitude of the FFT computed over windowed sections of the input. It then normalizes the spectral average by the square of the sum of the window samples. See "Periodogram" and "Welch's Method" in the Signal Processing Toolbox documentation for more information.

The block treats \(M\)-by- \(N\) frame-based matrix input and \(M\)-by- \(N\) sample-based matrix input as \(M\) sequential time samples from \(N\) independent channels. The block computes a separate estimate for each of the \(N\) independent channels and generates an \(N_{f f t}\)-by- \(N\) matrix output. When you select the Inherit FFT length from input dimensions check box, \(N_{f f t}\) is the frame size of the input, which must be a power of 2 . When you clear the Inherit FFT length from input dimensions check box, you can use the FFT length parameter to specify \(N_{f f t}\) as a power of 2 . The block either zero-pads or wraps the input to \(N_{f f t}\) before computing the FFT.

Each column of the output matrix contains the estimate of the power spectral density of the corresponding input column at \(N_{f f t}\) equally spaced frequency points. The frequency points are in the range [ \(0, \mathrm{~F}_{\mathrm{s}}\) ), where \(\mathrm{F}_{\mathrm{s}}\) is the sampling frequency of the signal. The output is always sample based.

When you select the Inherit sample time from input check box, the block computes the frequency data from the sample period of the input
signal. For the block to produce valid output, the following conditions must hold:
- The input to the block is the original signal, with no samples added or deleted (by insertion of zeros, for example).
- The sample period of the time-domain signal in the simulation equals the sample period of the original time series.

If these conditions do not hold, clear the Inherit sample time from input check box. You can then specify a sample time using the Sample time of original time series parameter.
The Window, Stopband ripple, Beta, and Window sampling parameters all apply to the specification of the window function. See the Window Function block reference page for more details on these four parameters.

The dspstfft demo provides an illustration of using the Periodogram and Matrix Viewer blocks to create a spectrogram. The dspsacomp demo compares the Periodogram block with several other spectral estimation methods.

\section*{Periodogram}

\section*{Dialog \\ Box}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{W, Function Block Parameters: Periodogram \(\mathbf{X}\)} & \multicolumn{2}{|r|}{X} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Periodogram (mask) (link) \\
Power spectral density and mean-square power spectrum estimation via the periodogram method and Welch's averaged, modified periodogram method.
\end{tabular}}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Parameters \\
Measurement: Power spectral density
\end{tabular}}} \\
\hline & & & & \\
\hline Window: Hamming & & & \(\checkmark\) & \\
\hline Window sampling: Symmetric & & & & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Inherit FFT length from input dimensions FFT length:}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{256} \\
\hline \multicolumn{5}{|l|}{Number of spectral averages:} \\
\hline \multicolumn{5}{|l|}{4} \\
\hline \multicolumn{5}{|l|}{V Inherit sample time from input} \\
\hline (2) OK & Cancel & Help & Apply & \\
\hline
\end{tabular}

\section*{Measurement}

Specify the type of measurement for the block to perform: Power spectral density or Mean-square spectrum. Tunable.

\section*{Window}

Select the type of window to apply. See the Window Function block reference page for more details. Tunable.

\section*{Stopband attenuation in dB}

Enter the level, in decibels (dB), of stopband attenuation, \(R_{s}\), for the Chebyshev window. This parameter becomes visible if, for the Window parameter, you choose Chebyshev. Tunable.

\section*{Beta}

Enter the 6 parameter for the Kaiser window. This parameter becomes visible if, for the Window parameter, you chose Kaiser. Increasing Beta widens the mainlobe and decreases the amplitude of the sidelobes in the displayed frequency magnitude response. Tunable.

\section*{Window sampling}

From the list, choose Symmetric or Periodic. Tunable.

\section*{Inherit FFT length from input dimensions}

When you select this check box, the block uses the input frame size as the number of data points, \(N_{f f t}\), on which to perform the FFT. To specify the number of points on which to perform the FFT, clear the Inherit FFT length from estimation order check box. You can then specify a power of two FFT length using the FFT length parameter.

\section*{FFT length}

Enter the number of data points on which to perform the FFT, \(N_{f f t}\). When \(N_{f f t}\) is larger than the input frame size, the block zero-pads each frame as needed. When \(N_{f f t}\) is smaller than the input frame size, the block wraps each frame as needed. This parameter becomes visible only when you clear the Inherit FFT length from input dimensions check box.

\section*{Number of spectral averages}

Enter the number of spectra to average via "Welch's Method"; setting this parameter to 1 disables averaging.

\section*{Inherit sample time from input}

If you select the Inherit sample time from input check box, the block computes the frequency data from the sample period of the input signal. For the block to produce valid output, the following conditions must hold:

\section*{Periodogram}
- The input to the block is the original signal, with no samples added or deleted (by insertion of zeros, for example).
- The sample period of the time-domain signal in the simulation equals the sample period of the original time series.

If these conditions do not hold, clear the Inherit sample time from input check box. You can then specify a sample time using the Sample time of original time series parameter.

\section*{Sample time of original time series}

Specify the sample time of the original time-domain signal. This parameter becomes visible only when you clear the Inherit sample time from input check box.
\begin{tabular}{ll} 
References & Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. \\
Englewood Cliffs, NJ: Prentice Hall, 1989. \\
& Orfanidis, S. J. Introduction to Signal Processing. Englewood Cliffs, NJ: \\
& Prentice-Hall, 1995. \\
& Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. \\
& Englewood Cliffs, NJ: Prentice-Hall, 1996.
\end{tabular}

Supported Data Types
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & \begin{tabular}{l} 
• Double-precision floating point \\
• Single-precision floating point
\end{tabular} \\
\hline Output & \begin{tabular}{l} 
• Double-precision floating point \\
\\
• Single-precision floating point
\end{tabular} \\
\hline
\end{tabular}

See Also
Burg Method Signal Processing Blockset
Inverse Short-Time FFT Signal Processing Blockset
Magnitude FFT
Signal Processing Blockset
\begin{tabular}{ll} 
Short-Time FFT & Signal Processing Blockset \\
Spectrum Scope & Signal Processing Blockset \\
Window Function & Signal Processing Blockset \\
Yule-Walker Method & Signal Processing Blockset \\
spectrum. periodogram & Signal Processing Toolbox \\
spectrum.welch & Signal Processing Toolbox
\end{tabular}

See "Power Spectrum Estimation" for related information.

\section*{Permute Matrix}

Purpose
Library

\section*{Description}


Reorder matrix rows or columns
Math Functions / Matrices and Linear Algebra / Matrix Operations dspmtrx3

The Permute Matrix block reorders the rows or columns of M-by-N input matrix A as specified by indexing input \(P\).

When the Permute parameter is set to Rows, the block uses the rows of \(A\) to create a new matrix with the same column dimension. Input \(P\) is a length-L vector whose elements determine where each row from \(A\) should be placed in the L-by-N output matrix.
```

% Equivalent MATLAB code
y = [A(P(1),:) ; A(P(2),:) ; A(P(3),:) ; ... ; A(P(end),:)]

```

For row permutation, a length-M 1-D vector input at the A port is treated as a M-by-1 matrix.
When the Permute parameter is set to Columns, the block uses the columns of A to create a new matrix with the same row dimension. Input \(P\) is a length-L vector whose elements determine where each column from A should be placed in the M-by-L output matrix.
```

% Equivalent MATLAB code
y = [A(:,P(1)) A(:,P(2)) A(:,P(3)) ...A(:,P(end))]

```

For column permutation, a length-N 1-D vector input at the A port is treated as a 1 -by-N matrix.

When an index value in input \(P\) references a nonexistent row or column of matrix A, the block reacts with the behavior specified by the Invalid permutation index parameter. The following options are available:
- Clip index - Clip the index to the nearest valid value ( 1 or M for row permutation, and 1 or N for column permutation), and do not issue an alert. Example: For a 3-by-7 input matrix, a column index of 9 is clipped to 7 , and a row index of -2 is clipped to 1 .

\section*{Permute Matrix}
- Clip and warn - Display a warning message in the MATLAB command window, and clip the index as described above.
- Generate error - Display an error dialog box and terminate the simulation.

When length of the permutation vector \(P\) is not equal to the number of rows or columns of the input matrix \(A\), you can choose to get an error dialog box and terminate the simulation by selecting Error when length of \(P\) is not equal to Permute dimension size.

When input A is frame based, the output is frame based; otherwise, the output is sample based.

\section*{Examples}

In the model below, the top Permute Matrix block places the second row of the input matrix in both the first and fifth rows of the output matrix, and places the third row of the input matrix in the three middle rows of the output matrix. The bottom Permute Matrix block places the second column of the input matrix in both the first and fifth columns of the output matrix, and places the third column of the input matrix in the three middle columns of the output matrix.


\section*{Permute Matrix}

As shown in the example above, rows and columns of A can appear any number of times in the output, or not at all.

\section*{Dialog Box}


\section*{Permute}

Method of constructing the output matrix; by permuting rows or columns of the input.

\section*{Index mode}

When set to One-based, a value of 1 in the permutation vector \(P\) refers to the first row or column of the input matrix \(A\). When set to Zero-based, a value of 0 in \(P\) refers to the first row or column of \(A\).

\section*{Invalid permutation index}

Response to an invalid index value. Tunable.

\section*{Error when length of \(P\) is not equal to Permute dimension size} Option to display an error dialog box and terminate the simulation when the length of the permutation vector \(P\) is not equal to the number of rows or columns of the input matrix \(A\).

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline A & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8-, 16-, and 32 -bit unsigned integers \\
- Enumerated
\end{tabular} \\
\hline P & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8-, 16 -, and 32 -bit unsigned integers \\
- Enumerated
\end{tabular} \\
\hline Output & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8-, 16-, and 32 -bit signed integers \\
- 8-, 16-, and 32 -bit unsigned integers \\
- Enumerated
\end{tabular} \\
\hline
\end{tabular}

\section*{Permute Matrix}

See Also
\begin{tabular}{ll} 
Submatrix & Signal Processing Blockset \\
Transpose & Signal Processing Blockset \\
Variable Selector & Signal Processing Blockset \\
permute & MATLAB
\end{tabular}

See "Reordering Channels in Multichannel Frame-Based Signals" for related information.
Purpose
Library
Description
In Polynomizal Out
Goefts

Evaluate polynomial expression
Math Functions / Polynomial Functions
dsppolyfun
The Polynomial Evaluation block applies a polynomial function to the real or complex input at the In port.
\[
y=\text { polyval }(u) \quad \% \text { Equivalent MATLAB code }
\]

The Polynomial Evaluation block performs these types of operation more efficiently than the equivalent construction using Simulink Sum and Math Function blocks.

When you select the Use constant coefficients check box, you specify the polynomial expression in the Constant coefficients parameter. When you do not select Use constant coefficients, a variable polynomial expression is specified by the input to the Coeffs port. In both cases, the polynomial is specified as a vector of real or complex coefficients in order of descending exponents.
The table below shows some examples of the block's operation for various coefficient vectors.
\begin{tabular}{|c|c|}
\hline Coefficient Vector & Equivalent Polynomial Expression \\
\hline [143445] & \(y=u^{4}+2 u^{3}+3 u^{2}+4 u+5\) \\
\hline \(\left[\begin{array}{llllll}1 & 0 & 3 & 0 & 5\end{array}\right]\) & \(y=u^{4}+3 u^{2}+5\) \\
\hline \(\left[\begin{array}{lllll}1 & 2+i & 3-3 i & 5 i\end{array}\right.\) & \(y=u^{4}+(2+i) u^{3}+3 u^{2}+(4-3 i) u+5 i\) \\
\hline
\end{tabular}

Each element of a vector or matrix input to the In port is processed independently, and the output size and frame status are the same as the input.

\section*{Polynomial Evaluation}

\section*{Dialog \\ Box}


\section*{Use constant coefficients}

Select to enable the Constant coefficients parameter and disable the Coeffs input port.

\section*{Constant coefficients}

Specify the vector of polynomial coefficients to apply to the input, in order of descending exponents. This parameter is enabled when you select the Use constant coefficients check box.

\section*{Supported Data \\ Types}
- Double-precision floating point
- Single-precision floating point

\section*{See Also}
\begin{tabular}{ll} 
Least Squares Polynomial & Signal Processing Blockset \\
Fit & \\
Math Function & Simulink \\
Sum & Simulink \\
polyval & MATLAB
\end{tabular}

\section*{Purpose}

\section*{Library}

\section*{Description}
\(\mid\) roots(u) \(\mid<1\)

Use Schur-Cohn algorithm to determine whether all roots of input polynomial are inside unit circle

Math Functions / Polynomial Functions
dsppolyfun
The Polynomial Stability Test block uses the Schur-Cohn algorithm to determine whether all roots of a polynomial are within the unit circle.
\[
y=\operatorname{all}(\operatorname{abs}(\operatorname{roots}(u))<1) \quad \text { \% Equivalent MATLAB code }
\]

Each column of the M-by-N input matrix \(u\) contains M coefficients from a distinct polynomial,
\[
f(x)=u_{1} x^{M-1}+u_{2} x^{M-2}+\ldots+u_{M}
\]
arranged in order of descending exponents, \(u_{1}, u_{2}, \ldots, u_{\mathrm{M}}\). The polynomial has order M-1 and positive integer exponents.
Inputs can be frame based or sample based, and both represent the polynomial coefficients as shown above. For convenience, a length-M 1-D vector input is treated as an M-by-1 matrix.

The output is a 1 -by-N matrix with each column containing the value 1 or 0 . The value 1 indicates that the polynomial in the corresponding column of the input is stable; that is, the magnitudes of all solutions to \(f(x)=0\) are less than 1 . The value 0 indicates that the polynomial in the corresponding column of the input might be unstable; that is, the magnitude of at least one solution to \(f(x)=0\) is greater than or equal to 1 .
The output is always sample based.

\section*{Applications}

This block is most commonly used to check the pole locations of the denominator polynomial, \(A(z)\), of a transfer function, \(H(z)\).

\section*{Polynomial Stability Test}
\[
H(z)=\frac{B(z)}{A(z)}=\frac{b_{1}+b_{2} z^{-1}+\ldots+b_{m} z^{-(m-1)}}{a_{1}+a_{2} z^{-1}+\ldots+a_{n} z^{-(n-1)}}
\]

The poles are the \(n-1\) roots of the denominator polynomial, \(A(z)\). When any poles are located outside the unit circle, the transfer function \(H(z)\) is unstable. As is typical in DSP applications, the transfer function above is specified in descending powers of \(z^{-1}\) rather than \(z\).

Dialog Box

Supported Data Types

Block Parameters: Polynomial Stability Test区
Polynomial Stability Test (mask)
Determines if all roots of the input polynomial lie inside the unit circle. Implemented using the Schur-Cohn algorithm.

- Double-precision floating point
- Single-precision floating point
- Boolean - Block outputs are always Boolean.

See Also
Least Squares Polynomial Fit
Polynomial Evaluation
polyfit
Signal Processing Blockset
Signal Processing Blockset
MATLAB

\section*{Purpose}

Compute Moore-Penrose pseudoinverse of matrix

\section*{Library}

\section*{Description}

Pseudoinverse
(SVD)
Math Functions / Matrices and Linear Algebra / Matrix Inverses dspinverses

The Pseudoinverse block computes the Moore-Penrose pseudoinverse of input matrix \(A\).
\[
[U, S, V]=\operatorname{svd}(A, 0) \quad \% \text { Equivalent MATLAB code }
\]

The pseudoinverse of \(A\) is the matrix \(A^{\dagger}\) such that
\[
A^{\dagger}=V S^{\dagger} U^{*}
\]
where \(U\) and \(V\) are orthogonal matrices, and \(S\) is a diagonal matrix. The pseudoinverse has the following properties:
- \(A A^{\dagger}=\left(A A^{\dagger}\right)^{*}\)
- \(A^{\dagger} A=\left(A^{\dagger} A\right)^{*}\)
- \(A A^{\dagger} A=A\)
- \(A^{\dagger} A A^{\dagger}=A^{\dagger}\)

The output is always sample based.

\section*{Pseudoinverse}

\section*{Dialog \\ Box}


\section*{Show error status port}

Select to enable the E output port, which reports a failure to converge. The possible values you can receive on the port are:
- 0 - The pseudoinverse calculation converges.
- 1 - The pseudoinverse calculation does not converge.

If the pseudoinverse calculation fails to converge, the output at port X is an undefined matrix of the correct size.

\section*{References \\ Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.}

\section*{Supported Data Types}
\begin{tabular}{l|l|}
\hline Port & Supported Data Types \\
\hline A & • Double-precision floating point \\
& • Single-precision floating point \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline X & \(\bullet\) Double-precision floating point \\
& \(\bullet\) Single-precision floating point \\
\hline E & \(\bullet\) Boolean \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Cholesky Inverse & Signal Processing Blockset \\
LDL Inverse & Signal Processing Blockset \\
LU Inverse & Signal Processing Blockset \\
\begin{tabular}{l} 
Singular Value \\
Decomposition \\
inv
\end{tabular} & Signal Processing Blockset \\
& MATLAB
\end{tabular}

See "Matrix Inverses" for related information.

\section*{Pulse Shaping Filter}
\begin{tabular}{ll} 
Purpose & Design pulse shaping filter \\
Library & Filtering / Filter Design Toolbox \\
& dspfdesign
\end{tabular}

\section*{Description}

Pulse Shaping

Dialog Box

This block brings the functionality of the Filter Design Toolbox filterbuilder function to the Simulink environment. You must have a Filter Design Toolbox product license to design filters with this block. However, you can run models containing this block without a license. This allows you to run a model sent to you by a colleague who has designed a filter using this block, even if you do not have the Filter Design Toolbox product.

See "Pulse-shaping Filter Design Dialog Box-Main Pane" in the Filter Design Toolbox documentation for more information about the parameters of this block. The Data Types pane is not available for Filter Design Toolbox blocks in the Signal Processing Blockset product.

Parameters of this block that do not change filter order or structure are tunable. Tunable parameters are enabled during simulation; nontunable parameters are not.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& - Single-precision floating point \\
& • Fixed point \\
& • 8-, 16-, and 32-bit signed integers \\
& • 8-, 16-, and 32-bit unsigned integers \\
\hline Output & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point
\end{tabular}

\section*{Pulse Shaping Filter}

\section*{Port Supported Data Types}
- 8 -, 16-, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

\section*{QR Factorization}

Purpose
Library

\section*{Description}

Factor arbitrary matrix into unitary and upper triangular components
Math Functions / Matrices and Linear Algebra / Matrix Factorizations dspfactors

The QR Factorization block uses a sequence of Householder transformations to triangularize the input matrix \(A\). The block factors a column permutation of the \(M\)-by- \(N\) input matrix \(A\) as
\[
A_{e}=Q R
\]

The column-pivoted matrix \(A_{e}\) contains the columns of \(A\) permuted as indicated by the contents of length- \(N\) permutation vector \(E\).
\[
A_{e}=A(:, E) \quad \% \text { Equivalent MATLAB code }
\]

The block selects a column permutation vector \(E\), which ensures that the diagonal elements of matrix \(R\) are arranged in order of decreasing magnitude.
\[
\left|r_{i+1, j+1}\right|<\left|r_{i, j}\right| \quad i=j
\]

The size of matrices \(Q\) and \(R\) depends on the setting of the Output size parameter:
- When you select Economy for the output size, \(Q\) is an \(M\)-by-min \((M, N)\) unitary matrix, and \(R\) is a \(\min (M, N)\)-by- \(N\) upper-triangular matrix.
\[
[Q R E]=\operatorname{qr}(A, 0) \% \text { Equivalent MATLAB code }
\]
- When you select Full for the output size, \(Q\) is an \(M\)-by- \(M\) unitary matrix, and \(R\) is a \(M\)-by- \(N\) upper-triangular matrix.
```

[Q R E] = qr(A) % Equivalent MATLAB code

```

A length- \(M 1-\mathrm{D}\) vector input is always treated as an \(M\)-by- 1 matrix.

\section*{QR Factorization}

QR factorization is an important tool for solving linear systems of equations because of good error propagation properties and the invertability of unitary matrices:
\[
Q^{-1}=Q^{\prime}
\]
where \(Q^{\prime}\) is the complex conjugate transpose of \(Q\).
Unlike LU and Cholesky factorizations, the matrix \(A\) does not need to be square for QR factorization. However, QR factorization requires twice as many operations as LU Factorization (Gaussian elimination).

\section*{Examples}

The Output size parameter of the QR factorization block has two settings: Economy and Full. When the \(M\)-by- \(N\) input matrix \(A\) has dimensions such that \(M>N\), the dimensions of output matrices \(Q\) and \(R\) differ depending on the setting of the Output size parameter. If, however, the size of the input matrix \(A\) is such that \(M \leq N\), output matrices \(Q\) and \(R\) have the same dimensions, regardless of whether the Output size is set to Economy or Full.

The input to the QR Factorization block in the following model is a 5 -by-2 matrix \(A\). When you change the setting of the Output size parameter from Economy to Full, the dimensions of the output given by the QR Factorization block also change.

1 Open the model by typing doc_qrfactorization_ref at the MATLAB command line.

2 Double-click the QR Factorization block, set the Output size parameter to Economy, and run the model.

\section*{QR Factorization}


The QR Factorization block outputs a 5-by-2 matrix \(Q\) and a 2-by-2 matrix \(R\).

3 Change the Output size parameter of the QR Factorization block to Full and rerun the model.


The QR Factorization block outputs a 5-by-5 matrix \(Q\) and a 5-by-2 matrix \(R\).

\section*{Dialog \\ Box}


\section*{QR Factorization}

\section*{Output size}

Specify the size of output matrices \(Q\) and \(R\) :
- Economy - When this output size is selected, the block outputs an \(M\)-by- \(\min (M, N)\) unitary matrix \(Q\) and a \(\min (M, N)\)-by- \(N\) upper-triangular matrix \(R\).
- Full - When this output size is selected, the block outputs an \(M\)-by- \(M\) unitary matrix \(Q\) and a \(M\)-by- \(N\) upper-triangular matrix \(R\).

\section*{References \\ Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed.} Baltimore, MD: Johns Hopkins University Press, 1996.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& • Single-precision floating point
\end{tabular}

\author{
See Also
}
\begin{tabular}{ll} 
Cholesky Factorization & Signal Processing Blockset \\
LU Factorization & Signal Processing Blockset \\
QR Solver & Signal Processing Blockset \\
Singular Value Decomposition & Signal Processing Blockset \\
qr & MATLAB
\end{tabular}

See "Matrix Factorizations" for related information.

\section*{QR Solver}

\section*{Purpose}

Find minimum-norm-residual solution to \(\mathrm{A} X=\mathrm{B}\)

\section*{Library}

Description


Math Functions / Matrices and Linear Algebra / Linear System Solvers dspsolvers

The QR Solver block solves the linear system \(\mathrm{A} X=\mathrm{B}\), which can be overdetermined, underdetermined, or exactly determined. The system is solved by applying QR factorization to the M-by-N matrix, A , at the A port. The input to the B port is the right side M-by-L matrix, B. A length-M 1-D vector input at either port is treated as an M-by-1 matrix.

\section*{Algorithm}

The output at the x port is the N -by-L matrix, X . X is always sample based, and is chosen to minimize the sum of the squares of the elements of B-AX. When B is a vector, this solution minimizes the vector 2 -norm of the residual ( \(\mathrm{B}-\mathrm{AX}\) is the residual). When B is a matrix, this solution minimizes the matrix Frobenius norm of the residual. In this case, the columns of X are the solutions to the L corresponding systems \(\mathrm{AX}_{\mathrm{k}}=\mathrm{B}_{\mathrm{k}}\), where \(B_{k}\) is the kth column of \(B\), and \(X_{k}\) is the kth column of \(X\).
X is known as the minimum-norm-residual solution to \(\mathrm{AX}=\mathrm{B}\). The minimum-norm-residual solution is unique for overdetermined and exactly determined linear systems, but it is not unique for underdetermined linear systems. Thus when the QR Solver is applied to an underdetermined system, the output \(X\) is chosen such that the number of nonzero entries in X is minimized.

QR factorization factors a column-permuted variant \(\left(\mathrm{A}_{\mathrm{e}}\right)\) of the M-by-N input matrix A as
\[
A_{e}=Q R
\]
where \(Q\) is a \(M-\) by- \(\min (M, N)\) unitary matrix, and \(R\) is a \(\min (M, N)-\) by- \(N\) upper-triangular matrix.
The factored matrix is substituted for \(A_{e}\) in
\[
A_{e} X=B_{\mathrm{e}}
\]

\section*{QR Solver}
and
\[
Q R X=B_{\mathrm{e}}
\]
is solved for X by noting that \(\mathrm{Q}^{-1}=\mathrm{Q}^{*}\) and substituting \(\mathrm{Y}=\mathrm{Q}^{*} \mathrm{~B}_{\mathrm{e}}\). This requires computing a matrix multiplication for Y and solving a triangular system for X.
\[
R X=Y
\]

Dialog Box

\section*{Supported Data Types}

Block Parameters: QR Solver
x
QR Solver (mask)
Solve \(\mathrm{AX}=\mathrm{B}\) using QR factorization. B must have the same number of rows as A.


Cancel
Help
- Double-precision floating point
- Single-precision floating point

\author{
See Also
}
\begin{tabular}{ll} 
Levinson-Durbin & Signal Processing Blockset \\
LDL Solver & Signal Processing Blockset \\
LU Solver & Signal Processing Blockset \\
QR Factorization & Signal Processing Blockset \\
SVD Solver & Signal Processing Blockset
\end{tabular}

See "Linear System Solvers" for related information.
\begin{tabular}{ll} 
Purpose & Discretize input at specified interval \\
Library & \begin{tabular}{l} 
Quantizers \\
dspquant2
\end{tabular} \\
Description & \begin{tabular}{l} 
The Quantizer block is an implementation of the Simulink Quantizer \\
block. See Quantizer for more information.
\end{tabular}
\end{tabular}
\begin{tabular}{ll} 
Purpose & Store inputs in FIFO register \\
Library & \begin{tabular}{l} 
Signal Management / Buffers \\
dspbuff3
\end{tabular}
\end{tabular}

\section*{Description}


The Queue block stores a sequence of input samples in a first in, first out (FIFO) register. The register capacity is set by the Register size parameter, and inputs can be scalars, vectors, or matrices.

The block pushes the input at the In port onto the end of the queue when a trigger event is received at the Push port. When a trigger event is received at the Pop port, the block pops the first element off the queue and holds the Out port at that value. The first input to be pushed onto the queue is always the first to be popped off.


A trigger event at the optional Rst port empties the queue contents. When you select Clear output port on reset, then a trigger event at the Rst port empties the queue and sets the value at the Out port to zero. This setting also applies when a disabled subsystem containing the Queue block is reenabled; the Out port value is only reset to zero in this case when you select Clear output port on reset.

When two or more of the control input ports are triggered at the same time step, the operations are executed in the following order:

1 Rst
2 Push
3 Pop
The rate of the trigger signal must be the same as the rate of the data signal input. You specify the triggering event for the Push, Pop, and Rst ports by the Trigger type pop-up menu:
- Rising edge - Triggers execution of the block when the trigger input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero; see the following figure

- Falling edge - Triggers execution of the block when the trigger input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero; see the following figure

- Either edge - Triggers execution of the block when the trigger input is a Rising edge or Falling edge (as described above).
- Non-zero sample - Triggers execution of the block at each sample time that the trigger input is not zero.

Note When running simulations in the Simulink MultiTasking mode, sample-based trigger signals have a one-sample latency, and frame-based trigger signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a trigger event, and when it applies the trigger. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

Note If your model contains any referenced models that use the Queue block, you cannot simulate the top-level model in Simulink Accelerator mode.

The Push onto full register parameter specifies the block's behavior when a trigger is received at the Push port but the register is full. The Pop empty register parameter specifies the block's behavior when a trigger is received at the Pop port but the register is empty. The following options are available for both cases:
- Ignore - Ignore the trigger event, and continue the simulation.
- Warning - Ignore the trigger event, but display a warning message in the MATLAB Command Window.
- Error - Display an error dialog box and terminate the simulation.

> Note The Push onto full register and Pop empty register parameters are diagnostic parameters. Like all diagnostic parameters on the Configuration Parameters dialog box, they are set to Ignore in the code generated for this block by Real-Time Workshop code generation software.

The Push onto full register parameter additionally offers the Dynamic reallocation option, which dynamically resizes the register to accept as many additional inputs as memory permits. To find out how many elements are on the queue at a given time, enable the Num output port by selecting the Show number of register entries port parameter.

Note When Dynamic reallocation is selected, the System target file parameter on the Real-Time Workshop pane of the Configuration Parameters dialog box must be set to grt_malloc.tlc Generic Real-Time Target with dynamic memory allocation.

\section*{Examples}

\section*{Example 1}

The table below illustrates the Queue block's operation for a Register size of 4, Trigger type of Either edge, and Clear output port on reset enabled. Because the block triggers on both rising and falling edges in this example, each transition from 1 to 0 or 0 to 1 in the Push, Pop, and Rst columns below represents a distinct trigger event. A 1 in the Empty column indicates an empty queue, while a 1 in the Full column indicates a full queue.
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l}
\hline In & Push & Pop & Rst & \multicolumn{2}{|l|}{ Queue } & Out & Empty & Full & Num \\
\hline 1 & 0 & 0 & 0 & top & & & & & bottom & 0 & 1 \\
\hline
\end{tabular}


Note that at the last step shown, the Push and Rst ports are triggered simultaneously. The Rst trigger takes precedence, and the queue is first cleared and then pushed.

\section*{Example 2}

The dspqdemo demo provides another example of the operation of the Queue block.

\section*{Queue}

\section*{Dialog Box}


\section*{Register size}

The number of entries that the FIFO register can hold.

\section*{Trigger type}

The type of event that triggers the block's execution. The rate of the trigger signal must be the same as the rate of the data signal input.

\section*{Push onto full register}

Response to a trigger received at the Push port when the register is full. Inputs to this port must have the same built-in data type as inputs to the Pop and Rst input ports.

When Dynamic reallocation is selected, the System target file parameter on the Real-Time Workshop pane of the Configuration Parameters dialog box must be set to grt_malloc.tlc Generic Real-Time Target with dynamic memory allocation.

\section*{Pop empty register}

Response to a trigger received at the Pop port when the register is empty. Inputs to this port must have the same built-in data type as inputs to the Push and Rst input ports.

\section*{Show empty register indicator port}

Enable the Empty output port, which is high (1) when the queue is empty, and low (0) otherwise.

\section*{Show full register indicator port}

Enable the Full output port, which is high (1) when the queue is full, and low (0) otherwise. The Full port remains low when you select Dynamic reallocation from the Push onto full register parameter.

\section*{Show number of register entries port}

Enable the Num output port, which tracks the number of entries currently on the queue. When inputs to the In port are double-precision values, the outputs from the Num port are double-precision values. Otherwise, the outputs from the Num port are 32 -bit unsigned integer values.

\section*{Show reset port to clear internal stack buffer}

Enable the Rst input port, which empties the queue when the trigger specified by the Trigger type is received. Inputs to this port must have the same built-in data type as inputs to the Push and Pop input ports.

\section*{Clear output port on reset}

Reset the Out port to zero, in addition to clearing the queue, when a trigger is received at the Rst input port.

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline In & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Push & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8-, 16 -, and 32 -bit unsigned integers \\
Inputs to this port must have the same built-in data type as inputs to the Pop and Rst input ports
\end{tabular} \\
\hline Pop & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers \\
Inputs to this port must have the same built-in data type as inputs to the Push and Rst input ports.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Rst & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers \\
Inputs to this port must have the same built-in data type as inputs to the Push and Pop input ports.
\end{tabular} \\
\hline Out & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed only) \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8-, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Empty & \begin{tabular}{l}
- Double-precision floating point \\
- Boolean
\end{tabular} \\
\hline Full & \begin{tabular}{l}
- Double-precision floating point \\
- Boolean
\end{tabular} \\
\hline Num & \begin{tabular}{l}
- Double-precision floating point \\
The block outputs a double-precision floating-point value at this port when the data type of the In port is double-precision floating-point. \\
- 32-bit unsigned integers \\
The block outputs a 32 -bit unsigned integer value at this port when the data type of the In port is anything other than double-precision floating-point.
\end{tabular} \\
\hline
\end{tabular}

\author{
See Also \\ Buffer \\ Delay Line \\ Stack \\ Signal Processing Blockset \\ Signal Processing Blockset \\ Signal Processing Blockset
}

\section*{Purpose \\ Library \\ Description}

Generate randomly distributed values

Signal Processing Sources
```

dspsrcs4

```

The Random Source block generates a frame of M values drawn from a uniform or Gaussian pseudorandom distribution, where you specify M in the Samples per frame parameter.

This reference page contains a detailed discussion of the following Random Source block topics:
- "Distribution Type" on page 2-1073
- "Output Complexity" on page 2-1074
- "Output Repeatability" on page 2-1076
- "Specifying the Initial Seed" on page 2-1076
- "Sample Period" on page 2-1077
- "Dialog Box" on page 2-1078
- "Supported Data Types" on page 2-1081
- "See Also" on page 2-1081

\section*{Distribution Type}

When the Source type parameter is set to Uniform, the output samples are drawn from a uniform distribution whose minimum and maximum values are specified by the Minimum and Maximum parameters, respectively. All values in this range are equally likely to be selected. A length-N vector specified for one or both of these parameters generates an N -channel output (M-by-N matrix) containing a unique random distribution in each channel.

For example, specify
- Minimum \(=\left[\begin{array}{llll}0 & 0 & -3 & -3\end{array}\right]\)

\section*{Random Source}

to generate a four-channel output whose first and second columns contain random values in the range [0,10], and whose third and fourth columns contain random values in the range [-3, 20]. When you specify only one of the Minimum and Maximum parameters as a vector, the block scalar expands the other parameter so it is the same length as the vector.

When the Source type parameter is set to Gaussian, you must also set the Method parameter, which determines the method by which the block computes the output, and has the following settings:
- Ziggurat - Produces Gaussian random values by using the Ziggurat method, which is the same method used by the MATLAB randn function.
- Sum of uniform values - Produces Gaussian random values by adding and scaling uniformly distributed random signals based on the central limit theorem. This theorem states that the probability distribution of the sum of a sufficiently high number of random variables approaches the Gaussian distribution. You must set the Number of uniform values to sum parameter, which determines the number of uniformly distributed random numbers to sum to produce a single Gaussian random value.

For both settings of the Method parameter, the output samples are drawn from the normal distribution defined by the Mean and Variance parameters. A length- N vector specified for one or both of the Mean and Variance parameters generates an N -channel output (M-by-N frame matrix) containing a distinct random distribution in each column. When you specify only one of these parameters as a vector, the block scalar expands the other parameter so it is the same length as the vector.

\section*{Output Complexity}

The block's output can be either real or complex, as determined by the Real and Complex options in the Complexity parameter. These settings control all channels of the output, so real and complex data
cannot be combined in the same output. For complex output with a Uniform distribution, the real and imaginary components in each channel are both drawn from the same uniform random distribution, defined by the Minimum and Maximum parameters for that channel.
For complex output with a Gaussian distribution, the real and imaginary components in each channel are drawn from normal distributions with different means. In this case, the Mean parameter for each channel should specify a complex value; the real component of the Mean parameter specifies the mean of the real components in the channel, while the imaginary component specifies the mean of the imaginary components in the channel. When either the real or imaginary component is omitted from the Mean parameter, a default value of 0 is used for the mean of that component.
For example, a Mean parameter setting of [5+2i 0.5 3i] generates a three-channel output with the following means.
\begin{tabular}{l|l|l}
\hline Channel 1 mean & real \(=5\) & imaginary \(=2\) \\
\hline Channel 2 mean & real \(=0.5\) & imaginary \(=0\) \\
\hline Channel 3 mean & real \(=0\) & imaginary \(=3\) \\
\hline
\end{tabular}

For complex output, the Variance parameter, \(\sigma^{2}\), specifies the total variance for each output channel. This is the sum of the variances of the real and imaginary components in that channel.
\[
\sigma^{2}=\sigma_{\mathrm{Re}}^{2}+\sigma_{\mathrm{Im}}^{2}
\]

The specified variance is equally divided between the real and imaginary components, so that
\[
\begin{aligned}
& \sigma_{\mathrm{Re}}^{2}=\frac{\sigma^{2}}{2} \\
& \sigma_{\operatorname{Im}}^{2}=\frac{\sigma^{2}}{2}
\end{aligned}
\]

\section*{Random Source}

\section*{Output Repeatability}

The Repeatability parameter determines whether or not the block outputs the same signal each time you run the simulation. You can set the parameter to one of the following options:
- Repeatable - Outputs the same signal each time you run the simulation. The first time you run the simulation, the block randomly selects an initial seed. The block reuses these same initial seeds every time you rerun the simulation.
- Specify seed - Outputs the same signal each time you run the simulation. Every time you run the simulation, the block uses the initial seed(s) specified in the Initial seed parameter. Also see "Specifying the Initial Seed" on page 2-1076.
- Not repeatable - Does not output the same signal each time you run the simulation. Every time you run the simulation, the block randomly selects an initial seed.

\section*{Specifying the Initial Seed}

When you set the Repeatability parameter to Specify seed, you must set the Initial seed parameter. The Initial seed parameter specifies the initial seed for the pseudorandom number generator. The generator produces an identical sequence of pseudorandom numbers each time it is executed with a particular initial seed.

\section*{Specifying Initial Seeds for Real Outputs}

To specify the N initial seeds for an N -channel real-valued output,
Complexity parameter set to Real, provide one of the following in the Initial seed parameter:
- Length- N vector of initial seeds - Uses each vector element as an initial seed for the corresponding channel in the N -channel output.
- Single scalar - Uses the scalar to generate N random values, which it uses as the seeds for the N-channel output.

\section*{Random Source}

\section*{Specifying Initial Seeds for Complex Outputs}

To specify the initial seeds for an N-channel complex-valued output, Complexity parameter set to Complex, provide one of the following in the Initial seed parameter:
- Length- N vector of initial seeds - Uses each vector element as an initial seed for generating N channels of real random values. The block uses pairs of adjacent values in each of these channels as the real and imaginary components of the final output, as illustrated in the following figure.
- Single scalar - Uses the scalar to generate N random values, which it uses as the seeds for generating N channels of real random values. The block uses pairs of adjacent values in each of these channels as the real and imaginary components of the final output, as illustrated in the following figure.

\section*{Use Nchannels of real random values to create the N -channel complex random output.}


Channel 1 Ch 2

\section*{Sample Period}

The Sample time parameter value, \(\mathrm{T}_{\mathrm{s}}\), specifies the random sequence sample period when the Sample mode parameter is set to Discrete. In this mode, the block generates the number of samples specified by the Samples per frame parameter value, M, and outputs this frame

\section*{Random Source}
with a period of \(\mathrm{M} * \mathrm{~T}_{\mathrm{s}}\). For \(\mathrm{M}=1\), the output is sample based; otherwise, the output is frame based.

When Sample mode is set to Continuous, the block is configured for continuous-time operation, and the Sample time and Samples per frame parameters are disabled. Note that many Signal Processing Blockset blocks do not accept continuous-time inputs.

Dialog
Box
Only some of the parameters described below are visible in the dialog box at any one time.


Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters During Simulation" in the online Simulink documentation for details.

\section*{Source type}

The distribution from which to draw the random values, Uniform or Gaussian. For more information, see "Distribution Type" on page 2-1073.

\section*{Method}

The method by which the block computes the Gaussian random values, Ziggurat or Sum of uniform values. This parameter is enabled when Source type is set to Gaussian. For more information, see "Distribution Type" on page 2-1073.

\section*{Minimum}

The minimum value in the uniform distribution. This parameter is enabled when you select Uniform from the Source type parameter. Tunable.

\section*{Maximum}

The maximum value in the uniform distribution. This parameter is enabled when you select you select Uniform from the Source type parameter. Tunable.

\section*{Number of uniform values to sum}

The number of uniformly distributed random values to sum to compute a single number in a Gaussian random distribution. This parameter is enabled when the Source type parameter is set to Gaussian, and the Method parameter is set to Sum of uniform values. For more information, see "Distribution Type" on page 2-1073.

\section*{Mean}

The mean of the Gaussian (normal) distribution. This parameter is enabled when you select Gaussian from the Source type parameter. Tunable.

\section*{Variance}

The variance of the Gaussian (normal) distribution. This parameter is enabled when you select Gaussian from the Source type parameter. Tunable.

\section*{Random Source}

\section*{Repeatability}

The repeatability of the block output: Not repeatable, Repeatable, or Specify seed. In the Repeatable and Specify seed settings, the block outputs the same signal every time you run the simulation. For details, see "Output Repeatability" on page 2-1076.

\section*{Initial seed}

The initial seed(s) to use for the random number generator when you set the Repeatability parameter to Specify seed. For details, see "Specifying the Initial Seed" on page 2-1076. Tunable.

\section*{Inherit output port attributes}

When you select this check box, block inherits the sample mode, sample time, output data type, complexity, and signal dimensions of a sample-based signal from a downstream block. When you select this check box, the Sample mode, Sample time, Samples per frame, Output data type, and Complexity parameters are disabled.

Suppose you want to back propagate a 1-D vector. The output of the Random Source block is a length M sample-based 1-D vector, where length \(M\) is inherited from the downstream block. When the Minimum, Maximum, Mean, or Variance parameter specifies N channels, the 1-D vector output contains M/N samples from each channel. An error occurs in this case when M is not an integer multiple of N .

Suppose you want to back propagate a M-by-N signal. When \(\mathrm{N}>1\), your signal has N channels. When \(\mathrm{N}=1\), your signal has M channels. The value of the Minimum, Maximum, Mean, or Variance parameter can be a scalar or a vector of length equal to the number of channels. You can specify these parameters as either row or column vectors, except when the signal is a row vector. In this case, the Minimum, Maximum, Mean, or Variance parameter must also be specified as a row vector.

\section*{Sample mode}

The sample mode, Continuous or Discrete. This parameter is enabled when the Inherit output port attributes check box is cleared.

\section*{Sample time}

The sample period, \(\mathrm{T}_{\mathrm{s}}\), of the random output sequence. The output frame period is \(\mathrm{M}^{*} \mathrm{~T}_{\mathrm{s}}\). This parameter is enabled when the Inherit output port attributes check box is cleared.

\section*{Samples per frame}

The number of samples, M, in each output frame. When the value of this parameter is 1 , the block outputs a sample-based signal.

This parameter is enabled when the Inherit output port attributes check box is cleared.

\section*{Output data type}

The data type of the output, single-precision or double-precision. This parameter is enabled when the Inherit output port attributes check box is cleared.

\section*{Complexity}

The complexity of the output, Real or Complex. This parameter is enabled when the Inherit output port attributes check box is cleared.
\begin{tabular}{ll} 
Supported & - Double-precision floating-point \\
Data & - Single-precision floating-point \\
Types &
\end{tabular}

\author{
See Also
}

Discrete Impulse
Maximum
Minimum

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

\section*{Random Source}
\begin{tabular}{ll} 
Signal From & Signal Processing Blockset \\
Workspace & \\
Standard Deviation & Signal Processing Blockset \\
Variance & Signal Processing Blockset \\
Constant & Simulink \\
Random Number & Simulink \\
Signal Generator & Simulink \\
rand & MATLAB \\
randn & MATLAB
\end{tabular}

\section*{Purpose \\ Library \\ Description \\ Real Gepstrum}

Compute real cepstrum of input

Transforms
dspxfrm3

The Real Cepstrum block computes the real cepstrum of each channel in the real-valued M-by-N input matrix, u. For both sample-based and frame-based inputs, the block assumes that each input column is a frame containing M consecutive samples from an independent channel. The block does not accept complex-valued inputs.

The output is a real \(M_{0}\)-by-N matrix, where you specify \(M_{0}\) in the FFT length parameter. Each output column contains the length- \(\mathrm{M}_{\mathrm{o}}\) real cepstrum of the corresponding input column.
```

y = real(ifft(log(abs(fft(u,Mo)))))

```
or, more compactly,
\[
y=\operatorname{rceps}(u, M o)
\]

When you select the Inherit FFT length from input port dimensions check box, the output frame size matches the input frame size \(\left(\mathrm{M}_{\mathrm{o}}=\mathrm{M}\right)\). In this case, a sample-based length- M row vector input is processed as a single channel, that is, as an M-by- 1 column vector, and the output is a length-M row vector. A 1-D vector input is always processed as a single channel, and the output is a 1-D vector.

The output is always sample based, and the output port rate is the same as the input port rate.

\section*{Real Cepstrum}

\section*{Dialog \\ Box}


\section*{Inherit FFT length from input port dimensions}

When selected, matches the output frame size to the input frame size.

\section*{FFT length}

The number of frequency points at which to compute the FFT, which is also the output frame size, \(\mathrm{M}_{0}\). This parameter is available when you do not select Inherit FFT length from input port dimensions.

\section*{Supported Data Types}
- Double-precision floating point
- Single-precision floating point
See Also \begin{tabular}{lll} 
Complex Cepstrum & Signal Processing Blockset \\
DCT & Signal Processing Blockset \\
FFT & Signal Processing Blockset \\
& rceps & Signal Processing Toolbox
\end{tabular}

Purpose
Compute reciprocal condition of square matrix in 1-norm

\section*{Library}

Description


Math Functions / Matrices and Linear Algebra / Matrix Operations dspmtrx3

The Reciprocal Condition block computes the reciprocal of the condition number for a square input matrix A.
\[
y=\operatorname{rcond}(A) \quad \% \text { Equivalent MATLAB code }
\]
or
\[
y=\frac{1}{\kappa}=\frac{1}{\left\|A^{-1}\right\|_{1}\|A\|_{1}}
\]
where k is the condition number ( \(\mathrm{k} \geq 1\) ), and \(y\) is the scalar sample-based output ( \(0 \leq y<1\) ).

The matrix 1-norm, \(\|A\|_{1}\), is the maximum column-sum in the M-by-M matrix A.
\[
\|A\|_{1}=1 \leq j \leq M \sum_{i=1}^{M}\left|a_{i j}\right|
\]

For a 3-by-3 matrix:

\section*{Reciprocal Condition}


Dialog Box

\section*{Block Parameters: Reciprocal Condition}

区
Reciprocal Condition (mask)
Estimates the reciprocal of the condition of a square input matrix in the 1 -norm. If input is well conditioned, the output is near 1.0. If input is badly conditioned, output is near 0.0 .


Help

Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.

Supported
Data Types

\section*{See Also}
\begin{tabular}{ll} 
Matrix 1-Norm & Signal Processing Blockset \\
Normalization & Signal Processing Blockset \\
rcond & MATLAB
\end{tabular}

\section*{Remez FIR Filter Design (Obsolete)}

\section*{Purpose}

Design and apply equiripple FIR filter

\section*{Library}
dspobslib
Description
 this block with the Digital Filter block.

Note The Remez FIR Filter Design block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing

The Remez FIR Filter Design block implements the Parks-McClellan algorithm to design and apply a linear-phase filter with an arbitrary multiband magnitude response. The filter design, which uses the Signal Processing Toolbox firpm function, minimizes the maximum error between the desired frequency response and the actual frequency response. Such filters are called equiripple due to the equiripple behavior of their approximation error. The block applies the filter to a discrete-time input using the Direct-Form II Transpose Filter block.

An M-by-N sample-based matrix input is treated as \(\mathrm{M} * \mathrm{~N}\) independent channels, and an M-by-N frame-based matrix input is treated as N independent channels. In both cases, the block filters each channel independently over time, and the output has the same size and frame status as the input.

The Filter type parameter allows you to specify one of the following filters:
- Multiband

The multiband filter has an arbitrary magnitude response and linear phase.
- Differentiator

The differentiator filter approximates the ideal differentiator. Differentiators are antisymmetric FIR filters with approximately linear magnitude responses. To obtain the correct derivative, scale

\section*{Remez FIR Filter Design (Obsolete)}
the Gains at these frequencies vector by \(n \mathrm{~F}_{\mathrm{s}} \mathrm{rad} / \mathrm{s}\), where \(\mathrm{F}_{\mathrm{s}}\) is the sample frequency in Hertz.
- Hilbert Transformer

The Hilbert transformer filter approximates the ideal Hilbert transformer. Hilbert transformers are antisymmetric FIR filters with approximately constant magnitude.

The Band-edge frequency vector parameter is a vector of frequency points in the range 0 to 1 , where 1 corresponds to half the sample frequency. Each band is defined by the two bounding frequencies, so this vector must have even length. Frequency points must appear in ascending order. The Gains at these frequencies parameter is a vector of the same size containing the desired magnitude response at the corresponding points in the Band-edge frequency vector.
Each odd-indexed frequency-amplitude pair defines the left endpoint of a line segment representing the desired magnitude response in that frequency band. The corresponding even-indexed frequency-amplitude pair defines the right endpoint. Between the frequency bands specified by these end-points, there may be undefined sections of the specified frequency response. These are called "don't care" or "transition" regions, and the magnitude response in these areas is a by-product of the optimization in the other specified frequency ranges.

\section*{Remez FIR Filter Design (Obsolete)}


The Weights parameter is a vector that specifies the emphasis to be placed on minimizing the error in certain frequency bands relative to others. This vector specifies one weight per band, so it is half the length of the Band-edge frequency vector and Gains at these frequencies vectors.

In most cases, differentiators and Hilbert transformers have only a single band, so the weight is a scalar value that does not affect the final filter. However, the Weights parameter is useful when using the block to design an antisymmetric multiband filter, such as a Hilbert transformer with stopbands.

\section*{Examples}

\section*{Example 1: Multiband}

Consider a lowpass filter with a transition band in the normalized frequency range 0.4 to 0.5 , and 10 times greater error minimization in the stopband than in the passband.
In this case:
- Filter type = Multiband

\section*{Remez FIR Filter Design (Obsolete)}
- Band-edge frequency vector \(=\left[\begin{array}{llll}0 & 0.4 & 0.5 & 1\end{array}\right]\)
- Gains at these frequencies \(=\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right]\)
- Weights \(=\left[\begin{array}{ll}1 & 10\end{array}\right]\)

\section*{Example 2: Differentiator}

Assume the specifications for a differentiator filter require it to have order 21. The "ramp" response extends over the entire frequency range. In this case, specify:
- Filter type = Differentiator
- Band-edge frequency vector \(=\left[\begin{array}{ll}0 & 1\end{array}\right]\)
- Gains at these frequencies \(=[0 \mathrm{pi}\) Fs \(]\)
- Filter order \(=21\)

For a type III even order filter, the differentiation band should stop short of half the sample frequency. For example, if the filter order is 20 , you could specify the block parameters as follows:
- Filter type = Differentiator
- Band-edge frequency vector \(=\left[\begin{array}{ll}0 & 0.9\end{array}\right]\)
- Gains at these frequencies \(=\left[\begin{array}{ll}0 & 0.9 * p i * F s\end{array}\right]\)
- Filter order \(=20\)

\section*{Remez FIR Filter Design (Obsolete)}

\section*{Dialog} Box
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Function Block Parameters: Remez FIR Filter Design} & X \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Remez FIR Filter Design (mask) (link) \\
Parks-McClellan linear phase FIR filter.
\end{tabular}}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{Parameters} \\
\hline \multicolumn{5}{|l|}{Filter type \(\square\)} \\
\hline \multicolumn{5}{|l|}{Band-edge frequency vector (including 0 and 1):} \\
\hline \multicolumn{5}{|l|}{[00.40.51]} \\
\hline \multicolumn{5}{|l|}{Gains at these frequencies:} \\
\hline \multicolumn{5}{|l|}{[1100]} \\
\hline \multicolumn{5}{|l|}{Weights (one per band):} \\
\hline \multicolumn{5}{|l|}{[11]} \\
\hline \multicolumn{5}{|l|}{Filter order:} \\
\hline \multicolumn{5}{|l|}{23} \\
\hline QK & Cancel & & Apply & \\
\hline
\end{tabular}

\section*{Filter type}

The filter type. Tunable.

\section*{Band-edge frequency vector}

A vector of frequency points, in ascending order, in the range 0 to 1 . The value 1 corresponds to half the sample frequency. This vector must have even length. Tunable.

\section*{Gains at these frequencies}

A vector of frequency-response magnitudes corresponding to the points in the Band-edge frequency vector. This vector must be the same length as the Band-edge frequency vector. Tunable.

\section*{Weights}

A vector containing one weight for each frequency band. This vector must be half the length of the Band-edge frequency and Gains at these frequencies vectors. Tunable.

\section*{Remez FIR Filter Design (Obsolete)}

\author{
Filter order \\ The filter order.
}

References Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

\section*{Purpose \\ Library \\ Description \\ \begin{tabular}{c} 
Repert \\
\(5 \times \mathrm{x}\) \\
\hline
\end{tabular}}

Resample input at higher rate by repeating values

Signal Operations
dspsigops
The Repeat block upsamples each channel of the \(M_{i}\)-by-N input to a rate \(L\) times higher than the input sample rate by repeating each consecutive input sample L times at the output. You specify the integer L in the Repetition count parameter.

This block supports triggered subsystems if, for Frame-based mode, you select Maintain input frame rate.

\section*{Sample-Based Operation}

When the input is sample based, the block treats each of the \(\mathrm{M} * \mathrm{~N}\) matrix elements as an independent channel, and upsamples each channel over time. The Frame-based mode parameter must be set to Maintain input frame size. The output sample rate is L times higher than the input sample rate \(\left(\mathrm{T}_{\mathrm{so}}=\mathrm{T}_{\mathrm{si}} / \mathrm{L}\right)\), and the input and output sizes are identical.

\section*{Frame-Based Operation}

When the input is frame based, the block treats each of the N input columns as a frame containing \(\mathrm{M}_{\mathrm{i}}\) sequential time samples from an independent channel. The block upsamples each channel independently by repeating each row of the input matrix \(L\) times at the output. The Frame-based mode parameter determines how the block adjusts the rate at the output to accommodate the repeated rows. There are two available options:
- Maintain input frame size

The block generates the output at the faster (upsampled) rate by using a proportionally shorter frame period at the output port than at the input port. For \(L\) repetitions of the input, the output frame period is L times shorter than the input frame period ( \(\mathrm{T}_{\mathrm{fo}_{\mathrm{o}}}=\mathrm{T}_{\mathrm{fi}} / \mathrm{L}\) ), but the input and output frame sizes are equal.

\section*{Repeat}

The model below shows a single-channel input with a frame period of 1 second being upsampled through 4 -times repetition to a frame period of 0.25 second. The input and output frame sizes are identical.

- Maintain input frame rate

The block generates the output at the faster (upsampled) rate by using a proportionally larger frame size than the input. For L repetitions of the input, the output frame size is \(L\) times larger than the input frame size \(\left(\mathrm{M}_{\mathrm{o}}=\mathrm{M}_{\mathrm{i}}{ }^{*} \mathrm{~L}\right)\), but the input and output frame rates are equal.

The model below shows a single-channel input of frame size 16 being upsampled through 4 -times repetition to a frame size of 64 . The input and output frame rates are identical.


\section*{Zero Latency}

The Repeat block has zero-tasking latency for all single-rate operations. The block is single-rate for the particular combinations of sampling mode and parameter settings shown in the table below.
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Sampling \\
Mode
\end{tabular} & Parameter Settings \\
\hline \begin{tabular}{l} 
Sample \\
based
\end{tabular} & Repetition count parameter, L, is 1. \\
\hline Frame based & \begin{tabular}{l} 
Repetition count parameter, L, is 1, or \\
Frame-based mode parameter is Maintain input \\
frame rate.
\end{tabular} \\
\hline
\end{tabular}

The block also has zero latency for all multirate operations in the Simulink single-tasking mode.
Zero-tasking latency means that the block repeats the first input (received at \(t=0\) ) for the first L output samples, the second input for the next L output samples, and so on. The Initial condition parameter value is not used.

\section*{Nonzero Latency}

The Repeat block has tasking latency only for multirate operation in the Simulink multitasking mode:
- In sample-based mode, the initial condition for each channel is repeated for the first \(L\) output samples. The channel's first input appears as output sample L+1. The Initial condition value can be an \(\mathrm{M}_{\mathrm{i}}\)-by- N matrix containing one value for each channel, or a scalar to be applied to all signal channels.
- In frame-based mode, the first row of the initial condition matrix is repeated for the first \(L\) output samples, the second row of the initial condition matrix is repeated for the next L output samples, and so on. The first row of the first input matrix appears in the output as sample \(M_{i} L+1\). The Initial condition value can be an \(M_{i}-\) by \(-N\) matrix, or a scalar to be repeated across all elements of the \(\mathrm{M}_{\mathrm{i}}-\mathrm{by}-\mathrm{N}\) matrix. See the example below for an illustration of this case.

\section*{Repeat}

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

\section*{Examples Construct the frame-based model shown below.}


Adjust the block parameters as follows.
- Configure the Signal From Workspace block to generate a two-channel signal with frame size of 4 and sample period of 0.25 . This represents an output frame period of \(1\left(0.25^{*} 4\right)\). The first channel should contain the positive ramp signal \(1,2, \ldots, 100\), and the second channel should contain the negative ramp signal \(-1,-2\), ..., -100.
- Signal \(=\left[(1: 100)^{\prime}(-1:-1:-100)^{\prime}\right]\)
- Sample time \(=0.25\)
- Samples per frame \(=4\)
- Configure the Repeat block to upsample the two-channel input by increasing the output frame rate by a factor of 2 relative to the input frame rate. Set an initial condition matrix of
\(\left[\begin{array}{ll}11 & -11 \\ 12 & -12 \\ 13 & -13 \\ 14 & -14\end{array}\right]\)
- Repetition count \(=2\)
- Initial condition \(=\left[\begin{array}{lllll}11 & -11 ; 12 & -12 ; 13 & -13 ; 14 & -14\end{array}\right]\)
- Frame-based mode = Maintain input frame size
- Configure the Probe blocks by clearing the Probe width and Probe complex signal check boxes (if desired).

This model is multirate because there are at least two distinct sample rates, as shown by the two Probe blocks. To run this model in the Simulink multitasking mode, in the Solver pane of the Configuration Parameters dialog box, set the Type list to Fixed-step and set the Solver list to Discrete (no continuous states). For the Tasking mode for periodic sample times parameter, select MultiTasking. Also set the Stop time to 30 .

Run the model and look at the output, yout. The first few samples of each channel are shown below.
```

yout =
11-11
11 -11
12 -12
12 -12
13-13
13-13
14 -14
14 -14
1 -1
1 -1
2 -2
2-2

```

\section*{Repeat}
\begin{tabular}{ll}
3 & -3 \\
3 & -3 \\
4 & -4 \\
4 & -4 \\
5 & -5 \\
5 & -5
\end{tabular}

Since we ran this frame-based multirate model in multitasking mode, the block repeats each row of the initial condition matrix for \(L\) output samples, where L is the Repetition count of 2. The first row of the first input matrix appears in the output as sample 9 , that is, sample \(M_{i} L+1\), where \(M_{i}\) is the input frame size.

\section*{Dialog Box}
\begin{tabular}{|c|c|c|}
\hline 國Block Parameters: Repeat & & ? \({ }^{\text {] }}\) \\
\hline \multicolumn{3}{|l|}{Repeat (mask) (link)} \\
\hline \multicolumn{3}{|l|}{Repeat input samples N times.} \\
\hline \multicolumn{3}{|l|}{Parameters} \\
\hline \multicolumn{3}{|l|}{Repetition count:} \\
\hline \multicolumn{3}{|l|}{5} \\
\hline \multicolumn{3}{|l|}{Initial conditions:} \\
\hline \multicolumn{3}{|l|}{0} \\
\hline Frame-based mode: Maintain input frame size & & \(\nabla\) \\
\hline QK Cancel & Help & Apply \\
\hline
\end{tabular}

\section*{Repetition count}

The integer number of times, \(L\), that the input value is repeated at the output. This is the factor by which the output frame size or sample rate is increased.

\section*{Initial conditions}

The value with which the block is initialized for cases of nonzero latency; a scalar or matrix.

\section*{Frame-based mode}

For frame-based operation, the method by which to implement the repetition (upsampling): Maintain input frame size that is, increase the frame rate, or Maintain input frame rate, that is, increase the frame size. The Frame-based mode parameter must be set to Maintain input frame size for sample-base inputs.

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Input & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8-, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Output & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}

FIR Interpolation
Upsample

Signal Processing Blockset
Signal Processing Blockset

\section*{RLS Adaptive Filter (Obsolete)}

\section*{Purpose}

Library

\section*{Description}


Compute filter estimates for input using RLS adaptive filter algorithm
dspobslib

Note The RLS Adaptive Filter block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the RLS Filter block.

The RLS Adaptive Filter block recursively computes the recursive least squares (RLS) estimate of the FIR filter coefficients.

The corresponding RLS filter is expressed in matrix form as
\[
\begin{aligned}
& k(n)=\frac{\lambda^{-1} P(n-1) u(n)}{1+\lambda^{-1} u^{H}(n) P(n-1) u(n)} \\
& y(n)=\hat{w}^{H}(n-1) u(n) \\
& e(n)=d(n)-y(n) \\
& \hat{w}(n)=\widehat{w}(n-1)+k(n) e^{*}(n) \\
& P(n)=\lambda^{-1} P(n-1)-\lambda^{-1} k(n) u^{H}(n) P(n-1)
\end{aligned}
\]
where \(\lambda^{-1}\) denotes the reciprocal of the exponential weighting factor. The variables are as follows
\begin{tabular}{l|l}
\hline Variable & Description \\
\hline\(n\) & The current algorithm iteration \\
\hline\(u(n)\) & The buffered input samples at step \(n\) \\
\hline\(P(n)\) & The inverse correlation matrix at step \(n\) \\
\hline\(k(n)\) & The gain vector at step \(n\) \\
\hline\(\hat{w}(n)\) & The vector of filter-tap estimates at step \(n\) \\
\hline
\end{tabular}

\section*{RLS Adaptive Filter (Obsolete)}
\begin{tabular}{l|l}
\hline Variable & Description \\
\hline\(y(n)\) & The filtered output at step \(n\) \\
\hline\(e(n)\) & The estimation error at step \(n\) \\
\hline\(d(n)\) & The desired response at step \(n\) \\
\hline\(\lambda\) & The exponential memory weighting factor \\
\hline
\end{tabular}

The block icon has port labels corresponding to the inputs and outputs of the RLS algorithm. Note that inputs to the In and Err ports must be sample-based scalars. The signal at the Out port is a scalar, while the signal at the Taps port is a sample-based vector.
\begin{tabular}{l|l}
\hline Block Ports & Corresponding Variables \\
\hline In & \begin{tabular}{l}
\(u\), the scalar input, which is internally buffered into \\
the vector \(u(n)\)
\end{tabular} \\
\hline Out & \(y(n)\), the filtered scalar output \\
\hline Err & \(e(n)\), the scalar estimation error \\
\hline Taps & \(\hat{w}(0)\), the vector of filter-tap estimates \\
\hline
\end{tabular}

An optional Adapt input port is added when you select the Adapt input check box in the dialog box. When this port is enabled, the block continuously adapts the filter coefficients while the Adapt input is nonzero. A zero-valued input to the Adapt port causes the block to stop adapting, and to hold the filter coefficients at their current values until the next nonzero Adapt input.

The implementation of the algorithm in the block is optimized by exploiting the symmetry of the inverse correlation matrix \(P(n)\). This decreases the total number of computations by a factor of two.
The FIR filter length parameter specifies the length of the filter that the RLS algorithm estimates. The Memory weighting factor corresponds to \(\lambda\) in the equations, and specifies how quickly the filter

\section*{RLS Adaptive Filter (Obsolete)}
"forgets" past sample information. Setting \(\lambda=1\) specifies an infinite memory; typically, \(0.95 \leq \lambda \leq 1\).

The Initial value of filter taps specifies the initial value \(\widehat{w}(0)\) as a vector, or as a scalar to be repeated for all vector elements. The initial value of \(P(n)\) is
\[
I \frac{1}{\hat{\sigma}^{2}}
\]
where you specify \(\hat{\sigma}^{2}\) in the Initial input variance estimate parameter.

\section*{Examples}

The rlsdemo demo illustrates a noise cancellation system built around the RLS Adaptive Filter block.

\section*{RLS Adaptive Filter (Obsolete)}

\section*{Dialog Box}


\section*{FIR filter length}

The length of the FIR filter.

\section*{Memory weighting factor}

The exponential weighting factor, in the range [ 0,1 ]. A value of 1 specifies an infinite memory. Tunable.

\section*{Initial value of filter taps}

The initial FIR filter coefficients.

\section*{Initial input variance estimate}

The initial value of \(1 / \mathrm{P}(n)\).

\section*{Adapt input}

Enables the Adapt port.

\section*{RLS Adaptive Filter (Obsolete)}

\author{
References Haykin, S. Adaptive Filter Theory. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996. \\ Supported - Double-precision floating point Data \\ - Single-precision floating point \\ See Also \\ \begin{tabular}{ll} 
Kalman Adaptive & Signal Processing Blockset \\
Filter (Obsolete) & \\
LMS Adaptive Filter & Signal Processing Blockset \\
(Obsolete) &
\end{tabular}
}

See "Adaptive Filters" for related information.

\section*{Purpose}

\section*{Library}

\section*{Description}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\gg\) Input} \\
\hline \(>\) Desired & & Output \\
\hline \(\rangle\) Lambda & RLS & Eror \\
\hline \(\rangle\) Reset & & \\
\hline A Adapt & & - \\
\hline
\end{tabular}

Compute filtered output, filter error, and filter weights for given input and desired signal using RLS adaptive filter algorithm

Filtering / Adaptive Filters
dspadpt3
The RLS Filter block recursively computes the least squares estimate (RLS) of the FIR filter weights. The block estimates the filter weights, or coefficients, needed to convert the input signal into the desired signal. Connect the signal you want to filter to the Input port. This input signal can be a sample-based scalar or a single-channel frame-based signal. Connect the signal you want to model to the Desired port. The desired signal must have the same data type, frame status, complexity, and dimensions as the input signal. The Output port outputs the filtered input signal, which can be sample or frame based. The Error port outputs the result of subtracting the output signal from the desired signal.

The corresponding RLS filter is expressed in matrix form as
\[
\begin{aligned}
& \mathbf{k}(n)=\frac{\lambda^{-1} \mathbf{P}(n-1) \mathbf{u}(n)}{1+\lambda^{-1} \mathbf{u}^{H}(n) \mathbf{P}(n-1) \mathbf{u}(n)} \\
& y(n)=\mathbf{w}(n-1) \mathbf{u}(n) \\
& e(n)=d(n)-y(n) \\
& \mathbf{w}(n)=\mathbf{w}(n-1)+\mathbf{k}^{H}(n) e(n) \\
& \mathbf{P}(n)=\lambda^{-1} \mathbf{P}(n-1)-\lambda^{-1} \mathbf{k}(n) \mathbf{u}^{H}(n) \mathbf{P}(n-1)
\end{aligned}
\]
where \(\lambda^{-1}\) denotes the reciprocal of the exponential weighting factor. The variables are as follows
\begin{tabular}{l|l}
\hline Variable & Description \\
\hline\(n\) & The current time index \\
\hline \(\mathbf{u}(n)\) & The vector of buffered input samples at step \(n\) \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Variable & Description \\
\hline \(\mathbf{P}(n)\) & The inverse correlation matrix at step \(n\) \\
\hline \(\mathbf{k}(n)\) & The gain vector at step \(n\) \\
\hline \(\mathbf{w}(n)\) & The vector of filter-tap estimates at step \(n\) \\
\hline\(y(n)\) & The filtered output at step \(n\) \\
\hline\(e(n)\) & The estimation error at step \(n\) \\
\hline\(d(n)\) & The desired response at step \(n\) \\
\hline\(\lambda\) & The forgetting factor \\
\hline
\end{tabular}

The implementation of the algorithm in the block is optimized by exploiting the symmetry of the inverse correlation matrix \(P(n)\). This decreases the total number of computations by a factor of two.
Use the Filter length parameter to specify the length of the filter weights vector.

The Forgetting factor ( \(\mathbf{0}\) to \(\mathbf{1}\) ) parameter corresponds to \(\lambda\) in the equations. It specifies how quickly the filter "forgets" past sample information. Setting \(\lambda=1\) specifies an infinite memory. Typically, \(1-\frac{1}{2 L}<\lambda<1\), where \(L\) is the filter length. You can specify a forgetting fact \(2 \nmid\) using the input port, Lambda, or enter a value in the Forgetting factor (0 to 1) parameter in the Block Parameters: RLS Filter dialog box.

Enter the initial filter weights, \(\widehat{w}(0)\), as a vector or a scalar for the Initial value of filter weights parameter. When you enter a scalar, the block uses the scalar value to create a vector of filter weights. This vector has length equal to the filter length and all of its values are equal to the scalar value.
The initial value of \(P(n)\) is
\[
\frac{1}{\sigma^{2}} I
\]
where you specify \(\sigma^{2}\) in the Initial input variance estimate parameter.
When you select the Adapt port check box, an Adapt port appears on the block. When the input to this port is nonzero, the block continuously updates the filter weights. When the input to this port is zero, the filter weights remain at their current values.

When you want to reset the value of the filter weights to their initial values, use the Reset input parameter. The block resets the filter weights whenever a reset event is detected at the Reset port. The reset signal rate must be the same rate as the data signal input.
From the Reset input list, select None to disable the Reset port. To enable the Reset port, select one of the following from the Reset input list:
- Rising edge - Triggers a reset operation when the Reset input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero; see the following figure

\section*{RLS Filter}

- Falling edge - Triggers a reset operation when the Reset input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero; see the following figure

- Either edge - Triggers a reset operation when the Reset input is a Rising edge or Falling edge, as described above
- Non-zero sample - Triggers a reset operation at each sample time that the Reset input is not zero

> Note When running simulations in the Simulink MultiTasking mode, sample-based reset signals have a one-sample latency, and frame-based reset signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a reset event, and when it applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

Select the Output filter weights check box to create a Wts port on the block. For each iteration, the block outputs the current updated filter weights from this port.

Examples The rlsdemo demo illustrates a noise cancellation system built around the RLS Filter block.

\section*{Dialog \\ Box}


\section*{Filter length}

Enter the length of the FIR filter weights vector.

\section*{Specify forgetting factor via}

Select Dialog to enter a value for the forgetting factor in the Block parameters: RLS Filter dialog box. Select Input port to specify the forgetting factor using the Lambda input port.

\section*{Forgetting factor (0 to 1)}

Enter the exponential weighting factor in the range \(0 \leq \lambda \leq 1\). A value of 1 specifies an infinite memory. Tunable.

\section*{Initial value of filter weights}

Specify the initial values of the FIR filter weights.

\section*{Initial input variance estimate \\ The initial value of \(1 / \mathrm{P}(n)\).}

\section*{Adapt port}

Select this check box to enable the Adapt input port.

\section*{Reset input}

Select this check box to enable the Reset input port.

\section*{Output filter weights}

Select this check box to export the filter weights from the Wts port.

\section*{References \\ Hayes, M.H. Statistical Digital Signal Processing and Modeling. New York: John Wiley \& Sons, 1996.}

\section*{Supported - Double-precision floating point Data \\ - Single-precision floating point}

\section*{See Also}

Kalman Adaptive Filter (Obsolete) LMS Filter

Block LMS Filter
Fast Block LMS Filter

Signal Processing Blockset

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

See "Adaptive Filters" for related information.


Compute root-mean-square value of input or sequence of inputs

\section*{Statistics}
dspstat3

The RMS block computes the RMS value of each row or column of the input, along vectors of a specified dimension of the input, or of the entire input. The RMS block can also track the RMS value in a sequence of inputs over a period of time. The Running RMS parameter selects between basic operation and running operation.

\section*{Basic Operation}

When you do not select the Running RMS check box, the block computes the RMS value of each row or column of the input, along vectors of a specified dimension of the input, or of the entire input at each individual sample time, and outputs the array \(y\). Each element in \(y\) is the RMS value of the corresponding column, row, vector, or entire input. The output \(y\) depends on the setting of the Find the RMS value over parameter. For example, consider a 3-dimensional input signal of size \(M\)-by- \(N\)-by- \(P\) :
- Entire input - The output at each sample time is a scalar that contains the RMS value of the entire input. In this mode, the output is always sample based.
- Each row - The output at each sample time consists of an \(M\)-by-1-by- \(P\) array, where each element contains the RMS value of each vector over the second dimension of the input. For an input that is an \(M\)-by- \(N\) matrix, the output at each sample time is an \(M\)-by- 1 column vector. In this mode, the frame status of the output is the same as that of the input.
- Each column - The output at each sample time consists of a 1-by- \(N\)-by- \(P\) array, where each element contains the RMS value of each vector over the first dimension of the input. For an input that is an \(M\)-by- \(N\) matrix, the output at each sample time is a 1 -by- \(N\)
row vector. In this mode, the frame status of the output is the same as that of the input.
For convenience, length-M 1-D vector inputs are treated as \(M\)-by-1 column vectors when the block is in this mode. Sample-based length- \(M\) row vector inputs are also treated as \(M\)-by- 1 column vectors when the Treat sample-based row input as a column check box is selected.
- Specified dimension - The output at each sample time depends on Dimension. If Dimension is set to 1 , the output is the same as that when you select Each column. If Dimension is set to 2, the output is the same as when you select Each row. If Dimension is set to 3, the output at each sample time is an \(M\)-by- \(N\) matrix containing the RMS value of each vector over the third dimension of the input. In this mode, the frame status of the output is the same as that of the input.

The RMS value of the \(j\) th column of an \(M\)-by- \(N\) input matrix \(u\) is given by
\[
\begin{aligned}
& y_{j}=\sqrt{\frac{\sum_{i=1}^{M}\left|u_{i j}\right|^{2}}{M}} \quad 1 \leq j \leq N \\
& \mathrm{y}
\end{aligned}=\operatorname{sqrt}(\operatorname{sum}(\mathrm{u} . * \operatorname{conj}(\mathrm{u})) / \operatorname{size}(\mathrm{u}, 1)) \quad \% \text { Equivalent MATLAB code } \quad \text { ) }
\]

\section*{Running Operation}

When you select the Running RMS check box, the block tracks the RMS value of successive inputs to the block. For sample-based \(M\)-by- \(N\) inputs, the output is a sample-based \(M\)-by- \(N\) matrix, with each element \(y_{i j}\) containing the RMS value of element \(u_{i j}\) over all inputs since the last reset. For frame-based \(M\)-by- \(N\) inputs, the output is a frame-based \(M\)-by- \(N\) matrix with each element \(y_{i j}\) containing the RMS value of the \(j\) th column over all inputs since the last reset, up to and including element \(u_{i j}\) of the current input.

N-D signals cannot be frame based. When the Running RMS check box is selected, each element of the N-D signal is treated as a separate channel.

There are \(\prod d_{i}\) channels, where \(d_{i}\) is the size of the \(i\) th dimension.

\section*{Resetting the Running RMS}

The block resets the running RMS whenever a reset event is detected at the optional Rst port. The reset sample time must be a positive integer multiple of the input sample time.

When the block is reset for sample-based inputs, the running RMS for each channel is initialized to the value in the corresponding channel of the current input. For frame-based inputs, the running RMS for each channel is initialized to the earliest value in each channel of the current input.

You specify the reset event in the Reset port parameter:
- None disables the Rst port.
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge, as described earlier
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port rate before the block applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

\section*{Examples}

The RMS block in the next model calculates the running RMS of a frame-based 3 -by- 2 (two-channel) matrix input, u. The running RMS is reset at \(t=2\) by an impulse to the block's Rst port.


The RMS block has the following settings:
- Running RMS = Select this check box.
- Reset port \(=\) Non-zero sample

The Signal From Workspace block has the following settings:
- Signal = dsp_examples_u
- Sample time \(=1 / 3\)
- Samples per frame \(=3\)
where
```

dsp_examples_u = [lllllllllllllllllllllllllllll

```

The Discrete Impulse block has the following settings:
- Delay (samples) \(=2\)
- Sample time = 1
- Samples per frame \(=1\)

The block's operation is shown in the next figure.


\section*{Dialog Box}


\section*{Running RMS}

Enables running operation when selected.

\section*{Reset port}

Determines the reset event that causes the block to reset the running RMS. The reset signal rate must be a positive integer multiple of the rate of the data signal input. This parameter is enabled only when you set the Running RMS parameter. For more information, see "Resetting the Running RMS" on page 2-1114.

\section*{Find the RMS value over}

Specify whether to find the RMS value along rows, columns, entire input, or the dimension specified in the Dimension parameter. For more information, see "Basic Operation" on page 2-1112.

\section*{Treat sample-based row input as a column}

Select to treat sample-based length- \(M\) row vector inputs as \(M\)-by- 1 column vectors. This parameter is only visible when the Find the RMS value over parameter is set to Each column.

\section*{Dimension}

Specify the dimension (one-based value) of the input signal, over which the RMS value is computed. The value of this parameter
cannot exceed the number of dimensions in the input signal. This parameter is only visible when the Find the RMS value over parameter is set to Specified dimension.

\author{
Supported Data Types \\ - Double-precision floating point \\ - Single-precision floating point \\ - Boolean - The block accepts Boolean inputs to the Rst port. \\ See Also \\ Mean \\ Variance \\ Signal Processing Blockset \\ Signal Processing Blockset
}

\section*{Sample and Hold}


Sample and hold input signal

Signal Operations
dspsigops

The Sample and Hold block acquires the input at the signal port whenever it receives a trigger event at the trigger port (marked by \(\uparrow\) ). The block then holds the output at the acquired input value until the next triggering event occurs. When the acquired input is frame based, the output is frame based; otherwise, the output is sample based.

The trigger input must be a sample-based scalar with sample rate equal to the input frame rate at the signal port. You specify the trigger event in the Trigger type pop-up menu:
- Rising edge triggers the block to acquire the signal input when the trigger input rises from a negative value or zero to a positive value.
- Falling edge triggers the block to acquire the signal input when the trigger input falls from a positive value or zero to a negative value.
- Either edge triggers the block to acquire the signal input when the trigger input either rises from a negative value or zero to a positive value or falls from a positive value or zero to a negative value.

You specify the block's output prior to the first trigger event using the Initial condition parameter. When the acquired input is an M-by-N matrix, the Initial condition can be an M-by-N matrix, or a scalar to be repeated across all elements of the matrix. When the input is a length-M 1-D vector, the Initial condition can be a length-M row or column vector, or a scalar to be repeated across all elements of the vector.

If you select the Latch (buffer) input check box, the block outputs the value of the input from the previous time step until the next triggering event occurs. To use this block in a loop, select this check box.

\section*{Sample and Hold}

\section*{Dialog \\ Box}
\begin{tabular}{|c|c|c|c|}
\hline ( Block Parameters: Sample and Hold & & & \(\underline{X}\) \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
-Sample and Hold (mask) (link) \\
Sample and hold the input signal. If Latch (buffer) input is selected, then this block produces the value of the input from the previous time step.
\end{tabular}}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
-Parameters \\
Trigger type: Pilisimonedge
\end{tabular}}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{Initial condition:} \\
\hline \multicolumn{4}{|l|}{0} \\
\hline \multicolumn{4}{|l|}{「 Latch (buffer) input} \\
\hline QK Cancel & Help & Apply & \\
\hline
\end{tabular}

\section*{Trigger type}

The type of event that triggers the block to acquire the input signal.

\section*{Initial condition}

The block's output prior to the first trigger event.

\section*{Latch (buffer) input}

If you select this check box, the block outputs the value of the input from the previous time step until the next triggering event occurs.

\section*{Sample and Hold}

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Input & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8-, 16-, and 32 -bit signed integers \\
- 8-, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Trigger & - Any data type supported by the Trigger block \\
\hline Outputs & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}

\author{
Downsample \\ N-Sample Switch \\ Signal Processing Blockset \\ Signal Processing Blockset
}

\section*{Scalar Quantizer (Obsolete)}

\section*{Purpose}

\section*{Library}

Description


Convert input signal into set of quantized output values or index values, or convert set of index values into quantized output signal
dspobslib

Note The Scalar Quantizer block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Scalar Quantizer Encoder block or the Scalar Quantizer Decoder block.

The Scalar Quantizer block has three modes of operation. In Encoder mode, the block maps each input value to a quantization region by comparing the input value to the quantizer boundary points defined in the Boundary points parameter. The block outputs the index of the associated region. In Decoder mode, the block transforms the input index values into quantized output values, defined in the Codebook parameter. In the Encoder and Decoder mode, the block performs both the encoding and decoding operations. The block outputs the index values and the quantized output values.

You can select how you want to enter the Boundary points and/or Codebook values using the Source of quantizer parameters. When you select Specify via dialog, type the parameters into the block parameters dialog box. Select Input ports, and port B and/or C appears on the block. In Encoder and Encoder and decoder mode, the input to port B is used as the Boundary points. In Decoder and Encoder and decoder mode, the input to port C is used as the Codebook.

In Encoder and Encoder and decoder mode, the Boundary points are the values used to break up the input signal into regions. Each region is specified by an index number. When your first boundary point is - inf and your last boundary point is inf, your quantizer is unbounded. When your first and last boundary point is finite, your

\section*{Scalar Quantizer (Obsolete)}
quantizer is bounded. When only your first or last boundary point is -inf or inf, your quantizer is semi-bounded.
For instance, when your input signal ranges from 0 to 11 , you can create a bounded quantizer using the following boundary points:
\[
\left[\begin{array}{llllll}
0 & 0.5 & 3.7 & 5.8 & 6.0 & 11
\end{array}\right]
\]

The boundary points can have equal or varied spacing. Any input values between 0 and 0.5 would correspond to index 0 . Input values between 0.5 and 3.7 would correspond to index 1 , and so on.

Suppose you wanted to create an unbounded quantizer with the following boundary points:
\[
\text { [-inf } 025.57 .110 \text { inf] }
\]

When your input signal has values less than 0 , these values would be assigned to index 0 . When your input signal has values greater than 10 , these values would be assigned to index 6 .
When an input value is the same as a boundary point, the Tie-breaking rule parameter defines the index to which the value is assigned. When you want the input value to be assigned to the lower index value, select Choose the lower index. To assign the input value with the higher index, select Choose the higher index.
In Decoder and Encoder and decoder mode, the Codebook is a vector of quantized output values that correspond to each index value.
In Encoder and Encoder and decoder mode, the Searching method determines how the appropriate quantizer index is found. Select Linear and the Scalar Quantizer block compares the input value to the first region defined by the first two boundary points. When the input value does not fall within this region, the block then compares the input value to the next region. This process continues until the input value is determined to be within a region and is associated with the appropriate index value. The computational cost of this process is of the order P , where P is the number of boundary points.

\section*{Scalar Quantizer (Obsolete)}

Select Binary for the Searching method and the block compares the input value to the middle value of the boundary points vector. When the input value is larger than this boundary point, the block discards the boundary points that are lower than this middle value. The block then compares the input value to the middle boundary point of the new range, defined by the remaining boundary points. This process continues until the input value is associated with the appropriate index value. The computational cost of this process is of the order \(\log _{2} P\), where \(P\) is the number of boundary points. In most cases, the Binary option is faster than the Linear option.

In Decoder mode, the input to this block is a vector of index values, where \(0 \leq \operatorname{index}<N\) and \(N\) is the length of the codebook vector. Use the Action for out of range input parameter to determine what happens when an input index value is out of this range. When you want any index values less than 0 to be set to 0 and any index values greater than or equal to \(N\) to be set to \(N-1\), select Clip. When you want to be warned when any index values less than 0 are set to 0 and any index values greater than or equal to \(N\) are set to \(N-1\), select Clip and warn. When you want the simulation to stop and display an error when the index values are out of range, select Error.
In Encoder and decoder mode, you can select the Output the quantization error check box. The quantization error is the difference between the input value and the quantized output value. Select this check box to output the quantization error for each input value from the Err port on this block.

\section*{Data Type Support}

In Encoder mode, the input data values and the boundary points can be the input to the block at ports \(U\) and B. Similarly, in Encoder and decoder mode, the codebook values can also be the input to the block at port C. The data type of the input data values, boundary points, and codebook values can be double, single, uint8, uint16, uint32, int8, int16, or int32. In Decoder mode, the input to the block can be the index values and the codebook values. The data type of the index input to the block at port Idx can be uint8, uint16, uint32, int8, int16, or

\section*{Scalar Quantizer (Obsolete)}
int32. The data type of the codebook values can be double, single, uint8, uint16, uint32, int8, int16, or int32.

In Encoder mode, the output of the block is the index values. In Encoder and decoder mode, the output can also include the quantized output values and the quantization error. In Encoder and Encoder and decoder mode, use the Output index data type parameter to specify the data type of the index output from the block at port Idx. The data type of the index output can be uint8, uint16, uint32, int8, int16, or int32. The data type of the quantized output and the quantization error can be double, single, uint8, uint16, uint32, int8, int16, or int32. In Decoder mode, the output of the block is the quantized output values. Use the Output data type parameter to specify the data type of the quantized output values. The data type can be double, single, uint8, uint16, uint32, int8, int16, int32.

Note The input data, codebook values, boundary points, quantization error, and the quantized output values must have the same data type whenever they are present in any of the quantizer modes.

\section*{Scalar Quantizer (Obsolete)}

\section*{Dialog Box}


\section*{Scalar Quantizer (Obsolete)}

Block Parameters: Scalar Quantizer
- Scalar Quantizer (mask) (link)

The Scalar Quantizer block has three modes of operation. In Encoder mode, the block maps each input value to a quantization region by comparing the input value to the user-specified quantizer boundary points. The block outputs the index of the associated region. In Decoder mode, the block transforms the input index values into quantized output values, defined by the quantizer codebook. In the Encoder \& Decoder mode, the block performs both the encoding and decoding operations. The block outputs the index values and the quantized output values.

The Boundary points parameter is a vector of dimension \(N\) whose values are arranged in ascending order \([[p 1 \mathrm{p} 2 \ldots \mathrm{pN}]\) ). The quantizer codebook is a vector of length ( \(\mathrm{N}-1\) ). The quantizer is unbounded if p 1 is -inf and pN is inf. When the quantizer is bounded, p 1 is the lower bound for the input values. Any input less than p1 is clipped to p1 and then quantized. Similarly, pN is the upper bound for the input values. Any input greater than pN is clipped to pN and is then quantized.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{-Parameters} \\
\hline Quantizer mode: Decoder & \(\checkmark\) \\
\hline Source of quantizer parameters: Specify via dialog & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Codebook:} \\
\hline \multicolumn{2}{|l|}{\(\left[\begin{array}{lllllllll}0.0 & 1.5 & 2.5 & 3.5 & 4.5 & 5.5 & 6.5 & 7.5 & 8.5\end{array}\right]\)} \\
\hline Action for out of range input: Clip and warn & \(\checkmark\) \\
\hline V .............. Show additional parameters ............... & \\
\hline Output data type: double & \(\nabla\) \\
\hline
\end{tabular}


\section*{Scalar Quantizer (Obsolete)}


\section*{Scalar Quantizer (Obsolete)}

\section*{Quantizer mode}

Specify Encoder, Decoder, or Encoder and decoder as a mode of operation.

\section*{Source of quantizer parameters}

Choose Specify via dialog to type the parameters into the block parameters dialog box. Select Input ports to specify the parameters using the block's input ports. In Encoder and Encoder and decoder mode, input the Boundary points using port B. In Decoder and Encoder and decoder mode, input the Codebook values using port C.

\section*{Boundary points}

Enter a vector of values that represent the boundary points of the quantizer regions. Tunable.

\section*{Codebook}

Enter a vector of quantized output values that correspond to each index value. Tunable.

\section*{Searching method}

Select Linear and the block finds the region in which the input value is located using a linear search. Select Binary and the block finds the region in which the input value is located using a binary search.

\section*{Tie-breaking rule}

Set this parameter to determine the behavior of the block when the input value is the same as the boundary point. When you select Choose the lower index, the input value is assigned to lower index value. When you select Choose the higher index, the value is assigned to the higher index.

\section*{Action for out of range input}

Choose the block's behavior when an input index value is out of range, where \(0 \leq\) index \(<N\) and \(N\) is the length of the codebook vector. Select Clip, when you want any index values less than 0 to be set to 0 and any index values greater than or equal to \(N\) to be set to \(N-1\). Select Clip and warn, when you want to be warned when any index values less than 0 are set to 0 and any
index values greater than or equal to \(N\) are set to \(N-1\). Select Error, when you want the simulation to stop and display an error when the index values are out of range.

\section*{Output the quantization error}

In Encoder and decoder mode, select this check box to output the quantization error from the Err port on this block.

\section*{Output index data type}

In Encoder and Encoder and decoder mode, specify the data type of the index output from the block at port Idx. The data type can be uint8, uint16, uint32, int8, int16, or int32. This parameter becomes visible when you select the Show additional parameters check box.

\section*{Output data type}

In Decoder mode, specify the data type of the quantized output. The data type can be uint8, uint16, uint32, int8, int16, int32, single, or double. This parameter becomes visible when you select Specify via dialog for the Source of quantizer parameters and you select the Show additional parameters check box.

\section*{References}

Supported Data Types

Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer Academic Publishers, 1992.
- Double-precision floating point
- Single-precision floating point
- Fixed point
- 8 -, 16-, and 32 -bit signed integers
- 8-, 16 -, and 32 -bit unsigned integers

For more information on what data types are supported for each quantizer mode, see "Data Type Support" on page 2-1125.

\section*{Scalar Quantizer (Obsolete)}

See Also

\author{
Quantizer \\ Scalar Quantizer Decoder \\ Scalar Quantizer Design \\ Scalar Quantizer Encoder \\ Uniform Encoder \\ Uniform Decoder
}

\author{
Simulink \\ Signal Processing Blockset \\ Signal Processing Blockset \\ Signal Processing Blockset \\ Signal Processing Blockset \\ Signal Processing Blockset
}

\title{
Scalar Quantizer Decoder
}

\section*{Purpose \\  \\ Scalar Quantizer Decoder}

Convert each index value into quantized output value

Quantizers
dspquant2
The Scalar Quantizer Decoder block transforms the zero-based input index values into quantized output values. The set of all possible quantized output values is defined by the Codebook values parameter.

Use the Codebook values parameter to specify a matrix containing all possible quantized output values. You can select how you want to enter the codebook values using the Source of codebook parameter. When
you select Specify via dialog, type the codebook values into the block parameters dialog box. When you select Input port, port C appears on the block. The block uses the input to port C as the Codebook values parameter.

The input to this block is a vector of integer index values, where 0 \(\leq\) index \(<N\) and \(N\) is the number of distinct codeword vectors in the codebook matrix. Use the Action for out of range index value parameter to determine what happens when an input index value is outside this range. When you want any index value less than 0 to be set to 0 and any index value greater than or equal to \(N\) to be set to \(N-1\), select Clip. When you want to be warned when clipping occurs, select Clip and warn. When you want the simulation to stop and the block to display an error when the index values are out of range, select Error.

\section*{Data Type Support}

The data type of the index values input at port I can be uint8, uint16, uint32, int8, int16, or int32. The data type of the codebook values input at port C can be double, single, or Fixed-point.

The output of the block is the quantized output values. If, for the Source of codebook parameter, you select Specify via dialog, the Codebook and output data type parameter appears. You can use this parameter to specify the data type of the codebook and quantized output values. In this case, the data type of the output values can be Same as input, double, single, Fixed-point, or User-defined.

\section*{Scalar Quantizer Decoder}

If, for the Source of codebook parameter you select Input port, the quantized output values have the same data type as the codebook values input at port C.

Dialog Box


\section*{Source of codebook}

Choose Specify via dialog to type the codebook values into the block parameters dialog box. Select Input port to specify the codebook using input port C.

\section*{Action for out of range index value}

Use this parameter to determine the block's behavior when an input index value is out of range, where \(0 \leq\) index \(<N\) and \(N\) is the length of the codebook vector. Select Clip, when you want any index values less than 0 to be set to 0 and any index values greater than or equal to \(N\) to be set to \(N-1\). Select Clip and warn, when you want to be warned when clipping occurs. Select Error, when you want the simulation to stop and the block to display an error when the index values are outside the range.

\section*{Scalar Quantizer Decoder}

\section*{Codebook values}

Enter a vector of quantized output values that correspond to each index value. Tunable.

\section*{Codebook and output data type}

Use this parameter to specify the data type of the codebook and quantized output values. The data type can be Same as input, double, single, Fixed-point, or User-defined. This parameter becomes visible when you select Specify via dialog for the Source of codebook parameter.
\begin{tabular}{|c|c|c|c|}
\hline 困 Block Parameters: Scalar Quantizer Decoder & & \multicolumn{2}{|r|}{? \(\times\)} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Scalar Quantizer Decoder (mask) (link) \\
For each input index value, the block outputs the corresponding codeword. Each element of the Codebook parameter represents a codeword. \\
The output values have the same data type as the codebook values.
\end{tabular}}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Parameters \\
Source of codebook: Specify via dialog
\end{tabular}}} \\
\hline & & & \\
\hline Action for out of range index value: Clip & & - & \\
\hline \multicolumn{4}{|l|}{Codebook values:} \\
\hline \multicolumn{4}{|l|}{[1:10]} \\
\hline \multicolumn{4}{|l|}{Codebook and output data type: Fixed-point \(\quad\) -} \\
\hline \multicolumn{4}{|l|}{V Signed} \\
\hline \multicolumn{4}{|l|}{Word length:} \\
\hline \multicolumn{4}{|l|}{16} \\
\hline Set fraction length in output to: User-defined & & \(\checkmark\) & \\
\hline \multicolumn{4}{|l|}{Fraction length:} \\
\hline \multicolumn{4}{|l|}{11} \\
\hline QK Cancel & Help & Apply & \\
\hline
\end{tabular}

\section*{Scalar Quantizer Decoder}

\section*{Signed}

Select to output a signed fixed-point signal. Otherwise, the signal is unsigned. This parameter is only visible if, from the Codebook and output data type list, you select Fixed-point.

\section*{Word length}

Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible if, from the Codebook and output data type list, you select Fixed-point.

\section*{Set fraction length in output to}

Specify the scaling of the fixed-point output by either of the following two methods:

Choose Best precision to have the output scaling automatically set such that the output signal has the best possible precision.

Choose User-defined to specify the output scaling in the Fraction length parameter.

This parameter is only visible if, from the Codebook and output data type list, you select Fixed-point or when you select User-defined and the specified output data type is a fixed-point data type.

\section*{Fraction length}

For fixed-point output data types, specify the number of fractional bits, or bits to the right of the binary point. This parameter is only visible when you select Fixed-point or User-defined for the Codebook and output data type parameter and User-defined for the Set fraction length in output to parameter.

\section*{Scalar Quantizer Decoder}


\section*{User-defined data type}

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the following Simulink Fixed Point functions: sfix, ufix, sint, uint, sfrac, and ufrac. This parameter is only visible when you select User-defined for the Codebook and output data type parameter.

\footnotetext{
References
Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer Academic Publishers, 1992.
}

\section*{Scalar Quantizer Decoder}

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline I & \begin{tabular}{l}
- 8-, 16-, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline C & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- 8 -, 16-, and 32 -bit signed integers
\end{tabular} \\
\hline Q(U) & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline
\end{tabular}

For more information on what data types are supported for each quantizer mode, see "Data Type Support" on page 2-1133.

\section*{See Also}

Quantizer
Scalar Quantizer Design
Scalar Quantizer Encoder
Uniform Encoder
Uniform Decoder

\section*{Simulink}

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

\section*{Scalar Quantizer Design}

\section*{Purpose}

\section*{Library}

\section*{Description}


Scalar Quantizer Design

Start Scalar Quantizer Design Tool (SQDTool) to design scalar quantizer using Lloyd algorithm

Quantizers
dspquant2
Double-click on the Scalar Quantizer Design block to start SQDTool, a GUI that allows you to design and implement a scalar quantizer. Based on your input values, SQDTool iteratively calculates the codebook values that minimize the mean squared error until the stopping criteria for the design process is satisfied. The block uses the resulting quantizer codebook values and boundary points to implement your scalar quantizer encoder and/or decoder.

For the Training Set parameter, enter a set of observations, or samples, of the signal you want to quantize. This data can be any variable defined in the MATLAB workspace including a variable created using a MATLAB function, such as the default value randn (10000,1).

You have two choices for the Source of initial codebook parameter. Select Auto-generate to have the block choose the values of the initial codebook vector. In this case, the minimum training set value becomes the first codeword, and the maximum training set value becomes the last codeword. Then, the remaining initial codewords are equally spaced between these two values to form a codebook vector of length N , where N is the Number of levels parameter. When you select User defined, enter the initial codebook values in the Initial codebook field. Then, set the Source of initial boundary points parameter. You can select Mid-points to locate the boundary points at the midpoint between the codewords. To calculate the mid-points, the block internally arranges the initial codebook values in ascending order. You can also choose User defined and enter your own boundary points in the Initial boundary points (unbounded) field. Only one boundary point can be located between two codewords. When you select User defined for the Source of initial boundary points parameter, the values you enter in the Initial codebook and Initial boundary points (unbounded) fields must be arranged in ascending order.

\section*{Scalar Quantizer Design}

Note This block assumes that you are designing an unbounded quantizer. Therefore, the first and last boundary points are always - inf and inf regardless of any other boundary point values you might enter.

After you have specified the quantization parameters, the block performs an iterative process to design the optimal scalar quantizer. Each step of the design process involves using the Lloyd algorithm to calculate codebook values and quantizer boundary points. Then, the block calculates the squared quantization error and checks whether the stopping criteria has been satisfied.
The two possible options for the Stopping criteria parameter are Relative threshold and Maximum iteration. When you want the design process to stop when the fractional drop in the squared quantization error is below a certain value, select Relative threshold. Then, for Relative threshold, type the maximum acceptable fractional drop. When you want the design process to stop after a certain number of iterations, choose Maximum iteration. Then, enter the maximum number of iterations you want the block to perform in the Maximum iteration field. For Stopping criteria, you can also choose Whichever comes first and enter a Relative threshold and Maximum iteration value. The block stops iterating as soon as one of these conditions is satisfied.

With each iteration, the block quantizes the training set values based on the newly calculated codebook values and boundary points. When the training point lies on a boundary point, the algorithm uses the Tie-breaking rules parameter to determine which region the value is associated with. When you want the training point to be assigned to the lower indexed region, select Lower indexed codeword. To assign the training point with the higher indexed region, select Higher indexed codeword.

The Searching methods parameter determines how the block compares the training points to the boundary points. Select Linear search and SQDTool compares each training point to each quantization

\section*{Scalar Quantizer Design}
region sequentially. This process continues until all the training points are associated with the appropriate regions.

Select Binary search for the Searching methods parameter and the block compares the training point to the middle value of the boundary points vector. When the training point is larger than this boundary point, the block discards the lower boundary points. The block then compares the training point to the middle boundary point of the new range, defined by the remaining boundary points. This process continues until the training point is associated with the appropriate region.

Click Design and Plot to design the quantizer with the parameter values specified on the left side of the GUI. The performance curve and the staircase character of the quantizer are updated and displayed in the figures on the right side of the GUI.

Note You must click Design and Plot to apply any changes you make to the parameter values in the SQDTool dialog box.

SQDTool can export parameter values that correspond to the figures displayed in the GUI. Click the Export Outputs button, or press Ctrl+E, to export the Final Codebook, Final Boundary Points, and Error values to the workspace, a text file, or a MAT-file. The Error values represent the mean squared error for each iteration.

In the Model section of the GUI, specify the destination of the block that will contain the parameters of your quantizer. For Destination, select Current model to create a block with your parameters in the model you most recently selected. Type gcs in the MATLAB Command Window to display the name of your current model. Select New model to create a block in a new model file.

From the Block type list, select Encoder to design a Scalar Quantizer Encoder block. Select Decoder to design a Scalar Quantizer Decoder block. Select Both to design a Scalar Quantizer Encoder block and a Scalar Quantizer Decoder block.

\section*{Scalar Quantizer Design}

In the Encoder block name field, enter a name for the Scalar Quantizer Encoder block. In the Decoder block name field, enter a name for the Scalar Quantizer Decoder block. When you have a Scalar Quantizer Encoder and/or Decoder block in your destination model with the same name, select the Overwrite target block(s) check box to replace the block's parameters with the current parameters. When you do not select this check box, a new Scalar Quantizer Encoder and/or Decoder block is created in your destination model.

Click Generate Model. SQDTool uses the parameters that correspond to the current plots to set the parameters of the Scalar Quantizer Encoder and/or Decoder blocks.

\section*{Scalar Quantizer Design}

Dialog
Box


\section*{Scalar Quantizer Design}

\section*{Training Set}

Enter the samples of the signal you would like to quantize. This data set can be a MATLAB function or a variable defined in the MATLAB workspace. The typical length of this data vector is 1 e 6 .

\section*{Source of initial codebook}

Select Auto-generate to have the block choose the initial codebook values. Select User defined to enter your own initial codebook values.

\section*{Number of levels}

Enter the length of the codebook vector. For a b-bit quantizer, the length should be \(N=2^{b}\).

\section*{Initial codebook}

Enter your initial codebook values. From the Source of initial codebook list, select User defined in order to activate this parameter.

\section*{Source of initial boundary points}

Select Mid-points to locate the boundary points at the midpoint between the codebook values. Choose User defined to enter your own boundary points. From the Source of initial codebook list, select User defined in order to activate this parameter.

\section*{Initial boundary points (unbounded)}

Enter your initial boundary points. This block assumes that you are designing an unbounded quantizer. Therefore, the first and last boundary point are -inf and inf, regardless of any other boundary point values you might enter. From the Source of initial boundary points list, select User defined in order to activate this parameter.

\section*{Stopping criteria}

Choose Relative threshold to enter the maximum acceptable fractional drop in the squared quantization error. Choose Maximum iteration to specify the number of iterations at which to stop. Choose Whichever comes first and the block stops the iteration process as soon as the relative threshold or maximum iteration value is attained.

\section*{Scalar Quantizer Design}

\section*{Relative threshold}

Type the value that is the maximum acceptable fractional drop in the squared quantization error.

\section*{Maximum iteration}

Enter the maximum number of iterations you want the block to perform. From the Stopping criteria list, select Maximum iteration in order to activate this parameter.

\section*{Searching methods}

Choose Linear search to use a linear search method when comparing the training points to the boundary points. Choose Binary search to use a binary search method when comparing the training points to the boundary points.

\section*{Tie-breaking rules}

When a training point lies on a boundary point, choose Lower indexed codeword to assign the training point to the lower indexed quantization region. Choose Higher indexed codeword to assign the training point to the higher indexed region.

\section*{Design and Plot}

Click this button to display the performance curve and the staircase character of the quantizer in the figures on the right side of the GUI. These plots are based on the current parameter settings.

You must click Design and Plot to apply any changes you make to the parameter values in the SQDTool GUI.

\section*{Export Outputs}

Click this button, or press Ctrl+E, to export the Final Codebook, Final Boundary Points, and Error values to the workspace, a text file, or a MAT-file.

\section*{Destination}

Choose Current model to create a Scalar Quantizer block in the model you most recently selected. Type gcs in the MATLAB Command Window to display the name of your current model. Choose New model to create a block in a new model file.

\section*{Scalar Quantizer Design}

\section*{Block type}

Select Encoder to design a Scalar Quantizer Encoder block. Select Decoder to design a Scalar Quantizer Decoder block. Select Both to design a Scalar Quantizer Encoder block and a Scalar Quantizer Decoder block.

\section*{Encoder block name}

Enter a name for the Scalar Quantizer Encoder block.

\section*{Decoder block name}

Enter a name for the Scalar Quantizer Decoder block.

\section*{Overwrite target block(s)}

When you do not select this check box and a Scalar Quantizer Encoder and/or Decoder block with the same block name exists in the destination model, a new Scalar Quantizer Encoder and/or Decoder block is created in the destination model. When you select this check box and a Scalar Quantizer Encoder and/or Decoder block with the same block name exists in the destination model, the parameters of these blocks are overwritten by new parameters.

\section*{Generate Model}

Click this button and SQDTool uses the parameters that correspond to the current plots to set the parameters of the Scalar Quantizer Encoder and/or Decoder blocks.

\author{
References Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer Academic Publishers, 1992. \\ Supported \\ - Double-precision floating point \\ Data \\ Types \\ See Also \\ Quantizer \\ Scalar Quantizer Decoder \\ Simulink \\ Signal Processing Blockset
}

\section*{Scalar Quantizer Design}

Scalar Quantizer Encoder
Uniform Encoder
Uniform Decoder

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

\section*{Scalar Quantizer Encoder}
 Encoder

Encode each input value by associating it with index value of quantization region

Quantizers
dspquant2
The Scalar Quantizer Encoder block maps each input value to a quantization region by comparing the input value to the quantizer boundary points defined in the Boundary points parameter. The block outputs the zero-based index of the associated region.

You can select how you want to enter the Boundary points using the Source of quantizer parameters. When you select Specify via dialog, type the boundary points into the block parameters dialog box. When you select Input port, port B appears on the block. The block uses the input to port B as the Boundary points parameter.
Use the Boundary points parameter to specify the boundary points for your quantizer. These values are used to break up the set of input numbers into regions. Each region is specified by an index number.

Let N be the number of quantization regions. When the codebook is defined as [c1 c2 c3 ... cN], and the Boundary points parameter is defined as [p0 p1 p2 p3 ... pN], then \(00<c 1<p 1<c 2\) ... \(\quad p(N-1)<c N<p N\) for a regular quantizer. When your quantizer is bounded, from the Partitioning list, select Bounded. You need to specify N+1 boundary points, or [p0 p1 p2 p3 ... pN]. When your quantizer is unbounded, from the Partitioning list, select Unbounded. You need to specify N-1 boundary points, or [p1 p2 p3 ... \(p(N-1)]\); the block sets p0 equal to -inf and pN equal to inf.

The block uses the Partitioning parameter to interpret the boundary points you enter. For instance, to create a bounded quantizer, from the Partitioning list, select Bounded and enter the following boundary points:
\[
\left[\begin{array}{llllll}
0 & 0.5 & 3.7 & 5.8 & 6.0 & 11
\end{array}\right]
\]

\section*{Scalar Quantizer Encoder}

The block assigns any input values between 0 and 0.5 to index 0 , input values between 0.5 and 3.7 to index 1 , and so on. The block assigns any values that are less than 0 to index 0 , the lowest index value. The block assigns any values that are greater than 11 to index 4 , the highest index value.

To create an unbounded quantizer, from the Partitioning list, select Unbounded and enter the following boundary points:

\section*{[0 0.53 .75 .86 .0 11]}

The block assigns any input values between 0 and 0.5 to index 1 , input values between 0.5 and 3.7 to index 2 , and so on. The block assigns any input values less than 0 to index 0 and any values greater than 11 to index 6.

The Searching method parameter determines how the appropriate quantizer index is found. When you select Linear, the Scalar Quantizer Encoder block compares the input value to the first region defined by the first two boundary points. When the input value does not fall within this region, the block then compares the input value to the next region. This process continues until the input value is determined to be within a region and is associated with the appropriate index value. The computational cost of this process is of the order P , where P is the number of boundary points.

When you select Binary for the Searching method, the block compares the input value to the middle value of the boundary points vector. When the input value is larger than this boundary point, the block discards the boundary points that are lower than this middle value. The block then compares the input value to the middle boundary point of the new range, defined by the remaining boundary points. This process continues until the input value is associated with the appropriate index value. The computational cost of this process is of the order \(\log _{2} P\), where \(P\) is the number of boundary points. In most cases, the Binary option is faster than the Linear option.

When an input value is the same as a boundary point, the Tie-breaking rule parameter determines the region to which the value is assigned.

\section*{Scalar Quantizer Encoder}

When you want the input value to be assigned to the lower indexed region, select Choose the lower index. To assign the input value with the higher indexed region, select Choose the higher index.
Select the Output codeword check box to output the codeword values that correspond to each index value at port \(Q(U)\).
Select the Output the quantization error check box to output the quantization error for each input value from the Err port on this block. The quantization error is the difference between the input value and the quantized output value.

When you select either the Output codeword check box or the Output quantization error check box, you must also enter your codebook values. If, from the Source of quantizer parameters list, you choose Specify via dialog, use the Codebook parameter to enter a vector of quantized output values that correspond to each region. If, from the Source of quantizer parameters list, you choose Input port, use input port C to specify your codebook values.

If, for the Partitioning parameter, you select Bounded, the Output clipping status check box and the Action for out of range input parameter appear. When you select the Output clipping status check box, port \(S\) appears on the block. Any time an input value is outside the range defined by the Boundary points parameter, the block outputs a 1 at the S port. When the value is inside the range, the blocks outputs a 0 .

You can use the Action for out of range input parameter to determine the block's behavior when an input value is outside the range defined by the Boundary points parameter. Suppose the boundary points for a bounded quantizer are defined as \(\left[\begin{array}{lllll}p 0 & \text { p1 } & \text { p2 } & \text { p3 } & \ldots\end{array}\right.\) pN \(]\) and the possible index values are defined as [i0 i1 i2 ... i(N-1)], where \(i 0=0\) and \(i 0<i 1<i 2<\ldots<i(N-1)\). When you want any input value less than \(p 0\) to be assigned to index value i0 and any input values greater than pN to be assigned to index value \(\mathrm{i}(\mathrm{N}-1)\), select Clip. When you want to be warned when clipping occurs, select Clip and warn. When you want the simulation to stop and the block to display an error when the index values are out of range, select Error.

The Scalar Quantizer Encoder block accepts real floating-point and fixed-point inputs. For more information on the data types accepted by each port, see "Data Type Support" on page 2-1151 or "Supported Data Types" on page 2-1156.

\section*{Data Type Support}

The input data values, boundary points, and codebook values can be input to the block at ports U, B, and C, respectively. The data type of the inputs can be double, single, or Fixed-point.

The outputs of the block can be the index values, the quantized output values, the quantization error, and the clipping status. Use the Index output data type parameter to specify the data type of the index output from the block at port I. You can choose int8, uint8, int16, uint16, int32, or uint32. The data type of the quantized output and the quantization error can be double, single, or Fixed-point. The clipping status values output at port S are Boolean values.

Note The input data, boundary points, codebook values, quantized output values, and the quantization error must have the same data type whenever they are present.

\section*{Scalar Quantizer Encoder}

Dialog Box

The Main pane of the Scalar Quantizer Encoder block dialog appears as follows.


\section*{Source of quantizer parameters}

Choose Specify via dialog to enter the boundary points and codebook values using the block parameters dialog box. Select

\section*{Scalar Quantizer Encoder}

Input port to specify the parameters using the block's input ports. Input the boundary points and codebook values using ports B and C, respectively.

\section*{Partitioning}

When your quantizer is bounded, select Bounded. When your quantizer is unbounded, select Unbounded.

\section*{Boundary points}

Enter a vector of values that represent the boundary points of the quantizer regions. This parameter is visible when you select Specify via dialog from the Source of quantizer parameters list. Tunable.

\section*{Searching method}

When you select Linear, the block finds the region in which the input value is located using a linear search. When you select Binary, the block finds the region in which the input value is located using a binary search.

\section*{Tie-breaking rule}

Set this parameter to determine the behavior of the block when the input value is the same as the boundary point. When you select Choose the lower index, the input value is assigned to lower indexed region. When you select Choose the higher index, the value is assigned to the higher indexed region.

\section*{Output codeword}

Select this check box to output the codeword values that correspond to each index value at port \(\mathrm{Q}(\mathrm{U})\).

\section*{Output quantization error}

Select this check box to output the quantization error for each input value at port Err.

\section*{Codebook}

Enter a vector of quantized output values that correspond to each index value. If, for the Partitioning parameter, you select Bounded and your boundary points vector has length N, then you must specify a codebook of length N-1. If, for the Partitioning

\section*{Scalar Quantizer Encoder}
parameter, you select Unbounded and your boundary points vector has length N , then you must specify a codebook of length \(\mathrm{N}+1\).

This parameter is visible when you select Specify via dialog from the Source of quantizer parameters list and you select either the Output codeword or Output quantization error check box. Tunable.

\section*{Output clipping status}

When you select this check box, port S appears on the block. Any time an input value is outside the range defined by the Boundary points parameter, the block outputs a 1 at this port. When the value is inside the range, the block outputs a 0 . This parameter is visible when you select Bounded from the Partitioning list.

\section*{Action for out of range input}

Use this parameter to determine the behavior of the block when an input value is outside the range defined by the Boundary points parameter. Suppose the boundary points are defined as \([\mathrm{pO}\) p1 p2 p3 ... pN] and the index values are defined as [i0 i1 i2 ... i( \(\mathrm{N}-1\) )]. When you want any input value less than p 0 to be assigned to index value i0 and any input values greater than \(p N\) to be assigned to index value \(i(N-1)\), select Clip. When you want to be warned when clipping occurs, select Clip and warn. When you want the simulation to stop and the block to display an error when the index values are out of range, select Error. This parameter is visible when you select Bounded from the Partitioning list.

\section*{Index output data type}

Specify the data type of the index output from the block at port I. You can choose int8, uint8, int16, uint16, int32, or uint32.

The Fixed-point pane of the Scalar Quantizer Encoder block dialog appears as follows.

\section*{Scalar Quantizer Encoder}

Scalar Quantizer Encoder
The block maps each input value to a quantization region by comparing the input value to the user-specified boundary points. Then, the block outputs the index of the associated region. If you want the block to output the quantized value or the associated quantization error, you must provide the codebook.

If the Codebook parameter is defined as [c1c2c3 \(\ldots \mathrm{cN}\) ] and the Boundary points parameter is denoted by \([p 0 \mathrm{p} 1 \mathrm{p} 2 \mathrm{p} 3 \ldots \mathrm{pN}]\), then \(\mathrm{p} 0<c 1<\mathrm{p} 1<c 2 \ldots \mathrm{p}(\mathrm{N}-1)<c \mathrm{~N}<\mathrm{pN}\) for a regular quantizer. If your quantizer is bounded, you need to specify [ 00 p1 p2 p3 \(\mathrm{p} N\) ]. For any input less than p 0 or greater than p N , you can optionally output the clipping status. If your quantizer is unbounded, you need to specify [p1 p2 p3 \(\mathrm{p}(\mathrm{N}-1)]\) and the block sets \(\mathrm{p} 0=-\operatorname{lnf}\) and \(\mathrm{pN}=+\operatorname{lnf}\).

You must enter the boundary points in ascending order.

\section*{\begin{tabular}{l|l} 
Main & Fixed-point
\end{tabular}}

Settings on this pane only apply when block inputs are fixed-point signals.
-Fixed-point operational parameters
Rounding mode: Floor Overflow mode: Wrap


\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Scalar Quantizer Encoder}

\section*{Overflow mode}

Select the overflow mode to be used when block inputs are fixed point.

\section*{References}

Supported Data Types

Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer Academic Publishers, 1992.
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline U & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed only) \\
- 8 -, 16-, and 32 -bit signed integers
\end{tabular} \\
\hline B & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed only) \\
- 8 -, 16-, and 32 -bit signed integers
\end{tabular} \\
\hline C & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed only) \\
- 8 -, 16 -, and 32 -bit signed integers
\end{tabular} \\
\hline I & \begin{tabular}{l}
- 8-, 16-, and 32 -bit signed integers \\
- 8-, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Q(U) & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed only) \\
- 8 -, 16-, and 32 -bit signed integers
\end{tabular} \\
\hline
\end{tabular}

\section*{Scalar Quantizer Encoder}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Err & • Double-precision floating point \\
& - Single-precision floating point \\
& - Fixed point (signed only) \\
• 8-, 16-, and 32-bit signed integers \\
\hline S & • Boolean \\
\hline
\end{tabular}

For more information on what data types are supported for each quantizer mode, see "Data Type Support" on page 2-1133.

\section*{See Also}

Quantizer
Scalar Quantizer Decoder
Scalar Quantizer Design
Uniform Encoder
Uniform Decoder

Simulink
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

\section*{Selector}

Purpose Select input elements from vector, matrix, or multidimensional signal
Library
Signal Management / Indexing
dspindex
Description
The Selector block is an implementation of the Simulink Selector block. See Selector for more information.

\section*{Purpose}

\section*{Library \\ Description \\ }

Compute nonparametric estimate of spectrum using short-time, fast Fourier transform (FFT) method

Transforms
dspxfrm3

The Short-Time FFT block computes a nonparametric estimate of the spectrum. The block buffers, applies a window, and zero pads the input signal. The block then takes the FFT of the signal, transforming it into the frequency domain.

Connect your sample-based or frame-based, single-channel analysis window to the \(\mathrm{w}(\mathrm{n})\) port. For the Analysis window length parameter, enter the length of the analysis window, W. When your analysis window is a sample-based signal, the block buffers it into a frame-based signal with frame length W . When your analysis window is a frame-based signal and its frame length is not W , the block buffers the signal so that its frame length is W .

Connect your sample-based or frame-based, single-channel or multichannel input signal to the \(\mathrm{x}(\mathrm{n})\) port. After the block buffers and windows this signal, it zero-pads the signal before computing the FFT. For the FFT length parameter, enter the length to which the block pads the input signal. For the Overlap between consecutive windows (in samples) parameter, enter the number of samples to overlap each frame of the input signal.

The complex-valued, sample-based, single-channel or multichannel short-time FFT is output at port \(\mathrm{X}(\mathrm{n}, \mathrm{k})\).

The Short-Time FFT block supports real and complex floating-point and fixed-point signals.

\section*{Fixed-Point Data Types}

The following diagram shows the data types used within the Short-Time FFT subsystem block for fixed-point signals.

\section*{Short-Time FFT}


The settings for the fixed-point parameters of the Array-Vector Multiply block in the diagram above are as follows:
- Rounding Mode - Floor
- Overflow Mode - Wrap
- Product output - Inherit via internal rule
- Accumulator - Inherit via internal rule
- Output - Same as first input

The settings for the fixed-point parameters of the FFT block in the diagram above are as follows:
- Rounding Mode - Floor
- Overflow Mode - Wrap
- Sine table - Same word length as input
- Product output - Inherit via internal rule
- Accumulator - Inherit via internal rule
- Output - Inherit via internal rule

See the FFT and Array-Vector Multiply block reference pages for more information.

\section*{Examples}

Dialog
Box

The dspstsa_win32 demo illustrates how to use the Short-Time FFT and Inverse Short-Time FFT blocks to remove the background noise from a speech signal.


\section*{Analysis window length}

Enter the frame length of the analysis window.

\section*{Overlap between consecutive windows (in samples)}

Enter the number of samples of overlap for each frame of the input signal.

\section*{FFT length}

Enter the length to which the block pads the input signal.
Quatieri, Thomas E. Discrete-Time Speech Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 2001.

\section*{Short-Time FFT}

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline \(\mathrm{x}(\mathrm{n})\) & • Double-precision floating point \\
& - Single-precision floating point \\
& - Fixed point (signed only) \\
& - 8 -, 16-, and 32-bit signed integers
\end{tabular}

\section*{Short-Time FFT}

See Also
\begin{tabular}{ll} 
Burg Method & Signal Processing Blockset \\
Inverse Short-Time FFT & Signal Processing Blockset \\
Magnitude FFT & Signal Processing Blockset \\
Periodogram & Signal Processing Blockset \\
Spectrum Scope & Signal Processing Blockset \\
Window Function & Signal Processing Blockset \\
Yule-Walker Method & Signal Processing Blockset \\
pwelch & Signal Processing Toolbox
\end{tabular}

See "Power Spectrum Estimation" for related information.

\section*{Signal From Workspace}
\begin{tabular}{ll} 
Purpose & Import signal from MATLAB workspace \\
Library & Signal Processing Sources \\
& dspsrcs 4
\end{tabular}

\section*{Description}
\(1: 10\)

The Signal From Workspace block imports a signal from the MATLAB workspace into the Simulink model. The Signal parameter specifies the name of a MATLAB workspace variable containing the signal to import, or any valid MATLAB expression defining a matrix or 3-D array.

When the Signal parameter specifies an M-by-N matrix ( \(\mathrm{M} \neq 1\) ), each of the N columns is treated as a distinct channel. You specify the frame size in the Samples per frame parameter, \(\mathrm{M}_{0}\), and the output is an \(\mathrm{M}_{0}\)-by- N matrix containing \(\mathrm{M}_{\mathrm{o}}\) consecutive samples from each signal channel. You specify the output sample period in the Sample time parameter, \(\mathrm{T}_{\mathrm{s}}\), and the output frame period is \(\mathrm{M}_{\mathrm{o}}{ }^{*} \mathrm{~T}_{\mathrm{s}}\). For \(\mathrm{M}_{\mathrm{o}}=1\), the output is sample based; otherwise the output is frame based. For convenience, an imported row vector \((M=1)\) is treated as a single channel, so the output dimension is \(\mathrm{M}_{0}\)-by- 1 .

When the Signal parameter specifies an M-by-N-by-P array, each of the P pages (an M-by-N matrix) is output in sequence with period \(\mathrm{T}_{\mathrm{s}}\). The Samples per frame parameter must be set to 1 , and the output is always sample based.

\section*{Initial and Final Conditions}

Unlike the Simulink From Workspace block, the Signal From Workspace block holds the output value constant between successive output frames (that is, no linear interpolation takes place). Additionally, the initial signal values are always produced immediately at \(t=0\).

When the block has output all of the available signal samples, it can start again at the beginning of the signal, or simply repeat the final value or generate zeros until the end of the simulation. (The block does not extrapolate the imported signal beyond the last sample.) The Form output after final data value by parameter controls this behavior:

\section*{Signal From Workspace}
- When you specify Setting To Zero, the block generates zero-valued outputs for the duration of the simulation after generating the last frame of the signal.
- When you specify Holding Final Value, the block repeats the final sample for the duration of the simulation after generating the last frame of the signal.
- When you specify Cyclic Repetition, the block repeats the signal from the beginning after it reaches the last sample in the signal. If the frame size you specify in the Samples per frame parameter does not evenly divide the input length, a buffer block is inserted into the Signal From Workspace subsystem, and the model becomes multirate. If you do not want your model to become multirate, make sure the frame size evenly divides the input signal length.
Select the Warn when frame size does not evenly divide input length parameter to be alerted when the input length is not an integer multiple of the frame size and your model will become multirate. Use the Model Explorer to turn these warnings on or off model-wide:

1 Select Model Explorer from the View menu in your model.
2 In the Search bar of the Model Explorer, search by Property Name for the ignoreOrWarnInputAndFrameLengths property. Each block with the Warn when frame size does not evenly divide input length check box appears in the list in the Contents pane.
3 Select each of the blocks for which you wish to toggle the warning parameter, and select or deselect the check box in the ignoreOrWarnInputAndFrameLengths column.

\section*{Examples Example 1}

In the first model below, the Signal From Workspace imports a two-channel signal from the workspace matrix A. The Sample time is set to 1 and the Samples per frame is set to 4 , so the output is frame based with a frame size of 4 and a frame period of 4 seconds. The Form

\section*{Signal From Workspace}
output after final data value by parameter specifies Setting To Zero, so all outputs after the third frame (at \(t=8\) ) are zero.


\section*{Example 2}

In the second model below, the Signal From Workspace block imports a sample-based matrix signal from the 3-D workspace array A. Again, the Form output after final data value by parameter specifies Setting To Zero, so all outputs after the third (at \(t=2\) ) are zero.


The Samples per frame parameter is set to 1 for 3-D input.

\section*{Signal From Workspace}

\section*{Dialog Box}

\section*{Signal}

The name of the MATLAB workspace variable from which to import the signal, or a valid MATLAB expression specifying the signal.

\section*{Sample time}

The sample period, \(\mathrm{T}_{\mathrm{s}}\), of the output. The output frame period is \(\mathrm{M}_{\mathrm{o}}{ }^{*} \mathrm{~T}_{\mathrm{s}}\).

\section*{Samples per frame}

The number of samples, \(\mathrm{M}_{\mathrm{o}}\), to buffer into each output frame. This value must be 1 when you specify a 3-D array in the Signal parameter.

\section*{Signal From Workspace}

\section*{Form output after final data value by}

Specifies the output after all of the specified signal samples have been generated. The block can output zeros for the duration of the simulation (Setting to zero), repeat the final data sample (Holding Final Value) or repeat the entire signal from the beginning (Cyclic Repetition).

\section*{Warn when frame size does not evenly divide input length}

Select this parameter to be alerted when the input length is not an integer multiple of the frame size and your model will become multirate. For more information, see "Initial and Final Conditions" on page 2-1164.

This parameter is only visible when Cyclic Repetition is selected for the Form output after final data value by parameter.

\section*{Supported Data Types}
- Double-precision floating point
- Single-precision floating point
- Fixed point (signed and unsigned)
- 8 -, 16-, and 32 -bit signed integers
- 8 -, 16-, and 32 -bit unsigned integers

See Also
\begin{tabular}{ll} 
From Audio Device & Signal Processing Blockset \\
From Wave File & Signal Processing Blockset \\
Signal From Workspace & Signal Processing Blockset \\
From Workspace & Simulink \\
To Workspace & Simulink \\
Triggered Signal From Workspace & Signal Processing Blockset
\end{tabular}

See the sections below for related information:

\section*{Signal From Workspace}
- "Creating Sample-Based Signals"
- "Creating Frame-Based Signals"
- "Importing and Exporting Sample-Based Signals"
- "Importing and Exporting Frame-Based Signals"

\section*{Signal To Workspace}

\section*{Description}
yout

\section*{Purpose Write simulation data to array in MATLAB workspace \\ Library \\ Signal Processing Sinks \\ dspsnks4}

The Signal To Workspace block writes data from your simulation into an array in the MATLAB main workspace. The output array can be \(2-\mathrm{D}\) or \(3-\mathrm{D}\), depending on whether the data is \(1-\mathrm{D}\), sample based, or frame based. The Signal To Workspace block and the Simulink To Workspace block can output the same arrays when their parameters are set appropriately.

For more information on the Signal To Workspace block, see the following sections of this reference page:
- "Parameter Descriptions" on page 2-1170
- "Output Dimension Summary" on page 2-1172
- "Matching the Outputs of Signal To Workspace and To Workspace Blocks" on page 2-1172
- "Examples" on page 2-1173

\section*{Parameter Descriptions}

The Variable name parameter is the name of the array in the MATLAB workspace into which the block logs the simulation data. The array is created in the workspace only after the simulation stops running. When you enter the name of an existing workspace variable, the block overwrites the variable with an array of simulation data after the simulation stops running.

When the block input is sample based or 1-D, the Limit data points to last parameter indicates how many samples of data to save. When the block input is frame based, this parameter indicates how many frames of data to save. When the simulation generates more than the specified maximum number of samples or frames, the simulation saves only the most recently generated data. To capture all data, set Limit data points to last to inf.

The Decimation parameter is the decimation factor. It can be set to any positive integer \(d\), and allows you to write data at every \(d\) th sample. The default decimation, 1 , writes data at every time step.
The Frames parameter sets the dimension of the output array to 2-D or 3-D for frame-based inputs. The block ignores this parameter for 1-D and sample-based inputs. The Frames parameter has the following two settings:
- Log frames separately (3-D array): Given an M-by-N frame-based input signal, the block outputs an M-by-N-by-K array, where K is the number of frames logged by the end of the simulation. ( K is bounded above by the Limit data points to last parameter.) Each input frame is an element of the 3-D array. (See "Example 2: Frame-Based Inputs" on page 2-1174.)
- Concatenate frames (2-D array): Given an M-by-N frame-based input signal with frame size \(f\), the block outputs a ( \(\mathrm{K}^{*} f\) )-by-N matrix, where \(\mathrm{K}^{*} f\) is the number of samples acquired by the end of the simulation. Each input frame is vertically concatenated to the previous frame to produce the 2-D array output. (See "Example 2: Frame-Based Inputs" on page 2-1174.)

Signal to Workspace always logs sample-based input data as 3-D arrays, regardless of the Frame parameter setting. Given an M-by-N sample-based signal, the block outputs an M-by-N-by-L array, where L is the number of samples logged by the end of the simulation ( L is bounded above by the Limit data points to last parameter). Each sample-based matrix is an element of the 3-D array. (See "Example 1: Sample-Based Inputs" on page 2-1173.)
For 1-D vector inputs, the block outputs a 2-D matrix regardless of the setting of Frame. For a length-N 1-D vector input, the block outputs an L-by-N matrix. Each input vector is a row of the output matrix, vertically concatenated to the previous vector.

\section*{Signal To Workspace}

\section*{Output Dimension Summary}

The following table summarizes the output array dimensions for various block inputs. In the table, \(f\) is the frame size of the input, K is the number of frames acquired by the end of the simulation, and L is the number of samples acquired by the end of the simulation ( K and L are bounded above by the Limit data points to last parameter).
\begin{tabular}{l|l}
\hline Input Signal Type & \begin{tabular}{l} 
Signal To Workspace Output \\
Dimension
\end{tabular} \\
\hline Sample-based M-by-N matrix & M-by-N-by-L array \\
\hline Length-N 1-D vector & L-by-N matrix \\
\hline \begin{tabular}{l} 
Frame-based M-by-N matrix; \\
Frame set to Log frames \\
separately (3-D array)
\end{tabular} & M-by-N-by-K array \\
\hline \begin{tabular}{l} 
Frame-based M-by-N matrix; \\
Frame set to Concatenate \\
frames (2-D array)
\end{tabular} & \(\left(\begin{array}{l}\mathrm{K} * f) \text {-by-N matrix } \\
\mathrm{K} * \text { fis the number of samples } \\
\text { acquired by the end of the } \\
\text { simulation. }\end{array}\right.\) \\
\hline
\end{tabular}

\section*{Matching the Outputs of Signal To Workspace and To Workspace Blocks}

The To Workspace block in the Simulink Sinks Library and the Signal To Workspace block can output the same array when they are given the same inputs. To match the blocks' outputs, set their parameters as follows.
\begin{tabular}{l|l|l}
\hline Block Parameters & \begin{tabular}{l} 
Signal To \\
Workspace
\end{tabular} & To Workspace \\
\hline \begin{tabular}{l} 
Limit data points \\
to last
\end{tabular} & \begin{tabular}{l}
x (any positive integer \\
or inf)
\end{tabular} & x \\
\hline Decimation & \begin{tabular}{l}
y (any positive \\
integer, not inf)
\end{tabular} & y \\
\hline
\end{tabular}

\section*{Signal To Workspace}
\begin{tabular}{l|l|l}
\hline Block Parameters & \begin{tabular}{l} 
Signal To \\
Workspace
\end{tabular} & To Workspace \\
\hline Sample Time & No such parameter & -1 \\
\hline Save format & No such parameter & Array \\
\hline Frames & \begin{tabular}{l} 
Concatenate frames \\
(2-D array)
\end{tabular} & No such parameter \\
\hline
\end{tabular}

\section*{Examples Example 1: Sample-Based Inputs}

In the following model, the input to the Signal To Workspace block is a 2-by- 2 sample-based matrix signal with a sample time of 1 (generated by a Signal From Workspace block). The Signal To Workspace block logs 11 samples by the end of the simulation, and creates a 2 -by- 2 -by- 11 array, A, in the MATLAB workspace.


The block settings are as follows.
Signal To Workspace Block Parameters
\begin{tabular}{l|l}
\hline Variable name & yout \\
\hline Limit data points to last & inf \\
\hline Decimation & 1 \\
\hline
\end{tabular}

\section*{Signal To Workspace}
\begin{tabular}{l|l}
\hline \multicolumn{2}{|c}{ Signal To Workspace Block Parameters } \\
\hline Frames & \begin{tabular}{l} 
Ignored since block input is not \\
frame based
\end{tabular} \\
\hline Configuration Dialog Box Parameters \\
\hline Start time & 0 \\
\hline Stop time & 10 \\
\hline \begin{tabular}{l} 
Signal From Workspace Parameters (provides Signal To \\
Workspace input)
\end{tabular} \\
\hline Signal & input1 (defined below) \\
\hline Sample time & 1 \\
\hline Samples per frame & 1 \\
\hline \begin{tabular}{l} 
Form output after final data \\
value by
\end{tabular} & Setting to zero \\
\hline input1 = cat (3, [1 1; -1 0], [2 1; -2 0], ..., [11 1; -11 0])
\end{tabular}

\section*{Example 2: Frame-Based Inputs}

In the following model, the input to the Signal To Workspace block is a 2 -by- 4 frame-based matrix signal with a frame period of 1 (generated by a Signal From Workspace block). The block logs 11 frames (two samples per frame) by the end of the simulation. The frames are concatenated to create a 22 -by- 4 matrix, A, in the MATLAB workspace.

The block settings for the following model are similar to the settings used in Example 1, except Frames is set to Concatenate frames (2-D array) and the Signal From Workspace parameter, Signal, is set to input2, where
```

input2 = [1 -1 1 0; 2 -2 1 0; 3 -3 1 0;...; 22 -22 1 0]

```

\section*{Signal To Workspace}


Concatenate Frames
In the 2-D output, there is no indication of where one frame ends and another begins. By setting Frames to Log frames separately (3-D array) in this model, you can easily see each frame in the MATLAB workspace, as illustrated in the following model. Each of the 11 frames is logged separately to create a 2 -by- 4 -by- 11 array, A , in the MATLAB workspace.


\section*{Signal To Workspace}

\section*{Dialog \\ Box}


\section*{Variable name}

The name of the array that holds the input data.

\section*{Limit data points to last}

The maximum number of input samples (for sample-based inputs) or input frames (for frame-based inputs) to be saved.

\section*{Decimation}

The decimation factor, d. Data is written at every dth sample.

\section*{Frames}

The output dimensionality for frame-based inputs. Frames can be set to Concatenate frames (2-D array) or Log frames separately (3-D array). This parameter is ignored when inputs are not frame based.

\title{
Signal To Workspace
}

\section*{Log fixed-point data as a fi object}

Select to log fixed-point data to the MATLAB workspace as a Fixed-Point Toolbox fi object. Otherwise, fixed-point data is logged to the workspace as double.

\author{
Supported Data Types \\ - Double-precision floating point \\ - Single-precision floating point \\ - Fixed point (signed and unsigned) \\ - 8 -, 16 -, and 32 -bit signed integers \\ - 8-, 16-, and 32 -bit unsigned integers
}

\author{
See Also
}

Triggered To Workspace
To Workspace
Signal Processing Blockset
Simulink

\section*{Sine Wave}

Purpose
Library

\section*{Description}

Generate continuous or discrete sine wave

Signal Processing Sources
dspsrcs4

The Sine Wave block generates a multichannel real or complex sinusoidal signal, with independent amplitude, frequency, and phase in each output channel. A real sinusoidal signal is generated when the Output complexity parameter is set to Real, and is defined by an expression of the type
\[
y=A \sin (2 \pi f t+\phi)
\]
where you specify \(A\) in the Amplitude parameter, \(f\) in hertz in the Frequency parameter, and \(\varphi\) in radians in the Phase offset parameter. A complex exponential signal is generated when the Output complexity parameter is set to Complex, and is defined by an expression of the type
\[
y=A e^{j(2 \pi f t+\phi)}=A\{\cos (2 \pi f t+\phi)+j \sin (2 \pi f t+\phi)\}
\]

\section*{Sections of This Reference Page}
- "Generating Multichannel Outputs" on page 2-1179
- "Output Sample Time and Samples Per Frame" on page 2-1179
- "Sample Mode" on page 2-1179
- "Discrete Computational Methods" on page 2-1180
- "Examples" on page 2-1183
- "Dialog Box" on page 2-1184
- "Supported Data Types" on page 2-1189
- "See Also" on page 2-1189

\section*{Generating Multichannel Outputs}

For both real and complex sinusoids, the Amplitude, Frequency, and Phase offset parameter values ( \(A, f\), and \(\varphi\) ) can be scalars or length- \(N\) vectors, where \(N\) is the desired number of channels in the output. When you specify at least one of these parameters as a length \(-N\) vector, scalar values specified for the other parameters are applied to every channel.

For example, to generate the three-channel output containing the real sinusoids below, set Output complexity to Real and the other parameters as follows:
- Amplitude = \(\left.\begin{array}{lll}1 & 2 & 3\end{array}\right]\)
- Frequency \(=\left[\begin{array}{lll}1000 & 500 & 250\end{array}\right]\)
- Phase offset \(=\left[\begin{array}{ll}0 & 0\end{array} \mathrm{pi} / 2\right]\)
\[
y=\left\{\begin{array}{cl}
\sin (2000 \pi t) & (\text { channel 1) } \\
2 \sin (1000 \pi t) & (\text { channel } 2) \\
3 \sin \left(500 \pi t+\frac{\pi}{2}\right) & (\text { channel } 3)
\end{array}\right.
\]

\section*{Output Sample Time and Samples Per Frame}

In all discrete modes, the block buffers the sampled sinusoids into frames of size M, where you specify M in the Samples per frame parameter. The output is a frame-based M-by-N matrix with frame period \(\mathrm{M}^{*} \mathrm{~T}_{\mathrm{s}}\), where you specify \(\mathrm{T}_{\mathrm{s}}\) in the Sample time parameter. For \(\mathrm{M}=1\), the output is sample based.

\section*{Sample Mode}

The Sample mode parameter specifies the block's sampling property, which can be Continuous or Discrete:
- Continuous

\section*{Sine Wave}

In continuous mode, the sinusoid in the \(i\) th channel, \(y_{i}\), is computed as a continuous function,
\[
y_{i}=A_{i} \sin \left(2 \pi f_{i} t+\phi_{i}\right) \quad(\text { real })
\]
or
\[
y_{i}=A_{i} e^{j\left(2 \pi f_{i} t+\phi_{i}\right)} \quad(\text { complex })
\]
and the block's output is continuous. In this mode, the block's operation is the same as that of a Simulink Sine Wave block with Sample time set to 0 . This mode offers high accuracy, but requires trigonometric function evaluations at each simulation step, which is computationally expensive. Additionally, because this method tracks absolute simulation time, a discontinuity will eventually occur when the time value reaches its maximum limit.

Note also that many Signal Processing Blockset blocks do not accept continuous-time inputs.
- Discrete

In discrete mode, the block's discrete-time output can be generated by directly evaluating the trigonometric function, by table lookup, or by a differential method. The three options are explained below.

\section*{Discrete Computational Methods}

When you select Discrete from the Sample mode parameter, the secondary Computation method parameter provides three options for generating the discrete sinusoid:
- Trigonometric Fcn
- Table Lookup
- Differential

\section*{Trigonometric Fcn}

The trigonometric function method computes the sinusoid in the \(i\) th channel, \(y_{\mathrm{i}}\), by sampling the continuous function
\[
y_{i}=A_{i} \sin \left(2 \pi f_{i} t+\phi_{i}\right) \quad(\text { real })
\]
or
\[
y_{i}=A_{i} e^{j\left(2 \pi f_{i} t+\phi_{i}\right)} \quad(\text { complex })
\]
with a period of \(T_{s}\), where you specify \(T_{s}\) in the Sample time parameter. This mode of operation shares the same benefits and liabilities as the Continuous sample mode described above.

At each sample time, the block evaluates the sine function at the appropriate time value within the first cycle of the sinusoid. By constraining trigonometric evaluations to the first cycle of each sinusoid, the block avoids the imprecision of computing the sine of very large numbers, and eliminates the possibility of discontinuity during extended operations (when an absolute time variable might overflow). This method therefore avoids the memory demands of the table lookup method at the expense of many more floating-point operations.

\section*{Table Lookup}

The table lookup method precomputes the unique samples of every output sinusoid at the start of the simulation, and recalls the samples from memory as needed. Because a table of finite length can only be constructed when all output sequences repeat, the method requires that

\section*{Sine Wave}
the period of every sinusoid in the output be evenly divisible by the sample period. That is, \(1 /\left(f_{i} T_{s}\right)=k_{i}\) must be an integer value for every channel \(i=1,2, \ldots, N\). When the Optimize table for parameter is set to Speed, the table constructed for each channel contains \(k_{i}\) elements. When the Optimize table for parameter is set to Memory, the table constructed for each channel contains \(k_{i} / 4\) elements.

For long output sequences, the table lookup method requires far fewer floating-point operations than any of the other methods, but can demand considerably more memory, especially for high sample rates (long tables). This is the recommended method for models that are intended to emulate or generate code for DSP hardware, and that therefore need to be optimized for execution speed.

\section*{Differential}

The differential method uses an incremental algorithm. This algorithm computes the output samples based on the output values computed at the previous sample time (and precomputed update terms) by making use of the following identities.
\[
\begin{aligned}
& \sin \left(t+T_{s}\right)=\sin (t) \cos \left(T_{s}\right)+\cos (t) \sin \left(T_{s}\right) \\
& \cos \left(t+T_{s}\right)=\cos (t) \cos \left(T_{s}\right)-\sin (t) \sin \left(T_{s}\right)
\end{aligned}
\]

The update equations for the sinusoid in the \(i\) th channel, \(y_{i}\), can therefore be written in matrix form as
\[
\left[\begin{array}{l}
\sin \left\{2 \pi f_{i}\left(t+T_{s}\right)+\phi_{i}\right\} \\
\cos \left\{2 \pi f_{i}\left(t+T_{s}\right)+\phi_{i}\right\}
\end{array}\right]=\left[\begin{array}{cc}
\cos \left(2 \pi f_{i} T_{s}\right) & \sin \left(2 \pi f_{i} T_{s}\right) \\
-\sin \left(2 \pi f_{i} T_{s}\right) & \cos \left(2 \pi f_{i} T_{s}\right)
\end{array}\right]\left[\begin{array}{c}
\sin \left(2 \pi f_{i} t+\phi_{i}\right) \\
\cos \left(2 \pi f_{i} t+\phi_{i}\right)
\end{array}\right]
\]
where you specify \(T_{s}\) in the Sample time parameter. Since \(T_{s}\) is constant, the right-hand matrix is a constant and can be computed once at the start of the simulation. The value of \(A_{i} \sin \left[2 \pi f_{i}\left(t+T_{s}\right)+\varphi_{i}\right]\) is then computed from the values of \(\sin \left(2 \pi f_{i} t+\varphi_{i}\right)\) and \(\cos \left(2 \pi f_{i} t+\varphi_{i}\right)\) by a simple matrix multiplication at each time step.

This mode offers reduced computational load, but is subject to drift over time due to cumulative quantization error. Because the method
is not contingent on an absolute time value, there is no danger of discontinuity during extended operations (when an absolute time variable might overflow).

Examples The dspsinecomp demo provides a comparison of all the available sine generation methods.

\section*{Sine Wave}

Dialog Box

The Main pane of the Sine Wave block dialog appears as follows.


Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters During Simulation" in the online Simulink documentation for details.

\section*{Amplitude}

A length \(-N\) vector containing the amplitudes of the sine waves in each of \(N\) output channels, or a scalar to be applied to all \(N\) channels. The vector length must be the same as that specified for the Frequency and Phase offset parameters. Tunable when Computation method is to Trigonometric fon or Differential.

\section*{Frequency}

A length- \(N\) vector containing frequencies, in Hertz, of the sine waves in each of \(N\) output channels, or a scalar to be applied to all \(N\) channels. The vector length must be the same as that specified for the Amplitude and Phase offset parameters. You can specify positive, zero, or negative frequencies. Tunable when Sample mode is Continuous or Computation method is Trigonometric fon.

\section*{Phase offset}

A length \(-N\) vector containing the phase offsets, in radians, of the sine waves in each of \(N\) output channels, or a scalar to be applied to all \(N\) channels. The vector length must be the same as that specified for the Amplitude and Frequency parameters. Tunable when Sample mode is Continuous or Computation method is Trigonometric fon.

\section*{Sample mode}

The block's sampling behavior, Continuous or Discrete. This parameter is not tunable.

\section*{Output complexity}

The type of waveform to generate: Real specifies a real sine wave, Complex specifies a complex exponential. This parameter is not tunable.

\section*{Computation method}

The method by which discrete-time sinusoids are generated: Trigonometric fcn, Table lookup, or Differential. This parameter is not tunable. This parameter is disabled when

\section*{Sine Wave}
you select Continuous from the Sample mode parameter. For details, see "Discrete Computational Methods" on page 2-1180.

\section*{Optimize table for}

Optimizes the table of sine values for Speed or Memory (this parameter is only visible when the Computation method parameter is set to Table lookup). When optimized for speed, the table contains \(k\) elements, and when optimized for memory, the table contains \(k / 4\) elements, where \(k\) is the number of input samples in one full period of the sine wave.

\section*{Sample time}

The period with which the sine wave is sampled, \(T_{s}\). The block's output frame period is \(M^{*} T_{s}\), where you specify \(M\) in the Samples per frame parameter. This parameter is disabled when you select Continuous from the Sample mode parameter. This parameter is not tunable.

\section*{Samples per frame}

The number of consecutive samples from each sinusoid to buffer into the output frame, \(M\). When the value of this parameter is 1 , the block outputs a sample-based signal.

This parameter is disabled when you select Continuous from the Sample mode parameter.

\section*{Resetting states when re-enabled}

This parameter only applies when the Sine Wave block is located inside an enabled subsystem and the States when enabling parameter of the Enable block is set to reset. This parameter determines the behavior of the Sine Wave block when the subsystem is re-enabled. The block can either reset itself to its starting state (Restart at time zero), or resume generating the sinusoid based on the current simulation time (Catch up to simulation time). This parameter is disabled when you select Continuous from the Sample mode parameter.

The Data types pane of the Sine Wave block dialog appears as follows.


\section*{Output data type}

Specify the output data type in out of the following ways:
Choose one of the built-in data types from the list.
Choose Fixed-point to specify the output data type and scaling in the Word length, Set fraction length in output to, and Fraction length parameters.

\section*{Sine Wave}

Choose User-defined to specify the output data type and scaling in the User-defined data type, Set fraction length in output to, and Fraction length parameters.

Choose Inherit via back propagation to set the output data type and scaling to match the next block downstream.

\section*{Word length}

Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible when you select Fixed-point for the Output data type parameter.

\section*{User-defined data type}

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the following Simulink Fixed Point functions: sfix, ufix, sint, uint, sfrac, and ufrac. This parameter is only visible when you select User-defined for the Output data type parameter.

\section*{Set fraction length in output to}

Specify the scaling of the fixed-point output by either of the following two methods:

Choose Best precision to have the output scaling automatically set such that the output signal has the best possible precision.

Choose User-defined to specify the output scaling in the Fraction length parameter.

This parameter is only visible when you select Fixed-point for the Output data type parameter, or when you select User-defined and the specified output data type is a fixed-point data type.

\section*{Fraction length}

For fixed-point output data types, specify the number of fractional bits, or bits to the right of the binary point. This parameter is only visible when you select Fixed-point or User-defined for
the Output data type parameter and User-defined for the Set fraction length in output to parameter.

\author{
Supported Data Types \\ - Double-precision floating point \\ - Single-precision floating point \\ - Fixed point (signed only) \\ - 8 -, 16-, and 32 -bit signed integers
}

\author{
See Also
}
Chirp
Complex Exponential
Signal From Workspace
Signal Generator
Sine Wave
sin

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Simulink
Simulink
MATLAB

\section*{Singular Value Decomposition}

\section*{Purpose \\ Library \\ Description \\ }

Math Functions / Matrices and Linear Algebra / Matrix Factorizations dspfactors

The Singular Value Decomposition block factors the \(M\)-by- \(N\) input matrix \(A\) such that
\[
A=U \cdot \operatorname{diag}(S) \cdot V^{*}
\]
where
- \(U\) is an \(M\)-by- \(P\) matrix
- \(V\) is an \(N\)-by- \(P\) matrix
- \(S\) is a length \(-P\) vector
- \(P\) is defined as \(\min (M, N)\)

When
- \(M=N, U\) and \(V\) are both \(M\)-by- \(M\) unitary matrices
- \(M>N, V\) is an \(N\)-by- \(N\) unitary matrix, and \(U\) is an \(M\)-by- \(N\) matrix whose columns are the first \(N\) columns of a unitary matrix
- \(N>M, U\) is an \(M\)-by- \(M\) unitary matrix, and \(V\) is an \(N\)-by- \(M\) matrix whose columns are the first \(M\) columns of a unitary matrix

In all cases, \(S\) is a 1-D vector of positive singular values having length \(P\).
Length \(-N\) row inputs are treated as length \(-N\) columns.
Note that the first (maximum) element of output \(S\) is equal to the 2 -norm of the matrix \(A\).

The output is always sample based.

\section*{Singular Value Decomposition}

\section*{Dialog} Box

Function Block Parameters: Singular Value Decomposition区
-Singular Value Decomposition (mask) (link)
Compute the economy sized SVD of the M-by-N input matrix A by finding U, S, and \(V\) such that \(A=U^{*} d i a g(S)^{\wedge} V^{\prime}\). \(S\) is a vector of positive singular values with length equal to min( \(M, N\) ). Select the 'Show error status port ( \(E\) )' check box to send the convergence error status to an output port.

Parameters
V Show singular vector ports (U, V)
\(\Gamma\) Show error status port (E)


\section*{Show singular vector ports}

Select to enable the U and V output ports.

\section*{Show error status port}

Select to enable the E output port, which reports a failure to converge. The possible values you can receive on the port are:
- 0 - The singular value decomposition calculation converges.
- 1 - The singular value decomposition calculation does not converge.

If the singular value decomposition calculation fails to converge, the output at ports U, S, and V are undefined matrices of the correct size.

\section*{References}

Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.

\section*{Singular Value Decomposition}

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline A & • Double-precision floating point \\
& • Single-precision floating point
\end{tabular}
\begin{tabular}{ll} 
Autocorrelation LPC & Signal Processing Blockset \\
Cholesky Factorization & Signal Processing Blockset \\
LDL Factorization & Signal Processing Blockset \\
LU Inverse & Signal Processing Blockset \\
Pseudoinverse & Signal Processing Blockset \\
QR Factorization & Signal Processing Blockset \\
SVD Solver & Signal Processing Blockset \\
svd & MATLAB
\end{tabular}

See "Matrix Factorizations" for related information.

\section*{Purpose \\ Library \\ Description \\ }

Sort input elements by value

Statistics
dspstat3

The Sort block ranks the values of the input elements using either a quick sort or an insertion sort algorithm. The quick sort algorithm uses a recursive sort method and is faster at sorting more than 32 elements. The insertion sort algorithm uses a non-recursive method and is faster at sorting less than 32 elements. You should also always use the insertion sort algorithm when you are generating code from the Sort block if you do not want recursive function calls in your code. To specify the sort method, use the Sort algorithm parameter.

The Mode parameter specifies the block's mode of operation, and can be set to Value, Index, or Value and index.

The Sort block supports real and complex floating-point and fixed-point inputs. Signed and unsigned fixed-point signals are supported. The block output has the same signedness as the input.

\section*{Value Mode}

When Mode is set to Value, the block sorts the elements in each column of the M-by-N input matrix \(u\) in order of ascending or descending value, as specified by the Sort order parameter.
```

val = sort(u)
val = flipud(sort(u))

```

For convenience, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by-1 column vectors.

The output at each sample time, val, is an M-by-N matrix containing the sorted columns of \(u\). The output has the same frame status as the input.

Complex inputs are sorted by magnitude squared. For complex value u \(=a+b i\), the magnitude squared is \(a^{2}+b^{2}\).

\section*{Sort}

\section*{Index Mode}

When Mode is set to Index, the block sorts the elements in each column of the M-by-N input matrix \(u\),
```

[val,idx] = sort(u)
[val,idx] = flipud(sort(u))

```
and outputs the sample-based M-by-N index matrix, idx. The \(j\) th column of idx is an index vector that permutes the \(j\) th column of \(u\) to the desired sorting order.
\[
\operatorname{val}(:, j)=u(i d x(:, j), j)
\]

The index value outputs are always 32 -bit unsigned integer values.
As in Value mode, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by-1 column vectors.

\section*{Value and Index Mode}

When Mode is set to Value and index, the block outputs both the sorted matrix, val, and the index matrix, idx.

\section*{Fixed-Point Data Types}

The parameters on the Data type attributes pane are only used for complex fixed-point inputs. Complex fixed-point inputs are sorted by magnitude squared. The sum of the squares of the real and imaginary parts of such an input are formed before a comparison is made, as described in "Value Mode" on page 2-1193. The results of the squares of the real and imaginary parts are placed into the product output data type. The result of the sum of the squares is placed into the accumulator data type. These parameters are ignored for other types of inputs.

Dialog Box

The Main pane of the Sort block dialog appears as follows.

\section*{Function Block Parameters: Sort}
-Sort
Value and/or index of sorted elements in vector or matrix. For matrix inputs, the elements are sorted columnwise.

The accumulator and product output parameters are only used for complex fixed-point inputs.

Main \(\mid\) Data type attributes
Parameters
Mode: Value and index
Sort order: Ascending
Sort algorithm: Quick sort


\section*{Mode}

Specify the block's mode of operation: Output the sorted matrix (Value), the index matrix (Index), or both (Value and index).

\section*{Sort order}

Specify the order in which to sort the training points, Descending or Ascending.

\section*{Sort}

\section*{Sort algorithm}

Specify whether the elements of the input are sorted using a Quick sort or an Insertion sort algorithm.

The Data type attributes pane of the Sort block dialog appears as follows.

Function Block Parameters: Sort
-Sort
Value and/or index of sorted elements in vector or matrix. For matrix inputs, the elements are sorted columnwise.

The accumulator and product output parameters are only used for complex fixed-point inputs.
Main Data type attributes
\begin{tabular}{l} 
Fixed-point operational parameters- \\
Rounding mode: \\
\hline
\end{tabular} Floor

Floating-point inheritance takes precedence over the settings in the 'Data Type' column below. When the block input is floating point, all block data types match the input.


「 Lock scaling against changes by the autoscaling tool


Note The parameters on the Data type attributespane are only used for complex fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input are formed before a comparison is made, as described in "Value Mode" on page 2-1193. The results of the squares of the real and imaginary parts are placed into the product output data type. The result of the sum of the squares is placed into the accumulator data type. These parameters are ignored for other types of inputs.

\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Product output data type}

Specify the product output data type. See "Fixed-Point Data Types" on page 2-1194 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set it to:
- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button \(\quad \gg\) to display the Data Type Assistant, which helps you set the Product output data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

\section*{Sort}

\section*{Accumulator data type}

Specify the accumulator data type. See "Fixed-Point Data Types" on page 2-1194 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:
- A rule that inherits a data type, for example, Inherit: Same as product output
- An expression that evaluates to a valid data type, for example, fixdt([],16,0)

Click the Show data type assistant button \(\quad \gg\) to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Using the Data Type Assistant" in Simulink User's Guide for more information.

\section*{Lock scaling against changes by the autoscaling tool}

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & \(\bullet\) Double-precision floating point \\
& \(\bullet\) Single-precision floating point \\
& \(\bullet\) Fixed point (signed and unsigned) \\
& \(\bullet 8-, 16-, 32\)-, and 128 -bit unsigned integers \\
& \(\bullet 8-, 16-, 32\)-, and 128 -bit signed integers \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Val & \(\bullet\) Double-precision floating point \\
& \(\bullet\) Single-precision floating point \\
& • Fixed point (signed and unsigned) \\
& \(\bullet 8-, 16-, 32\)-, and 128 -bit unsigned integers \\
& \(\bullet 8-, 16-, 32\)-, and 128-bit signed integers \\
\hline Idx & \(\bullet 32\)-bit unsigned integers \\
\hline
\end{tabular}

\author{
See Also \\ \begin{tabular}{ll} 
Histogram & Signal Processing Blockset \\
Median & Signal Processing Blockset \\
sort & MATLAB
\end{tabular}
}

\section*{Spectrum Scope}

Purpose Compute and display periodogram of each input signal

Library

\section*{Description}

B-FFT

Signal Processing Sinks
dspsnks4
The Spectrum Scope block computes and displays the periodogram of the input. The input can be a sample-based or frame-based vector or a frame-based matrix.

Note When the Buffer input and Specify FFT length parameters are both cleared, the block input length must be a power of two.

\section*{Scope Properties Pane}

The Spectrum units parameter allows you to specify the following information:
- The type of measurement for the block to compute (Power Spectral Density or Mean-Square Spectrum)
- The type of scaling for the block to use (linear or log)

You can set the Spectrum units parameter to one of the options shown in the following table.
\begin{tabular}{l|l|l}
\hline Spectrum Units & Measurement Type & Scaling \\
\hline Watts & Mean-Square & Linear \\
& Spectrum (MSS) & \\
\hline dBW & Mean-Square & Logarithmic \\
dBm & Spectrum (MSS) & \\
\hline
\end{tabular}

\section*{Spectrum Scope}
\begin{tabular}{l|l|l}
\hline Spectrum Units & Measurement Type & Scaling \\
\hline Watts/Hertz & \begin{tabular}{l} 
Power Spectral \\
Density (PSD)
\end{tabular} & Linear \\
\hline \begin{tabular}{l} 
dBW/Hertz \\
\(d B m / H e r t z\)
\end{tabular} & \begin{tabular}{l} 
Power Spectral \\
Density (PSD)
\end{tabular} & Logarithmic \\
\hline
\end{tabular}

The \(X\)-axis units are always expressed in Hertz. The spacing between frequency points is \(1 /\left(N_{f f t} T_{s}\right)\).
The Spectrum type parameter specifies the range of frequencies over which the block computes the spectrum. The available options are One-sided ([0...Fs/2]) and Two-sided ((-Fs/2...Fs/2]), where \(F_{s}\) is the sampling frequency of the original time-domain signal. Both the one-sided and two-sided options compute the full power spectrum. The Spectrum Scope block only supports One-sided ([0...Fs/2]) spectrums for real input signals.

Other Signal Processing Blockset FFT-based blocks, including the blocks in the Power Spectrum Estimation library, always compute the FFT at frequencies in the range \(\left[0, F_{s}\right)\).

Select the Buffer input check box when the input to the block is sample based. You can also use buffering for frame-based inputs, but it is optional. When the block buffers the input, the Buffer size parameter specifies the number of input samples to buffer before computing and displaying the magnitude FFT. You also use the Buffer overlap parameter to specify the number of samples from the previous buffer to include in the current buffer. To compute the number of new input samples the block acquires before computing and displaying the magnitude FFT, subtract the buffer overlap from the buffer size.

The display update period is
\[
\left(M_{o}-L\right) * T_{s}
\]
where
- \(M_{o}=\) buffer size

\section*{Spectrum Scope}
- \(L=\) buffer overlap
- \(T_{s}=\) input sample period

For negative buffer overlap values, the block discards the appropriate number of input samples after the buffer fills. The block also updates the scope display at a slower rate than in the zero-overlap case.

The Window and Window sampling parameters apply to the specification of the window function. See the Window Function block reference page for more details on these parameters.

The block determines the FFT length, \(N_{f f t}\), in the following ways:
- If you clear the Specify FFT length check box and select Buffer input, the block uses the buffer size as the FFT size.
- If you clear both the Specify FFT length and Buffer input check boxes, the block uses the input size as the FFT size.
- If you select the Specify FFT length check box, the FFT length parameter appears in the dialog box. Enter the number of samples on which you want the block to perform the FFT. This value must be a power of two.

The block zero pads or wraps the buffer of each channel to the FFT length before computing the FFT.

The value of the Number of spectral averages parameter determines the number of spectra to average. Setting this parameter to 1 effectively disables averaging. See the Periodogram block reference page for more information.

\section*{Display Properties Pane}

The Display Properties pane enables you to control how the block displays your data.

The Show grid parameter toggles the background grid on and off.
If you select the Persistence check box, the window maintains successive displays. That is, the scope does not erase the display after

\section*{Spectrum Scope}
each frame (or collection of frames), but overlays successive input frames in the scope display.

If you select the Frame number check box, the block displays the number of the current frame in the input sequence on the scope window, and the block increments the count as each new input is received. Counting starts at 1 with the first input frame, and continues until the simulation stops.

If you select the Channel legend check box, a legend indicating the line color, style, and marker of each channel's data is added. When the input signal is labeled, that label appears in the channel legend. When the input signal is not labeled, but comes from a Concatenate block or a Mux block with labeled inputs, those labels appear in the channel legend. Otherwise, each channel in the legend is labeled with the channel number (CH 1, CH 2, etc.). Click and drag the legend to reposition it in the scope window; double-click the line label to edit the text. If you rerun the simulation, the labels revert to the defaults.

If you select the Compact display check box, the scope completely fills the figure window. The scope does not display menus and axis titles, but it does show the numerical axis labels within the axes. If you clear the Compact display check box, the scope displays the axis labels and titles in a gray border surrounding the scope axes, and the window's menus and toolbar become visible.

If you select the Open scope at start of simulation check box, the scope opens at the start of the simulation. If you clear this parameter, the scope does not open automatically during the simulation. You can use this feature when you have several scope blocks in a model, and you do not want to view all the associated scopes during the simulation.

To view a scope window that is not open during simulation, click Open scope immediately on the Display Properties pane of the desired Scope block.

The Scope position parameter specifies a four-element vector of the form
```

[left bottom width height]

```

\section*{Spectrum Scope}
specifying the position of the scope window on the screen, where \((0,0)\) is the lower-left corner of the display. See the MATLAB figure function for more information.

\section*{Axis Properties Pane}

If you select the Inherit sample time from input check box, the block computes the frequency data from the sample period of the input to the block. For the block to produce valid output, the following conditions must hold:
- The input to the block is the original signal, with no samples added or deleted (by insertion of zeros, for example).
- The sample period of the time-domain signal in the simulation equals the sample period of the original time series.

In cases where not all these conditions hold, specify the appropriate value for the Sample time of original time series parameter.

When you set the Frequency display limits to Auto, the block displays the full spectrum over the frequency range specified by the Spectrum type parameter.

The Frequency display offset parameter allows you to offset the range of values displayed on the frequency axis of the Spectrum Scope.
- When the Frequency display offset is 0, the block displays the DC frequency ( 0 Hz ) at 0 Hz .
- When Frequency display offset is a nonzero value, the block displays the DC frequency ( 0 Hz ) at the value specified in the Frequency display offset parameter. If you set the Frequency display limits parameter to User-defined, the block does not automatically relabel the frequency axis. However, if you set the Frequency display limits to Auto, the values displayed on the frequency axis shift according to the Frequency display offset parameter.

\section*{Spectrum Scope}

For example, if the block has the following settings:
- Spectrum Units = Watts \(/\) Hertz
- Spectrum Type \(=\) Two-sided ( (-Fs/2...Fs/2])
- Frequency display offset \((\mathrm{Hz})=0\)
- Frequency display limits = Auto
- Sampling frequency \((F s)=1000 \mathrm{~Hz}\)

Then, based on these settings:
- The values on the frequency axis of the spectrum scope range from -500 Hz to 500 Hz .
- The block centers the DC frequency \((0 \mathrm{~Hz})\) at 0 Hz .

If you change the Frequency display offset ( \(\mathbf{H z}\) ) parameter to 100, the block:
- Relabels the frequency axis such that the values range from -400 Hz to 600 Hz .
- Centers the DC frequency \((0 \mathrm{~Hz})\) at 100 Hz .

When you set the Frequency display limits to User-defined, the Minimum frequency \((\mathrm{Hz})\) and Maximum frequency \((\mathrm{Hz})\) parameters set the range of the horizontal axis.

Minimum Y-limit and Maximum Y-limit parameters allow you to set the range of the vertical axis. Setting these parameters equates to setting the ymin and ymax values of the MATLAB axis function.

The \(\mathbf{Y}\)-axis label is the text displayed to the left of the y -axis.

\section*{Line Properties Pane}

Use the parameters on the Line Properties pane to help you distinguish between two or more independent channels of data on the scope.

The Line visibilities parameter specifies which channel's data is displayed on the scope, and which is hidden. The syntax specifies the

\section*{Spectrum Scope}
visibilities in list form, where the term on or off as a list entry specifies the visibility of the corresponding channel's data. The list entries are separated by the pipe symbol, |.

For example, a five-channel signal would ordinarily generate five distinct plots on the scope. To disable plotting of the third and fifth lines, enter the following visibility specification in the Line visibilities parameter.
```

on | on | off | on | off
ch}1\operatorname{ch}2\operatorname{ch}3\quad\operatorname{ch}4\quad\operatorname{ch}

```

Note that the first (leftmost) list item corresponds to the first signal channel (leftmost column of the input matrix).

The Line styles parameter specifies the line style with which each channel's data is displayed on the scope. The syntax specifies the channel line styles in list form, with each list entry specifying a style for the corresponding channel's data. The list entries are separated by the pipe symbol, |.

For example, a five-channel signal would ordinarily generate all five plots with a solid line style. To plot each line with a different style, enter
```

 | -- | : | -. | -
 ch 1 ch 2 ch 3 ch 4 ch 5

```

These settings plot the signal channels with the following styles.
\begin{tabular}{l|l|l}
\hline Line Style & \begin{tabular}{l} 
Command to \\
Type in Line Style \\
Parameter
\end{tabular} & Appearance \\
\hline Solid & - & \\
\hline Dashed & -- & \(-\ldots \ldots \ldots\) \\
\hline Dotted & \(:\) & \(\ldots \ldots \ldots \ldots\) \\
\hline
\end{tabular}

\section*{Spectrum Scope}
\begin{tabular}{|c|c|c|}
\hline Line Style & Command to Type in Line Style Parameter & Appearance \\
\hline Dash-dot & - . & \\
\hline No line & none & No line appears \\
\hline
\end{tabular}

Note that the first (leftmost) list item, ' - ' , corresponds to the first signal channel (leftmost column of the input matrix). See the LineStyle property of the MATLAB line function for more information about the style syntax.

The Line markers parameter specifies the marker style with which each channel's samples are represented on the scope. The syntax specifies the channels' marker styles in list form, with each list entry specifying a marker for the corresponding channel's data. The list entries are separated by the pipe symbol, |.

For example, a five-channel signal would ordinarily generate all five plots with no marker symbol (that is, the individual sample points are not marked on the scope). To instead plot each line with a different marker style, you could enter


These settings plot the signal channels with the following styles.
\begin{tabular}{|c|c|c|}
\hline Marker Style & Command to Type in Marker Style Parameter & Appearance \\
\hline Asterisk & * & * * * \\
\hline
\end{tabular}

\section*{Spectrum Scope}
\begin{tabular}{|c|c|c|}
\hline Marker Style & Command to Type in Marker Style Parameter & Appearance \\
\hline Point & . & \\
\hline Cross & x & \\
\hline Square & s &  \\
\hline Diamond & d & \(\bullet \bullet+\) \\
\hline
\end{tabular}

Note that the leftmost list item, ' * ' , corresponds to the first signal channel or leftmost column of the input matrix. See the Marker property of the MATLAB line function for more information about the available markers.

To produce a stem plot for the data in a particular channel, type the word stem instead of one of the basic marker shapes.

The Line colors parameter specifies the color in which each channel's data is displayed on the scope. The syntax specifies the channel colors in list form, with each list entry specifying a color (in one of the MATLAB ColorSpec formats) for the corresponding channel's data. The list entries are separated by the pipe symbol, I.

For example, a five-channel signal would ordinarily generate all five plots in the color black. To instead plot the lines with the color order below, enter
\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\left|\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\right|\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\left|\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\right|\left[\begin{array}{lll}.7529 & 0 & .7529\end{array}\right]\)
or

\section*{Spectrum Scope}
```

'k' | 'b' | 'r' | 'g' | [.7529 0 .7529]
ch1 ch2 ch 3 ch 4 ch 5

```

These settings plot the signal channels in the following colors (8-bit RGB equivalents shown in the center column).
\begin{tabular}{l|l|l}
\hline Color & RGB Equivalent & Appearance \\
\hline Black & \((0,0,0)\) & \\
\cline { 3 - 3 } & & \\
\hline Blue & \((0,0,255)\) & \\
\hline Red & \((255,0,0)\) & \\
\hline Green & \((0,255,0)\) & \\
\hline \begin{tabular}{l} 
Dark \\
purple
\end{tabular} & \((192,0,192)\) & \\
\hline
\end{tabular}

Note that the leftmost list item, ' \(k\) ', corresponds to the first signal channel or leftmost column of the input matrix. See the MATLAB function ColorSpec for more information about the color syntax.

\section*{Spectrum Scope Window}

The title that appears in the title bar of the scope window is the same as the block title. In addition to the standard MATLAB figure window menus such as File, Window, and Help, the Spectrum Scope window contains View, Axes, and Channels menus.

The options in the View menu allow you to zoom in and out of the scope window:
- To zoom in on the scope window, you must first select View > Zoom In or click the corresponding Zoom In toolbar button ( \({ }^{\oplus}\) ). You can

\section*{Spectrum Scope}
then zoom in by clicking in the center of your area of interest, or by clicking and dragging your cursor to draw a rectangular area of interest inside of the scope window.
- To zoom in on the \(x\)-axis of the scope window, you must first select View > Zoom X or click the corresponding Zoom X-Axis toolbar button \(\left(^{\otimes}\right.\) ) on the scope window. You can then zoom in on the \(x\)-axis with a single click inside the scope window, or by clicking and dragging the cursor along the \(x\)-axis over your area of interest.
- To zoom in on the \(y\)-axis of the scope window, you must first select View > Zoom Y or click the corresponding Zoom Y-Axis toolbar button ( \(\varnothing \varnothing\) ). You can then zoom in on the \(y\)-axis with a single click inside the scope window, or by clicking and dragging the cursor along the \(y\)-axis over your area of interest.
- To return to the original view of the scope window, you have the following options:
- Select Full View from the View menu.
- Click the Restore default view toolbar button ( \(\mathbb{X}\) ) on the Spectrum Scope window.
- Right-click inside the scope window and select Reset to Original View.

Note To zoom out in smaller increments, you can right-click inside of the scope window and select Zoom Out. You can also zoom out by holding down the Shift key and clicking the left mouse button inside the scope window.

The parameters that you set using the Axes menu apply to all channels. Many of the parameters in this menu are also accessible through the block parameters dialog box. For descriptions of these parameters, see "Display Properties Pane" on page 2-1217. Below are descriptions of other parameters in the Axes menu:

\section*{Spectrum Scope}
- Refresh erases all data on the scope display, except for the most recent trace. This command is useful in conjunction with the Persistence setting.
- Autoscale resizes the \(y\)-axis to best fit the vertical range of the data.

> Note The Minimum Y-limit and Maximum Y-limit parameters on the Axis properties pane of the block dialog are not updated to display the numerical limits selected by the autoscale feature. See "Zoom Capability for Spectrum Scope and Vector Scope Blocks" in the Signal Processing Blockset Release Notes for more information.
- Save Axes Settings allows you to save the current axes settings. When you select this option, the Minimum Y-limit and Maximum Y-limit parameters of the Axes Properties pane update with the current \(y\)-axes limits. The Frequency display limits parameter is set to User-defined, and the current \(x\)-axes limits are saved in the Minimum Frequency (Hz) and Maximum Frequency (Hz) parameters. To save these axes settings for your next MATLAB session, you need to resave your model.
- Save Scope Position automatically updates the Scope position parameter in the Axis Properties pane of the block dialog. When you select Save Scope Position, the block saves the current position and size of the scope window. To make the scope window open at a particular location on the screen when the simulation runs, drag the window to the desired location, resize it, and select Save Scope Position from the Axes menu.

The properties listed in the Channels menu apply to a particular channel. All of the parameters in this menu are also accessible through the block parameters dialog box. For descriptions of these parameters, see "Line Properties Pane" on page 2-1205.

Many of these options are also accessible by right-clicking the mouse anywhere on the scope display. The menu that is displayed contains a

\section*{Spectrum Scope}
combination of the options available in the View, Axes and Channels menus.

Note When you select Compact Display from the Axes menu, the scope window menus are no longer visible. Right-click in the Spectrum Scope window and click Compact Display to make the menus reappear.

\section*{Examples \\ See "Displaying Frequency-Domain Data" in the Signal Processing Blockset User's Guide.}

\section*{Spectrum Scope}

Dialog Box

\section*{Scope Properties Pane}


\section*{Spectrum units}

Specify the spectrum units as described in the following table. The specified units determine the type of measurement to compute (Mean-Square Spectrum or Power Spectral Density). They also determine the type of Y -axis scaling (linear or logarithmic).

\section*{Spectrum Scope}
\begin{tabular}{l|l|l}
\hline Spectrum Units & \begin{tabular}{l} 
Measurement \\
Type
\end{tabular} & Scaling \\
\hline Watts & \begin{tabular}{l} 
Mean-Square \\
Spectrum (MSS)
\end{tabular} & Linear \\
\hline \begin{tabular}{l} 
dBW \\
dBm
\end{tabular} & \begin{tabular}{l} 
Mean-Square \\
Spectrum (MSS)
\end{tabular} & Logarithmic \\
\hline Watts/Hertz & \begin{tabular}{l} 
Power Spectral \\
Density (PSD)
\end{tabular} & Linear \\
\hline \begin{tabular}{l} 
dBW/Hertz \\
dBm/Hertz
\end{tabular} & \begin{tabular}{l} 
Power Spectral \\
Density (PSD)
\end{tabular} & Logarithmic \\
\hline
\end{tabular}

You can only tune this parameter within the same Measurement type. The block cannot switch between computing the mean-square spectrum and the power spectral density while the simulation is running.

\section*{Spectrum type}

Specify the range of frequencies over which to compute the magnitudes in the input. The available options are One-sided ([0...Fs/2]) and Two-sided ((-Fs/2...Fs/2]), where \(F_{s}\) is the sampling frequency of the original time-domain signal. If you select One-sided ([0...Fs/2]), the input signal must be real-valued. Tunable.

\section*{Buffer input}

Select this check box to rebuffer the input data. Sample-based inputs require that you select this check box. However, it is optional for frame-based inputs.

The toolbox does not support this functionality for use with external mode. Instead, clear this check box and use a Buffer block before the Spectrum Scope in your model.

\section*{Spectrum Scope}

\section*{Buffer size}

Specify the number of input samples that the block buffers before computing and displaying the magnitude FFT. If you do not select the Specify FFT length check box, the Buffer size must be a power of two.

This parameter becomes visible only when you select the Buffer input check box.

\section*{Buffer overlap}

Specify the number of samples from the previous buffer to include in the current buffer. To compute the number of new input samples the block acquires before computing and displaying the magnitude FFT, subtract the buffer overlap from the buffer size.

This parameter becomes visible only when you select the Buffer input check box.

\section*{Window}

Specify the type of window to apply. See the Window Function block reference page for more details. Tunable.

\section*{Stopband attenuation in dB}

Enter the level, in decibels (dB), of stopband attenuation, \(R_{s}\), for the Chebyshev window. Tunable.

This parameter becomes visible only when you select Chebyshev for the Window parameter.

\section*{Beta}

Enter the B parameter for the Kaiser window. Increasing Beta widens the mainlobe and decreases the amplitude of the sidelobes in the displayed frequency magnitude response. Tunable.

This parameter becomes visible only if you select Kaiser for the Window parameter.

\section*{Window sampling}

Choose Symmetric or Periodic. Tunable.

\section*{Spectrum Scope}

This parameter becomes visible only if Blackman, Hamming, Hann, or Hanning is selected for the Window parameter.

\section*{Specify FFT length}

Select this check box to specify the FFT length yourself in the FFT length parameter.

\section*{FFT length}

Enter the number of samples on which you want the block to perform the FFT. The value you specify must be a power of two.

This parameter becomes visible only when you select the Specify FFT length check box.

\section*{Number of spectral averages}

The number of spectra to average. Setting this parameter to 1 effectively disables averaging. See the Periodogram block reference page for more information.

\section*{Spectrum Scope}

\section*{Display Properties Pane}

Sink Block Parameters: Spectrum Scope
Spectrum Scope
Compute and display the periodogram of each input signal. Non-frame based inputs to the block should use the buffering option.
```

Scope Properties Display Properties Axis Properties | Line Properties
Parameters
V show grid
\Gamma Persistence
V Frame number
\Gamma Channel legend
\Gamma Compact display
V Open scope at start of simulation
Scope position: get(0,'defaultfigureposition')

```

\section*{Show grid}

Toggle the scope grid on and off. Tunable.

\section*{Persistence}

Select this check box to maintain successive displays. That is, the scope does not erase the display after each frame (or collection of frames), but overlays successive input frames in the scope display. Tunable.

\section*{Spectrum Scope}

\section*{Frame number}

If you select this check box, the number of the current frame in the input sequence appears in the Vector Scope window. Tunable.

\section*{Channel legend}

Toggles the legend on and off. Tunable.
Compact display
Resizes the scope to fill the window. Tunable.

\section*{Open scope at start of simulation}

Select this check box to open the scope at the start of the simulation. When you clear this parameter, the scope does not automatically open during the simulation. Tunable.

\section*{Open scope immediately}

If the scope is not open during simulation, select this check box to open it. This parameter is visible only while the simulation is running.

\section*{Scope position}

A four-element vector of the form [left bottom width height] specifying the position of the scope window. \((0,0)\) is the lower-left corner of the display. Tunable.

\section*{Spectrum Scope}

\section*{Axis Properties Pane}


\section*{Inherit sample time from input}

If you select this check box, the block computes the time-domain sample period from the frame period and frame size of the frequency-domain input. Use this parameter only when the length of each frame of frequency-domain data equals the frame length of the time-domain data that generated it.

\section*{Sample time of original time series}

Enter the sample period of the original time-domain signal.

\section*{Spectrum Scope}

\section*{Frequency display offset}

The Frequency display offset parameter allows you to offset the range of values displayed on the frequency axis of the Spectrum Scope. The value specified in this field becomes the new label for the DC frequency ( 0 Hz ). See the example in the "Axis Properties Pane" on page 2-1204 section for more information.

\section*{Frequency display limits}

Select Auto to have the limits of the \(x\)-axis set for you automatically. Select User-defined to set the limits yourself in the Minimum frequency and Maximum frequency parameters.

\section*{Minimum frequency ( Hz )}

Specify the minimum frequency value of the \(x\)-axis in Hertz. This parameter is only visible if the Frequency display limits parameter is set to User-defined. Tunable.

\section*{Maximum frequency ( Hz )}

Specify the maximum frequency value of the \(x\)-axis in Hertz. This parameter is only visible if the Frequency display limits parameter is set to User-defined. Tunable.

\section*{Minimum Y-limit}

Specify the minimum value of the \(y\)-axis. Setting this parameter is analogous to setting the ymin value of the MATLAB axis function.Tunable.

\section*{Maximum Y-limit}

Specify the maximum value of the \(y\)-axis. Setting this parameter is analogous to setting the ymax value of the MATLAB axis function.Tunable.

\section*{Y-axis label}

Specify text for the block to display to the left of the \(y\)-axis. Tunable.

\section*{Spectrum Scope}

\section*{Line Properties Pane}

Sink Block Parameters: Spectrum Scope
Spectrum Scope
Compute and display the periodogram of each input signal. Non-frame based inputs to the block should use the buffering option.

 OK Cancel Help Apply

For more information about these parameters, see "Line Properties Pane" on page 2-1205 in the Vector Scope block reference page.

\section*{Line visibilities}

Enter on or off to specify the visibility of the scope traces for various channels. Separate your choices for each channel with by a pipe (I) symbol. Tunable.

\section*{Spectrum Scope}

\section*{Line styles}

Enter the line styles of the scope traces for various channels using the MATLAB line function LineStyle formats. Separate your choices for each channel with by a pipe (I) symbol. Tunable.

\section*{Line markers}

Enter the line markers of the scope traces for various channels using the MATLAB line function Marker formats. Separate your choices for each channel with by a pipe (I) symbol. Tunable.

\section*{Line colors}

Enter the colors of the scope traces for various channels using the MATLAB Colorspec formats. Separate your choices for each channel with by a pipe (I) symbol. Tunable.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & \(\bullet\) Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point (signed and unsigned) \\
& • Boolean \\
& \(\bullet 8\)-, 16 -, and 32 -bit signed integers \\
& \(\bullet 8-, 16\)-, and 32 -bit unsigned integers \\
\hline
\end{tabular}

\section*{See Also}

\author{
FFT \\ Periodogram \\ Short-Time FFT \\ Vector Scope \\ Window Function \\ Signal Processing Blockset \\ Signal Processing Blockset \\ Signal Processing Blockset \\ Signal Processing Blockset \\ Signal Processing Blockset
}

\section*{Purpose}

\section*{Library}

\section*{Description}


Store inputs into LIFO register
Signal Management / Buffers
dspbuff3
The Stack block stores a sequence of input samples in a last in, first out (LIFO) register. The register capacity is set by the Stack depth parameter, and inputs can be scalars, vectors, or matrices.
The block pushes the input at the In port onto the top of the stack when a trigger event is received at the Push port. When a trigger event is received at the Pop port, the block pops the top element off the stack and holds the Out port at that value. The last input to be pushed onto the stack is always the first to be popped off.

Pushing the stack


A trigger event at the optional Rst port empties the stack contents. When you select Clear output port on reset, then a trigger event at the Rst port empties the stack and sets the value at the Out port to zero. This setting also applies when a disabled subsystem containing

\section*{Stack}
the Stack block is reenabled; the Out port value is only reset to zero in this case when you select Clear output port on reset.

When two or more of the control input ports are triggered at the same time step, the operations are executed in the following order:

1 Rst
2 Push
3 Pop
The rate of the trigger signal must be the same as the rate of the data signal input. You specify the triggering event for the Push, Pop, and Rst ports in the Trigger type pop-up menu:
- Rising edge - Triggers execution of the block when the trigger input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)


Not a rising edge because it continues

- Falling edge - Triggers execution of the block when the trigger input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers execution of the block when the trigger input is a Rising edge or Falling edge (as described above).
- Non-zero sample - Triggers execution of the block at each sample time that the trigger input is not zero.

Note When running simulations in the Simulink MultiTasking mode, sample-based trigger signals have a one-sample latency, and frame-based trigger signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a trigger event, and when it applies the trigger. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

\section*{Stack}

Note If your model contains any referenced models that use the Stack block, you cannot simulate the top-level model in Simulink Accelerator mode.

The Push full stack parameter specifies the block's behavior when a trigger is received at the Push port but the register is full. The Pop empty stack parameter specifies the block's behavior when a trigger is received at the Pop port but the register is empty. The following options are available for both cases:
- Ignore - Ignore the trigger event, and continue the simulation.
- Warning - Ignore the trigger event, but display a warning message in the MATLAB command window.
- Error - Display an error dialog box and terminate the simulation.

Note The Push full stack and Pop empty stack parameters are diagnostic parameters. Like all diagnostic parameters on the Configuration Parameters dialog box, they are set to Ignore in the code generated for this block by Real-Time Workshop code generation software.

The Push full stack parameter additionally offers the Dynamic reallocation option, which dynamically resizes the register to accept as many additional inputs as memory permits. To find out how many elements are on the stack at a given time, enable the Num output port by selecting the Show number of stack entries port parameter.

Note When Dynamic reallocation is selected, the System target file parameter on the Real-Time Workshop pane of the Configuration Parameters dialog box must be set to grt_malloc.tlc Generic Real-Time Target with dynamic memory allocation.

\section*{Examples}

\section*{Example 1}

The table below illustrates the Stack block's operation for a Stack depth of 4, Trigger type of Either edge, and Clear output port on reset enabled. Because the block triggers on both rising and falling edges in this example, each transition from 1 to 0 or 0 to 1 in the Push, Pop, and Rst columns below represents a distinct trigger event. A 1 in the Empty column indicates an empty buffer, while a 1 in the Full column indicates a full buffer.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline In & Push & Pop & Rst & Stack & & Out & Empty & Full & Num \\
\hline 1 & 0 & 0 & 0 & top & bottom & 0 & 1 & 0 & 0 \\
\hline 2 & 1 & 0 & 0 & & bottom & 0 & 0 & 0 & 1 \\
\hline 3 & 0 & 0 & 0 & & bottom & 0 & 0 & 0 & 2 \\
\hline 4 & 1 & 0 & 0 & & bottom & 0 & 0 & 0 & 3 \\
\hline 5 & 0 & 0 & 0 & top & bottom & 0 & 0 & 1 & 4 \\
\hline 6 & 0 & 1 & 0 & & bottom & 5 & 0 & 0 & 3 \\
\hline 7 & 0 & 0 & 0 & & bottom & 4 & 0 & 0 & 2 \\
\hline 8 & 0 & 1 & 0 & & bottom & 3 & 0 & 0 & 1 \\
\hline 9 & 0 & 0 & 0 & top & bottom & 2 & 1 & 0 & 0 \\
\hline
\end{tabular}

\section*{Stack}
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l}
\hline In & Push & Pop & Rst & Stack & Out & Empty & Full & Num \\
\hline 10 & 1 & 0 & 0 & top & 10 & & & & bottom & 2 \\
\hline
\end{tabular}

Note that at the last step shown, the Push and Rst ports are triggered simultaneously. The Rst trigger takes precedence, and the stack is first cleared and then pushed.

\section*{Example 2}

The dspqdemo demo provides an example of the related Queue block.

\section*{Dialog} Box


\section*{Stack depth}

The number of entries that the LIFO register can hold.

\section*{Trigger type}

The type of event that triggers the block's execution. The rate of the trigger signal must be the same as the rate of the data signal input.

\section*{Push full stack}

Response to a trigger received at the Push port when the register is full. Inputs to this port must have the same built-in data type as inputs to the Pop and Rst input ports.

\section*{Stack}

When Dynamic reallocation is selected, the System target file parameter on the Real-Time Workshop pane of the Configuration Parameters dialog box must be set to grt_malloc.tlc Generic Real-Time Target with dynamic memory allocation.

\section*{Pop empty stack}

Response to a trigger received at the Pop port when the register is empty. Inputs to this port must have the same built-in data type as inputs to the Push and Rst input ports.

\section*{Show empty stack indicator port}

Enable the Empty output port, which is high (1) when the stack is empty, and low (0) otherwise.

\section*{Show full stack indicator port}

Enable the Full output port, which is high (1) when the stack is full, and low (0) otherwise. The Full port remains low when you select Dynamic reallocation from the Push full stack parameter.

\section*{Show number of stack entries port}

Enable the Num output port, which tracks the number of entries currently on the stack. When inputs to the In port are double-precision values, the outputs from the Num port are double-precision values. Otherwise, the outputs from the Num port are 32 -bit unsigned integer values.

Show reset port to clear internal stack buffer
Enable the Rst input port, which empties the stack when the trigger specified by the Trigger type is received. Inputs to this port must have the same built-in data type as inputs to the Push and Pop input ports.

\section*{Clear output port on reset}

Reset the Out port to zero (in addition to clearing the stack) when a trigger is received at the Rst input port.

Supported Data Types
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline In & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Push & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8-, 16 -, and 32 -bit unsigned integers \\
Inputs to this port must have the same built-in data type as inputs to the Pop and Rst input ports
\end{tabular} \\
\hline Pop & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers \\
Inputs to this port must have the same built-in data type as inputs to the Push and Rst input ports.
\end{tabular} \\
\hline
\end{tabular}

\section*{Stack}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Rst & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8-, 16-, and 32 -bit unsigned integers \\
Inputs to this port must have the same built-in data type as inputs to the Push and Pop input ports.
\end{tabular} \\
\hline Out & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Empty & \begin{tabular}{l}
- Double-precision floating point \\
- Boolean
\end{tabular} \\
\hline Full & \begin{tabular}{l}
- Double-precision floating point \\
- Boolean
\end{tabular} \\
\hline Num & \begin{tabular}{l}
- Double-precision floating point \\
The block outputs a double-precision floating-point value at this port when the data type of the In port is double-precision floating-point. \\
- 32-bit unsigned integers \\
The block outputs a 32 -bit unsigned integer value at this port when the data type of the In port is anything other than double-precision floating-point.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{lll} 
See Also & Buffer & Signal Processing Blockset \\
Delay Line & Signal Processing Blockset \\
Queue & Signal Processing Blockset
\end{tabular}

\section*{Standard Deviation}


Find standard deviation of input or sequence of inputs

Statistics
dspstat3

The Standard Deviation block computes the standard deviation of each row or column of the input, along vectors of a specified dimension of the input, or of the entire input. The Standard Deviation block can also track the standard deviation of a sequence of inputs over a period of time. The Running standard deviation parameter selects between basic operation and running operation.

\section*{Basic Operation}

When you do not select the Running standard deviation check box, the block computes the standard deviation of each row or column of the input, along vectors of a specified dimension of the input, or of the entire input at each individual sample time, and outputs the array \(y\). Each element in \(y\) contains the standard deviation of the corresponding column, row, vector, or entire input. The output \(y\) depends on the setting of the Find the standard deviation value over parameter. For example, consider a 3 -dimensional input signal of size \(M\)-by- \(N\)-by- \(P\) :
- Entire input - The output at each sample time is a scalar that contains the standard deviation of the entire input. In this mode, the output is always sample based.
\[
y=\operatorname{std}(u(:)) \quad \% \text { Equivalent MATLAB code }
\]
- Each Row - The output at each sample time consists of an \(M\)-by-1-by- \(P\) array, where each element contains the standard deviation of each vector over the second dimension of the input. For an input that is an \(M\)-by- \(N\) matrix, the output at each sample time is an \(M\)-by- 1 column vector. In this mode, the frame status of the output is the same as that of the input.
\[
y=\operatorname{std}(u, 0,2) \quad \% \text { Equivalent MATLAB code }
\]

\section*{Standard Deviation}
- Each Column - The output at each sample time consists of a 1 -by- \(N\)-by- \(P\) array, where each element contains the standard deviation of each vector over the first dimension of the input. For an input that is an \(M\)-by- \(N\) matrix, the output at each sample time is a 1 -by- \(N\) row vector. In this mode, the frame status of the output is the same as that of the input.
\[
y=\operatorname{std}(u, 0,1) \quad \% \text { Equivalent MATLAB code }
\]

For convenience, length- \(M\) 1-D vector inputs are treated as \(M\)-by-1 column vectors when the block is in this mode. Sample-based length- \(M\) row vector inputs are also treated as \(M\)-by- 1 column vectors when the Treat sample-based row input as a column check box is selected.
- Specified Dimension - The output at each sample time depends on Dimension. If Dimension is set to 1, the output is the same as when you select Each column. If Dimension is set to 2, the output is the same as when you select Each row. If Dimension is set to 3 , the output at each sample time is an \(M\)-by- \(N\) matrix containing the standard deviation of each vector over the third dimension of the input. In this mode, the frame status of the output is the same as that of the input.
\[
y=\operatorname{std}(u, 0, \text { Dimension }) \quad \text { E Equivalent MATLAB code }
\]

For purely real or purely imaginary inputs, the standard deviation of the \(j\) th column of an \(M\)-by- \(N\) input matrix is the square root of its variance:
\[
y_{j}=\sigma_{j}=\sqrt{\frac{\sum_{i=1}^{M}\left|u_{i j}-\mu_{j}\right|^{2}}{M-1}} \quad 1 \leq j \leq N
\]

For complex inputs, the output is the total standard deviation, which equals the square root of the total variance, or the square root of the

\section*{Standard Deviation}
sum of the variances of the real and imaginary parts. The standard deviation of each column in an \(M\)-by- \(N\) input matrix is given by:
\[
\sigma_{j}=\sqrt{\sigma_{j, \mathrm{Re}}^{2}+\sigma_{j, \mathrm{Im}}^{2}}
\]

Note The total standard deviation does not equal the sum of the real and imaginary standard deviations.

\section*{Running Operation}

When you select the Running standard deviation check box, the block tracks the standard deviation of successive inputs to the block. For sample-based \(M\)-by- \(N\) inputs, the output is a sample-based \(M\)-by- \(N\) matrix with each element \(y_{i j}\) containing the standard deviation of element \(u_{i j}\) over all inputs since the last reset. For frame-based \(M\)-by- \(N\) inputs, the output is a frame-based \(M\)-by- \(N\) matrix with each element \(y_{i j}\) containing the standard deviation of the \(j\) th column over all inputs since the last reset, up to and including element \(u_{i j}\) of the current input.
N-D signals cannot be frame based. When the block is set to Running mode, each element of the N-D signal is treated as a separate channel.

There are \(\prod d_{i}\) channels, where \(d_{i}\) is the size of the \(i\) th dimension.

\section*{Resetting the Running Standard Deviation}

The block resets the running standard deviation whenever a reset event is detected at the optional Rst port. The reset sample time must be a positive integer multiple of the input sample time.

You specify the reset event in the Reset port parameter:
- None disables the Rst port.
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)


\section*{Standard Deviation}
- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described earlier)
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port rate before the block applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

To calculate the statistical value within a particular region of interest (ROI) of the input, select the Enable ROI processing check box. This option is only available when the Find the standard deviation value over parameter is set to Entire input and the Running standard deviation check box is not selected. ROI processing is only supported for 2 -D inputs.

Note Full ROI processing is only available to users who have a Video and Image Processing Blockset license. If you only have a Signal Processing Blockset license, you can still use ROI processing, but are limited to the ROI type Rectangles.

Use the ROI type parameter to specify whether the ROI is a rectangle, line, label matrix, or binary mask. A binary mask is a binary image that enables you to specify which pixels to highlight, or select. In a label matrix, pixels equal to 0 represent the background, pixels equal to 1 represent the first object, pixels equal to 2 represent the second object, and so on. When the ROI type parameter is set to Label matrix, the Label and Label Numbers ports appear on the block. Use the Label

\section*{Standard Deviation}

Numbers port to specify the objects in the label matrix for which the block calculates statistics. The input to this port must be a vector of scalar values that correspond to the labeled regions in the label matrix. For more information about the format of the input to the ROI port when the ROI is a rectangle or a line, see the Draw Shapes block reference page.

For rectangular ROIs, use the ROI portion to process parameter to specify whether to calculate the statistical value for the entire ROI or just the ROI perimeter.

Use the Output parameter to specify the block output. The block can output separate statistical values for each ROI or the statistical value for all specified ROIs. This parameter is not available if, for the ROI type parameter, you select Binary mask.

If, for the ROI type parameter, you select Rectangles or Lines, the Output flag indicating if ROI is within image bounds check box appears in the dialog box. If you select this check box, the Flag port appears on the block. The following tables describe the Flag port output based on the block parameters.

\section*{Output = Individual statistics for each ROI}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Flag \\
Port \\
Output
\end{tabular} & Description \\
\hline 0 & ROI is completely outside the input image. \\
\hline 1 & ROI is completely or partially inside the input image. \\
\hline
\end{tabular}

\section*{Standard Deviation}

\section*{Output = Single statistic for all ROls}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Flag \\
Port \\
Output
\end{tabular} & Description \\
\hline 0 & All ROIs are completely outside the input image. \\
\hline 1 & \begin{tabular}{l} 
At least one ROI is completely or partially inside the \\
input image.
\end{tabular} \\
\hline
\end{tabular}

If the ROI is partially outside the image, the block only computes the statistical values for the portion of the ROI that is within the image.

If, for the ROI type parameter, you select Label matrix, the Output flag indicating if input label numbers are valid check box appears in the dialog box. If you select this check box, the Flag port appears on the block. The following tables describe the Flag port output based on the block parameters.

\section*{Output = Individual statistics for each ROI}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Flag \\
Port \\
Output
\end{tabular} & Description \\
\hline 0 & Label number is not in the label matrix. \\
\hline 1 & Label number is in the label matrix. \\
\hline
\end{tabular}

\section*{Output = Single statistic for all ROls}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Flag \\
Port \\
Output
\end{tabular} & Description \\
\hline 0 & None of the label numbers are in the label matrix. \\
\hline 1 & At least one of the label numbers is in the label matrix. \\
\hline
\end{tabular}

\section*{Examples}

The Standard Deviation block in the next model calculates the running standard deviation of a frame-based 3-by-2 (two-channel) matrix input, \(u\). The running standard deviation is reset at \(t=2\) by an impulse to the block's Rst port.


The Standard Deviation block has the following settings:
- Running standard deviation \(=\nabla\)
- Reset port = Non-zero sample

The Signal From Workspace block has the following settings:
- Signal = dsp_examples_u
- Sample time \(=1 / 3\)
- Samples per frame \(=3\)
where

The Discrete Impulse block has the following settings:
- Delay (samples) \(=2\)
- Sample time \(=1\)
- Samples per frame \(=1\)

The block's operation is shown in the next figure.

\section*{Standard Deviation}


\section*{Running standard deviation}

Enables running operation when selected.

\section*{Standard Deviation}

\section*{Reset port}

Determines the reset event that causes the block to reset the running standard deviation. The reset signal rate must be a positive integer multiple of the rate of the data signal input. This parameter is enabled only when you select Running standard deviation. For more information, see "Resetting the Running Standard Deviation" on page 2-1236.

\section*{Find the standard deviation value over}

Specify whether to find the standard deviation value along rows, columns, entire input, or the dimension specified in the Dimension parameter. For more information, see "Basic Operation" on page 2-1234.

\section*{Treat sample-based row input as a column}

Select to treat sample-based length- \(M\) row vector inputs as \(M\)-by-1 column vectors. This parameter is only visible when the Find the standard deviation value over parameter is set to Each column.

\section*{Dimension}

Specify the dimension (one-based value) of the input signal, over which the standard deviation is computed. The value of this parameter cannot exceed the number of dimensions in the input signal. This parameter is only visible when the Find the standard deviation value over parameter is set to Specified dimension.

\section*{Enable ROI Processing}

Select this check box to calculate the statistical value within a particular region of each image. This parameter is only available when the Find the standard deviation value over parameter is set to Entire input, and the block is not in running mode.

\section*{Standard Deviation}

> Note Full ROI processing is only available to users who have a Video and Image Processing Blockset license. If you only have a Signal Processing Blockset license, you can still use ROI processing, but are limited to the ROI type Rectangles.

\section*{ROI type}

Specify the type of ROI you want to use. Your choices are Rectangles, Lines, Label matrix, or Binary mask.

\section*{ROI portion to process}

Specify whether you want to calculate the statistical value for the entire ROI or just the ROI perimeter. This parameter is only visible if, for the ROI type parameter, you specify Rectangles.

\section*{Output}

Specify the block output. The block can output a vector of separate statistical values for each ROI or a scalar value that represents the statistical value for all the specified ROIs. This parameter is not available if, for the ROI type parameter, you select Binary mask.

\section*{Output flag}

Output flag indicating if ROI is within image bounds
F Output flag indicating if label numbers are valid
When you select either of these check boxes, the Flag port appears on the block. For a description of the Flag port output, see the tables in "ROI Processing" on page 2-1238.

The Output flag indicating if ROI is within image bounds check box is only visible when you select Rectangles or Lines as the ROI type.

\section*{Standard Deviation}

The Output flag indicating if label numbers are valid check box is only visible when you select Label matrix for the ROI type parameter.

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Input & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point
\end{tabular} \\
\hline Reset & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Boolean \\
- 8 -, 16 -, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline ROI & \begin{tabular}{l}
Rectangles and lines: \\
- Double-precision floating point \\
- Single-precision floating point \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers \\
Binary Mask: \\
- Boolean
\end{tabular} \\
\hline Label & - 8 -, 16-, and 32 -bit unsigned integers \\
\hline \begin{tabular}{l}
Label \\
Numbers
\end{tabular} & - 8 -, 16-, and 32 -bit unsigned integers \\
\hline
\end{tabular}

\section*{Standard Deviation}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Output & \begin{tabular}{l} 
• Double-precision floating point \\
• Single-precision floating point
\end{tabular} \\
\hline Flag & • Boolean \\
\hline
\end{tabular}

See Also
\begin{tabular}{ll} 
Mean & Signal Processing Blockset \\
RMS & Signal Processing Blockset \\
Variance & Signal Processing Blockset \\
std & MATLAB
\end{tabular}

\section*{Purpose}

Select subset of elements (submatrix) from matrix input

\section*{Library}
- Math Functions / Matrices and Linear Algebra / Matrix Operations dspmtrx3
- Signal Management / Indexing dspindex

The Submatrix block extracts a contiguous submatrix from the M-by-N input matrix \(u\). A length-M 1-D vector input is treated as an M-by-1 matrix. The Row span parameter provides three options for specifying the range of rows in \(u\) to be retained in submatrix output \(y\) :
- All rows

Specifies that y contains all M rows of \(u\).
- One row

Specifies that y contains only one row from \(u\). The Starting row parameter (described below) is enabled to allow selection of the desired row.
- Range of rows

Specifies that y contains one or more rows from u. The Row and Ending row parameters (described below) are enabled to allow selection of the desired range of rows.

The Column span parameter contains a corresponding set of three options for specifying the range of columns in \(u\) to be retained in submatrix y: All columns, One column, or Range of columns. The One column option enables the Column parameter, and Range of columns options enable the Starting column and Ending column parameters.

The output has the same frame status as the input.

\section*{Submatrix}

\section*{Range Specification Options}

When you select One row or Range of rows from the Row span parameter, you specify the desired row or range of rows in the Row parameter, or the Starting row and Ending row parameters. Similarly, when you select One column or Range of columns from the Column span parameter, you specify the desired column or range of columns in the Column parameter, or the Starting column and Ending column parameters.

The Row, Column, Starting row or Starting column can be specified in six ways:
- First

For rows, this specifies that the first row of \(u\) should be used as the first row of \(y\). When all columns are to be included, this is equivalent to \(y(1,:)=u(1,:)\).

For columns, this specifies that the first column of u should be used as the first column of \(y\). When all rows are to be included, this is equivalent to \(y(:, 1)=u(:, 1)\).
- Index

For rows, this specifies that the row of \(u\), firstrow, forward-indexed by the Row index parameter or the Starting row index parameter, should be used as the first row of \(y\). When all columns are to be included, this is equivalent to \(y(1,:)=u(f i r s t r o w,:)\).

For columns, this specifies that the column of \(u\), forward-indexed by the Column index parameter or the Starting column index parameter, firstcol, should be used as the first column of \(y\). When all rows are to be included, this is equivalent to \(\mathrm{y}(:, 1)=\) u(:, firstcol).
- Offset from last

For rows, this specifies that the row of \(u\) offset from row \(M\) by the Row offset or Starting row offset parameter, firstrow, should be
used as the first row of y . When all columns are to be included, this is equivalent to \(y(1,:)=u(M-f i r s t r o w,:)\).
For columns, this specifies that the column of \(u\) offset from column N by the Column offset or Starting column offset parameter, firstcol, should be used as the first column of \(y\). When all rows are to be included, this is equivalent to \(y(:, 1)=u(:, N-f i r s t c o l)\).
- Last

For rows, this specifies that the last row of \(u\) should be used as the only row of \(y\). When all columns are to be included, this is equivalent to \(y=u(M,:)\).
For columns, this specifies that the last column of \(u\) should be used as the only column of \(y\). When all rows are to be included, this is equivalent to \(y=u(:, N)\).
- Offset from middle

For rows, this specifies that the row of \(u\) offset from row \(\mathrm{M} / 2\) by the Starting row offset parameter, firstrow, should be used as the first row of \(y\). When all columns are to be included, this is equivalent to \(y(1,:)=u(M / 2-f i r s t r o w,:)\).
For columns, this specifies that the column of \(u\) offset from column N/2 by the Starting column offset parameter, firstcol, should be used as the first column of \(y\). When all rows are to be included, this is equivalent to \(y(:, 1)=u(:, N / 2-f i r s t c o l)\).
- Middle

For rows, this specifies that the middle row of \(u\) should be used as the only row of y . When all columns are to be included, this is equivalent to \(y=u(M / 2,:)\).
For columns, this specifies that the middle column of \(u\) should be used as the only column of \(y\). When all rows are to be included, this is equivalent to \(\mathrm{y}=\mathrm{u}(:, \mathrm{N} / 2)\).

The Ending row or Ending column can similarly be specified in five ways:

\section*{Submatrix}
- Index

For rows, this specifies that the row of \(u\) forward-indexed by the Ending row index parameter, lastrow, should be used as the last row of \(y\). When all columns are to be included, this is equivalent to y (end,: ) \(=\mathrm{u}(\mathrm{lastrow,:)}\).

For columns, this specifies that the column of \(u\) forward-indexed by the Ending column index parameter, lastcol, should be used as the last column of \(y\). When all rows are to be included, this is equivalent to \(y(:\), end \()=u(:\), lastcol \()\).
- Offset from last

For rows, this specifies that the row of \(u\) offset from row \(M\) by the Ending row offset parameter, lastrow, should be used as the last row of \(y\). When all columns are to be included, this is equivalent to y (end,:) \(=\mathrm{u}(\mathrm{M}\)-lastrow,:).

For columns, this specifies that the column of \(u\) offset from column \(N\) by the Ending column offset parameter, lastcol, should be used as the last column of \(y\). When all rows are to be included, this is equivalent to \(y(:\), end \()=u(:, N-l a s t c o l)\).
- Last

For rows, this specifies that the last row of \(u\) should be used as the last row of y . When all columns are to be included, this is equivalent to y (end,:) \(=\mathrm{u}(\mathrm{M},:\) ).

For columns, this specifies that the last column of u should be used as the last column of \(y\). When all rows are to be included, this is equivalent to \(y(:, e n d)=u(:, N)\).
- Offset from middle

For rows, this specifies that the row of \(u\) offset from row \(M / 2\) by the Ending row offset parameter, lastrow, should be used as the last row of \(y\). When all columns are to be included, this is equivalent to y(end,:) = u(M/2-lastrow,:).

\section*{Submatrix}

For columns, this specifies that the column of \(u\) offset from column N/2 by the Ending column offset parameter, lastcol, should be used as the last column of y . When all rows are to be included, this is equivalent to \(\mathrm{y}(:\), end \()=\mathrm{u}(:, \mathrm{N} / 2\)-lastcol).
- Middle

For rows, this specifies that the middle row of \(u\) should be used as the last row of \(y\). When all columns are to be included, this is equivalent to \(y(e n d,:)=u(M / 2,:)\).

For columns, this specifies that the middle column of \(u\) should be used as the last column of y . When all rows are to be included, this is equivalent to \(y(:\), end \()=u(:, N / 2)\).

This block supports Simulink virtual buses.
Examples To extract the lower-right 3-by-2 submatrix from a 5-by-7 input matrix, enter the following set of parameters:
- Row span \(=\) Range of rows
- Starting row = Index
- Starting row index \(=3\)
- Ending row \(=\) Last
- Column span \(=\) Range of columns
- Starting column \(=\) Offset from last
- Starting column offset = 1
- Ending column = Last

The figure below shows the operation for a 5 -by- 7 matrix with random integer elements, randint \((5,7,10)\).

\section*{Submatrix}


There are often several possible parameter combinations that select the same submatrix from the input. For example, instead of specifying Last for Ending column, you could select the same submatrix by specifying
- Ending column = Index
- Ending column index \(=7\)

\section*{Submatrix}

Dialog Box


The parameters displayed in the dialog box vary for different menu combinations. Only some of the parameters listed below are visible in the dialog box at any one time.

\section*{Row span}

The range of input rows to be retained in the output. Options are All rows, One row, or Range of rows.

\section*{Submatrix}

\section*{Row/Starting row}

The input row to be used as the first row of the output. Row is enabled when you select One row from Row span, and Starting row when you select Range of rows from Row span.

\section*{Row index/Starting row index}

The index of the input row to be used as the first row of the output. Row index is enabled when you select Index from Row, and Starting row index when you select Index from Starting row.

\section*{Row offset/Starting row offset}

The offset of the input row to be used as the first row of the output. Row offset is enabled when you select Offset from middle or Offset from last from Row, and Starting row offset is enabled when you select Offset from middle or Offset from last from Starting row.

\section*{Ending row}

The input row to be used as the last row of the output. This parameter is enabled when you select Range of rows from Row span and you select any option but Last from Starting row.

Ending row index
The index of the input row to be used as the last row of the output. This parameter is enabled when you select Index from Ending row.

\section*{Ending row offset}

The offset of the input row to be used as the last row of the output. This parameter is enabled when you select Offset from middle or Offset from last from Ending row.

\section*{Column span}

The range of input columns to be retained in the output. Options are All columns, One column, or Range of columns.

\section*{Column/Starting column}

The input column to be used as the first column of the output. Column is enabled when you select One column from Column
span, and Starting column is enabled when you select Range of columns from Column span.

\section*{Column index/Starting column index}

The index of the input column to be used as the first column of the output. Column index is enabled when you select Index from Column, and Starting column index is enabled when you select Index from Starting column.

\section*{Column offset/Starting column offset}

The offset of the input column to be used as the first column of the output. Column offset is enabled when you select Offset from middle or Offset from last from Column. Starting column offset is enabled when you select Offset from middle or Offset from last from Starting column.

\section*{Ending column}

The input column to be used as the last column of the output. This parameter is enabled when you select Range of columns from Column span and you select any option but Last from Starting column.

Ending column index
The index of the input column to be used as the last column of the output. This parameter is enabled when you select Index from Ending column.

\section*{Ending column offset}

The offset of the input column to be used as the last column of the output. This parameter is enabled when you select Offset from middle or Offset from last from Ending column.

\section*{Submatrix}

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Input & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8-, 16-, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers \\
- Enumerated
\end{tabular} \\
\hline Output & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8-, 16-, and 32 -bit signed integers \\
- 8-, 16-, and 32 -bit unsigned integers \\
- Enumerated
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}
\begin{tabular}{ll} 
Reshape & Simulink \\
Selector & Simulink \\
Variable Selector & Signal Processing Blockset \\
reshape & MATLAB
\end{tabular}

\footnotetext{
See "Splitting Multichannel Sample-Based Signals into Several Multichannel Signals" for related information.
}

\section*{Purpose}

Solve \(A X=B\) using singular value decomposition

\section*{Library}

Description


Math Functions / Matrices and Linear Algebra / Linear System Solvers dspsolvers

The SVD Solver block solves the linear system \(A X=B\), which can be overdetermined, underdetermined, or exactly determined. The system is solved by applying singular value decomposition (SVD) factorization to the \(M\)-by- \(N\) matrix \(A\), at the A port. The input to the B port is the right side \(M\)-by- \(L\) matrix, \(B\). A length- \(M\) 1-D vector input at either port
is treated as an \(M\)-by- 1 matrix.

The output at the X port is the \(N\)-by- \(L\) matrix, \(X . X\) is always sample based, and is chosen to minimize the sum of the squares of the elements of \(B-A X\) (the residual). When \(B\) is a vector, this solution minimizes the vector 2 -norm of the residual. When \(B\) is a matrix, this solution minimizes the matrix Frobenius norm of the residual. In this case, the columns of \(X\) are the solutions to the \(L\) corresponding systems \(A X_{k}=B_{k}\), where \(B_{k}\) is the \(k\) th column of \(B\), and \(X_{k}\) is the \(k\) th column of \(X\).
\(X\) is known as the minimum-norm-residual solution to \(A X=B\). The minimum-norm-residual solution is unique for overdetermined and exactly determined linear systems, but it is not unique for underdetermined linear systems. Thus when the SVD Solver block is applied to an underdetermined system, the output \(X\) is chosen such that the number of nonzero entries in \(X\) is minimized.

\section*{Dialog Box}


\section*{Show error status port}

Select to enable the E output port, which reports a failure to converge. The possible values you can receive on the port are:
- 0 - The singular value decomposition calculation converges.
- 1 - The singular value decomposition calculation does not converge.

If the singular value decomposition calculation fails to converge, the output at port X is an undefined matrix of the correct size.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline A & • Double-precision floating point \\
& • Single-precision floating point
\end{tabular}\(\left|\begin{array}{ll}\text { • Double-precision floating point } \\
\text { - Single-precision floating point }\end{array}\right|\)\begin{tabular}{ll}
\hline X & • Double-precision floating point \\
\hline E Single-precision floating point
\end{tabular}

\section*{See Also}
\begin{tabular}{ll} 
Autocorrelation LPC & Signal Processing Blockset \\
Cholesky Solver & Signal Processing Blockset \\
LDL Solver & Signal Processing Blockset \\
Levinson-Durbin & Signal Processing Blockset \\
LU Inverse & Signal Processing Blockset \\
Pseudoinverse & Signal Processing Blockset \\
QR Solver & Signal Processing Blockset \\
Singular Value Decomposition & Signal Processing Blockset
\end{tabular}

See "Linear System Solvers" for related information.

\section*{Time Scope}

Purpose Display signals generated during simulation

\section*{Library Signal Processing Sinks dspsnks4}

\section*{Description \\ The Time Scope block is an implementation of the Simulink Scope block. See Scope for more information.}

\section*{Time-Varying Direct-Form II Transpose Filter (Obsolete)}
Purpose Apply variable IIR filter to input
Library dspobslib
Description
Note This block is now just an implementation of the Digital Filter block.

\section*{Time-Varying Lattice Filter (Obsolete)}
\begin{tabular}{ll} 
Purpose & Apply variable lattice filter to input \\
Library & dspobslib
\end{tabular}

Description
Note This block is now just an implementation of the Digital Filter block.

\section*{Purpose}

Generate matrix with Toeplitz symmetry

\section*{Library}

Math Functions / Matrices and Linear Algebra / Matrix Operations dspmtrx3

\section*{Description}

The Toeplitz block generates a Toeplitz matrix from inputs defining the first column and first row. The top input (Col) is a vector containing the values to be placed in the first column of the matrix, and the bottom input (Row) is a vector containing the values to be placed in the first row of the matrix.
```

y = toeplitz(Col,Row) % Equivalent MATLAB code

```

The other elements of the matrix obey the relationship
\[
y(i, j)=y(i-1, j-1)
\]
and the output has dimension [length(Col) length(Row)]. The \(y(1,1)\) element is inherited from the Col input. For example, the following inputs
```

Col = [llllll}
Row = [lllllllll

```
produce the Toeplitz matrix
\(\left[\begin{array}{lllllll}1 & 7 & 3 & 3 & 2 & 1 & 3 \\ 2 & 1 & 7 & 3 & 3 & 2 & 1 \\ 3 & 2 & 1 & 7 & 3 & 3 & 2 \\ 4 & 3 & 2 & 1 & 7 & 3 & 3 \\ 5 & 4 & 3 & 2 & 1 & 7 & 3\end{array}\right]\)

When both of the inputs are sample based, the output is sample based. Otherwise, the output is frame based.

When you select the Symmetric check box, the block generates a symmetric (Hermitian) Toeplitz matrix from a single input, u, defining both the first row and first column of the matrix.
```

y = toeplitz(u) % Equivalent MATLAB code

```

The output has dimension [length(u) length(u)]. For example, the Toeplitz matrix generated from the input vector [llll \(\left.1 \begin{array}{lll}1 & 2 & 3\end{array}\right]\) is
\(\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 3 \\ 3 & 2 & 1 & 2 \\ 4 & 3 & 2 & 1\end{array}\right]\)

The output has the same frame status as the input.
The Toeplitz block supports real and complex floating-point and fixed-point inputs.


\section*{Symmetric}

When selected, enables the single-input configuration for symmetric Toeplitz matrix output.

\section*{Saturate on integer overflow}

When you generate a symmetric Toeplitz matrix with this block, if the input vector is complex, the output is a symmetric Hermitian matrix whose elements satisfy the relationship
\[
y(i, j)=\operatorname{conj}(y(j, i))
\]

For fixed-point signals the conjugate operation could result in an overflow. When you select this parameter, overflows saturate. This parameter is only visible with the Symmetric parameter is selected. This parameter is ignored for floating-point signals.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & - Double-precision floating point \\
& - Single-precision floating point \\
& - Fixed point (signed and unsigned) \\
& - Boolean \\
& - 8-, 16-, and 32-bit signed integers \\
& - 8-, 16-, and 32-bit unsigned integers (real signals only) \\
\hline Toep & - Double-precision floating point \\
Col & - Single-precision floating point \\
& - Fixed point (signed and unsigned) \\
& - Boolean \\
& - 8-, 16-, and 32-bit signed integers \\
& - 8-, 16-, and 32-bit unsigned integers \\
\hline
\end{tabular}

\section*{Toeplitz}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Toep Row & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Output & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline
\end{tabular}

\author{
See Also \\ \begin{tabular}{ll} 
Constant Diagonal Matrix & Signal Processing Blockset \\
toeplitz & MATLAB
\end{tabular}
}

\section*{To Audio Device}

\section*{Purpose Write audio data to computer's audio device}

\section*{Library \\ Signal Processing Sinks}

Description

dspsnks4
The To Audio Device block sends audio data to your computer's audio device. This block has the following limitations:
- Not supported for use with the Simulink Model block.
- Not currently supported on Solaris platforms.

Use the Device parameter to specify the device to which you want to send the audio data. This parameter is automatically populated based on the audio devices installed on your system. If you plug or unplug an audio device from your system, type clear mex at the MATLAB command prompt to update the list.

Select the Inherit sample rate from input check box if you want the block to inherit the sample rate of the audio signal from the input to the block. If you clear this check box, the Sample rate (Hz) parameter appears on the block. Use this parameter to specify the number of samples per second in the signal.

Use the Device data type to specify the data type of the audio data that is sent to the device. You can choose:
- 8-bit integer
- 16-bit integer
- 24-bit integer
- 32-bit float
- Determine from input data type

If you choose Determine from input data type, the following table summarizes the block's behavior.
\begin{tabular}{l|l}
\hline Input Data Type & Device Data Type \\
\hline \begin{tabular}{l} 
Double-precision floating point or \\
single-precision floating point
\end{tabular} & 32 -bit floating point \\
\hline 32-bit integer & 24 -bit integer \\
\hline 16-bit integer & 16 -bit integer \\
\hline 8-bit integer & 8 -bit integer \\
\hline
\end{tabular}

If you choose Determine from input data type and the device does not support the input data type, the block uses the next lowest-precision data type supported by the device.

\section*{Buffering}

The To Audio Device block buffers the data from a Simulink signal using the process illustrated by the following figure.


To Audio Device Block

1 At the start of the simulation, the queue is filled with silence. Specify the size of this queue using the Queue duration (seconds) parameter. As Simulink runs, the block appends Simulink frames to the bottom of the queue.

2 At each time step, the blocks sends a buffer of samples from the top of the queue to the audio device. Select the Automatically determine

\section*{To Audio Device}
buffer size check box to allow the block to use a conservative buffer size. See the From Audio Device block reference page for the equation the block uses to calculate this buffer size. If you clear this check box, the Buffer size (samples) parameter appears on the block. Use this parameter to specify the size of the buffer in samples.

3 The block writes the buffer of audio data to the device. If the queue did not contain enough data to completely fill the buffer, the block fills the remaining portion of the buffer with zeros. This data has a the data type specified by the Device data type parameter.

When the simulation throughput rate is lower than the hardware throughput rate, the queue, which is initially full, becomes empty. If the queue is empty, the block sends zeros (silence) to the audio device. When the simulation throughput rate is higher than the hardware throughput rate, the To Audio Device block waits to write data to the queue.

To minimize the chance of dropouts, the block checks to make sure the queue duration is at least as large as the maximum of the buffer size and the frame size. If it is not, the queue duration is automatically set to this maximum value.

\section*{Troubleshooting}

When Simulink cannot keep up with an audio device that is operating in real time, the queue becomes empty and gaps occur in the audio data that the block sends to the device. To receive a warning, which will indicate the number of samples in the gap, type the following command on the MATLAB command line:
```

warning('on', 'spblks:block:ToAudioDevice:toAudioDeviceDroppedSampl

```

Here are several ways to deal with this situation:
- Increase the queue duration.

The Queue duration (seconds) parameter specifies the duration of the signal, in seconds, that can be buffered during the simulation.

\section*{To Audio Device}

This is the maximum length of time that the block's data supply can lag the hardware's data demand.
- Increase the buffer size.

The size of the buffer processed in each interrupt from the audio device affects the performance of your model. If the buffer is too small, a large portion of hardware resources are used to write data to the device. If the buffer is too big, Simulink must wait for the device to empty the buffer before it can write the data to the queue, which introduces latency.
- Increase the simulation throughput rate.

Two useful methods for improving simulation throughput rates are increasing the signal frame size and compiling the simulation into native code:
- Increase frame sizes and convert sample-based signals to frame-based signals throughout the model to reduce the amount of block-to-block communication overhead. This can increase throughput rates in many cases. However, larger frame sizes generally result in greater model latency due to initial buffering operations.
- Generate executable code with Real-Time Workshop code generation software. Native code runs much faster than Simulink and should provide rates adequate for real-time audio processing.

Other ways to improve throughput rates include simplifying the model and running the simulation on a faster PC processor. For other ideas on improving simulation performance, see "Delay and Latency" and "Improving Simulation Performance and Accuracy" in the Simulink documentation.

\section*{Channel-to-Speaker Mapping on Windows Operating Systems}

The To Audio Device and From Audio Device blocks can support multiple channels. On Windows operating systems, the channel-to-speaker mapping is defined as listed below. This mapping only applies when

\section*{To Audio Device}
your sound card is properly configured and capable of receiving the audio data you send. If the number of channels on the card does not match the number of channels on the block, or if you specify a data type for the Device data type parameter that is not supported by your device, the Windows mixer intervenes to translate from one format to another. If the Windows mixer does intervene, the channel-to-speaker mapping might differ from what is specified here.
- Single channel input - Front center speaker

On systems with two speakers, the front center channel is split between the right and left speakers.
- Multichannel input - Channels are assigned to speakers as follows:
- One channel - Front center
- Two channels - Front left, front right
- Four channels - Front left, front right, rear left, rear right
- Six channels - Front left, front right, front center, low frequency, rear left, rear right
- Eight channels - Front left, front right, front center, low frequency, rear left, rear right, front left center, front right center
- For all other channel combinations, the channel assignment is dictated by the audio card.

\section*{Audio Hardware API}

The To Audio Device and From Audio Device blocks use the open-source PortAudio library in order to communicate with the audio hardware on a given computer. The PortAudio library supports a range of API's designed to communicate with the audio hardware on a given platform. The following API choices were made when building the PortAudio library for the Signal Processing Blockset product:
- Windows: DirectSound, WDM-KS
- Linux: OSS, ALSA

\section*{To Audio Device}
- Mac: CoreAudio

To select or change the Audio Hardware API, select Preferences from the MATLAB File menu. Then select Signal Processing Blockset from the tree menu.

If you are interested in using a different audio API, please search for PortAudio on the Matlab Central website.

Example

Dialog
Box

See the Positional Audio demo for an example of how to use this block. You can open this demo by typing dspAudioPos at the MATLAB command line.


\section*{Device}

Specify which device to send the audio data to.
Inherit sample rate from input
Select this check box if you want the block to inherit the sample rate of the audio signal from the input to the block.

\section*{To Audio Device}

\section*{Sample rate (Hz)}

Specify the number of samples per second in the signal. This parameter is visible when the Inherit sample rate from input check box is cleared.

\section*{Device data type}

Specify the data type of the audio data sent to the device.

\section*{Automatically determine buffer size}

Select this check box to allow the block to calculate a conservative buffer size.

Buffer size (samples)
Specify the size of the buffer. This parameter is visible when the Automatically determine buffer size check box is cleared.

\section*{Queue duration (seconds)}

Specify the size of the queue in seconds.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& • Single-precision floating point \\
& • 32-bit signed integers \\
& • 16 -bit signed integers \\
& • 8 -bit unsigned integers \\
\hline
\end{tabular}

\author{
See Also \\ From Audio Device \\ To Wave File \\ audioplayer \\ MATLAB \\ sound
}

\section*{To Multimedia File}
\begin{tabular}{ll} 
Purpose & Write video frames and/or audio samples to multimedia file \\
Library & \begin{tabular}{l} 
Signal Processing Sinks \\
dspsnks4
\end{tabular}
\end{tabular}

Description


The To Multimedia File block writes video frames and/or audio samples to a multimedia (.avi) file. Video processing requires the Video and Image Processing Blockset product.

You can also compress the video frames or audio samples by selecting a compression algorithm. You can connect as many of the input ports as you want. Therefore, you can control what type of video and/or audio is sent to the multimedia file.

Note This block supports code generation for platforms that have file I/O available. This excludes RTWin (Real-Time Windows Target software, which does not support file I/O). This block performs best on platforms with Version 9.0 or later of DirectX software and Version 9.0 or later of Windows Media \({ }^{\circledR}\) software. On UNIX and Linux \({ }^{\circledR}\) platforms, this block supports only uncompressed RGB24 AVI files whose size is less than 2 GB .
\begin{tabular}{|c|c|c|c|}
\hline Port & Input & Supported Data Types & \begin{tabular}{l}
Supports \\
Complex \\
Values?
\end{tabular} \\
\hline Image & M-by-N-by-3 matrix RGB signal. To record M-by-N intensity video, use the Matrix Concatenate block to create an RGB signal. & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Boolean \\
- 8-, 16- 32 -bit signed integers
\end{tabular} & No \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l}
\hline Port & Input & Supported Data Types & \begin{tabular}{l} 
Supports \\
Complex \\
Values?
\end{tabular} \\
\hline & & \begin{tabular}{l} 
- 8-, 16- 32-bit unsigned \\
integers
\end{tabular} & \\
\hline R, G, B & \begin{tabular}{l} 
Matrix that represents one \\
plane of the RGB video \\
stream. Inputs to the R, \\
G, or B port must have the \\
same dimensions and data \\
type.
\end{tabular} & Same as Image port & No \\
\hline Audio & \begin{tabular}{l} 
Vector of audio data
\end{tabular} & \begin{tabular}{l} 
- Double-precision floating \\
point
\end{tabular} & No \\
\hline
\end{tabular}

For the block to display video data properly, double- and single-precision floating-point pixel values must be between 0 and 1 . For any other data type, the pixel values must be between the minimum and maximum values supported by their data type.
Use the File name parameter to specify the name of the multimedia file to which to write. This file is saved in your current folder. To specify a different file, click the Browse button, and then navigate to the new file.

Use the Write parameter to specify whether the block writes video frames and/or audio samples to the multimedia file. The choices are Video and audio, Video only, or Audio only.

Use the Audio compressor parameter to specify the type of compression algorithm to use to compress the audio data. This compression reduces the size of the multimedia file. Choose None

\section*{To Multimedia File}
(uncompressed) to save uncompressed audio data to the multimedia file. The other items available in this parameter list are the audio compression algorithms installed on your system. For information about a specific audio compressor, see its documentation.

Use the Video compressor parameter to specify the type of compression algorithm to use to compress the video data. This compression reduces the size of the multimedia file. Choose None (uncompressed) to save uncompressed video data to the multimedia file. The other items available in this parameter list are the video compression algorithms installed on your system. For information about a specific video compressor, see its documentation.

Use the Image signal parameter to specify how the block accepts a color video signal. If you select One multidimensional signal, the block accepts an M-by-N-by-3 color video signal. To record M-by-N intensity video, use the Matrix Concatenate block to create an RGB signal. If you select Separate color signals, additional ports appear on the block. Each port accepts one M-by-N plane of an RGB video stream.

Note All the To Multimedia File block input signals must have the same frame period. You might need to adjust the frame size of the audio signal so that the frame period of the video signal is the same as the frame period of the audio signal. To calculate the frame size, divide the frequency of the audio signal (samples per second) by the frame rate of the video signal (frames per second).

Dialog Box

Sink Block Parameters: To Multimedia File

\section*{\(\times\)}

To Multimedia File
Writes video frames andjor audio samples to a multimedia file. On Windows, audio and video compressors are also available to compress audio andjor video streams in the output file. If the specified output file exists, it will be overwritten.

Video functionality requires a Video and Image Processing Blockset license.
-Parameters
Filename: output.avi Browse...

Write:
Audio only
Audio compressor: None (uncompressed)

\section*{File name}

Specify the name of the multimedia file to which to write. This file is saved in your current folder. To specify a different file, click the Browse button, and then navigate to the new file.

\section*{Write}

Specify whether the block writes video frames and/or audio samples to the multimedia file. The choices are Video and audio, Video only, or Audio only.

\section*{Audio compressor}

Select the type of compression algorithm to use to compress the audio data.

\section*{Video compressor}

Select the type of compression algorithm to use to compress the video data.

\title{
Image signal \\ Specify how the block accepts a color video signal. If you select One multidimensional signal, the block accepts an M-by-N-by-P color video signal, where P is the number of color planes, at one port. If you select Separate color signals, additional ports appear on the block. Each port accepts one M-by-N plane of an RGB video stream.
}

\section*{See Also}
\begin{tabular}{ll} 
From Multimedia File & Signal Processing Blockset \\
To Wave File & Signal Processing Blockset \\
Frame Rate Display & Video and Image Processing Blockset \\
To Video Display & Video and Image Processing Blockset \\
Video To Workspace & Video and Image Processing Blockset \\
Video Viewer & Video and Image Processing Blockset
\end{tabular}

\section*{To Wave Device (Obsolete)}

\section*{Purpose \\ Library \\ Description \\ }

Send audio data to standard Windows audio device in real time
dspwin32

Note The To Wave Device block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the To Audio Device block.

The To Wave Device block sends audio data to a standard Windows audio device in real time. It is compatible with most popular Windows hardware, including Sound Blaster cards. The data is sent to the hardware in uncompressed pulse code modulation (PCM) format, and should typically be sampled at one of the standard Windows audio device rates: 8000 , 11025,22050 , or 44100 Hz . Some hardware might support other rates in addition to these.

Note Models that contain both the To Wave Device block and the From Wave Device block require a duplex-capable sound card.

The Use default audio device check box allows the To Wave Device block to detect and use the system's default audio hardware. You should select this option for systems that have a single sound device installed, or when the default sound device on a multiple-device system is your desired target. When the default sound device is not your desired output device, clear Use default audio device, and set the desired hardware in the Audio device parameter. This parameter lists the names of the installed audio devices.

The block input can contain audio data from a mono or stereo signal. A mono signal is represented as either a sample-based scalar or a frame-based length- \(M\) vector, where \(M\) is frame size. A stereo signal is represented as a sample-based length-2 vector or a frame-based \(M\)-by-2 matrix.

\section*{To Wave Device (Obsolete)}

When the input data type is uint8, the block conveys the signal samples to the audio device using 8 bits. When the input data type is double, single, int16, or fixed point with a word length of 16 and a fraction length of 15 , the block conveys the signal samples to the audio device using 16 bits by default. For inputs of data type double and single, you can also set the block to convey the signal samples using 24 bits by selecting the Enable 24-bit output for double- and single-precision input signals check box. The 24 -bit sample width requires more memory but in general yields better fidelity.

The amplitude of the input must be in a valid range that depends on the input data type, as shown in the following table. Amplitudes outside the valid range are clipped to the nearest allowable value.
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Input Data \\
Type
\end{tabular} & Valid Input Amplitude Range \\
\hline double & \(-1 \leq\) amplitude \(<1\) \\
\hline single & \(-1 \leq\) amplitude \(<1\) \\
\hline int16 & \(-32768 \leq\) amplitude \(\leq 32767\) \\
\hline uint8 & \(0 \leq\) amplitude \(\leq 255\) \\
\hline \begin{tabular}{l} 
Fixed point \\
with a word \\
length of 16 \\
and a fraction \\
length of 15
\end{tabular} & \(-1 \leq\) amplitude \(\leq 1-2^{-15}\) \\
\hline
\end{tabular}

\section*{Buffering}

Because audio devices generate real-time audio output, the Simulink environment must maintain a continuous flow of data to a device throughout simulation. Delays in passing data to the audio hardware can result in hardware errors or distortion of the output. This means that the To Wave Device block must in principle supply data to the

\section*{To Wave Device (Obsolete)}
audio hardware as quickly as the hardware reads the data. However, the To Wave Device block often cannot match the throughput rate of the audio hardware, especially when the simulation is running within Simulink rather than as generated code. Simulink execution speed can vary during the simulation as the host operating system services other processes. The block must therefore rely on a buffering strategy to ensure that signal data is available to the hardware on demand.

Note This block requires real-time execution of the parent model for best performance.

The following block parameters control the memory management for this block:

\section*{- Queue duration}
- Automatically determine internal buffer size or User-defined internal buffer size
- Initial output delay


The Queue duration parameter defines the overall size of the block's buffer. The block reads in chunks of data in the size of the input dimensions and stores them in the buffer. The internal buffer size defines the dimensions of the block output to the hardware. You can define the internal buffer size yourself in the User-defined internal buffer size parameter. If you select Automatically determine internal buffer size instead, the internal buffer size is calculated for you according to the following rules:

\section*{To Wave Device (Obsolete)}
- If the input to the block has a frame size of 32 samples or larger, the internal buffer size be the same as the input frame size.
- If the input to the block has a frame size smaller than 32 samples, the internal buffer size is based on the input sample rate according to the following table, where
\[
F_{s}=\text { sampling frequency }=\frac{1}{\text { sample time }}
\]

\section*{To Wave Device (Obsolete)}
\begin{tabular}{c|c}
\hline \(\boldsymbol{F}_{\boldsymbol{s}} \mathbf{( H z )}\) & Internal Buffer Size (samples) \\
\hline\(F_{s}<8000\) & \(\min \left(64,2^{*} F_{s}\right)\) \\
\hline \(8000 \leq F_{s}<22,050\) & 128 \\
\hline \(22,050 \leq F_{s}<44,100\) & 256 \\
\hline \(44,100 \leq F_{s}<96,000\) & 512 \\
\hline\(F_{s} \geq 96,000\) & 1024 \\
\hline
\end{tabular}

To minimize the chance of dropouts, the block checks to make sure that the queue duration is at least as big as twice the internal buffer size. If it is not, the queue duration is automatically set to twice the internal buffer size.

The Initial output delay parameter enables you to preload the buffer before the block starts to output data to the audio device, which can be helpful for models that do not run in real time. However, for real-time applications, it is best to set the initial output delay to zero (one frame of delay), or as close to zero as possible.

\section*{Troubleshooting}

If you are getting undesirable audio output using the To Wave Device block, first determine whether your model can run in real time. Replace the To Wave Device block with a To Wave File block, run the model, and compare the model's simulation stop time to the elapsed time on your watch. If the model simulation stop time is less than the elapsed time on your watch, your model can probably run in real time. Then,
- If your model can run in real time,

1 Select Automatically determine internal buffer size. This alone might solve the problem. If not,
2 Try increasing the Queue duration parameter to a relatively large value, such as 0.5 s .

\section*{To Wave Device (Obsolete)}

If one or both of these options restores desirable audio output, you can try reducing the internal buffer size and/or queue duration until the quality of the audio output again degrades.
- If your model is not running in real time, try to make it run in real time by

1 Optimizing the model (using a more efficient implementation), or
2 Using the Simulink Accelerator mode, or
3 Generating stand-alone code
If none of these are possible, but the model only runs for a short period of time, set the Queue duration parameter to a size equal to a significant fraction of the model stop time and use a similarly large initial delay. This is not an optimal solution, but might work in some cases.

\section*{To Wave Device (Obsolete)}

\section*{Dialog Box}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Sink Block Parameters: To Wave Device} & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
To Wave Device (mask) (link) \\
Writes data samples to a standard Windows audio device in real-time. \\
If audio playback glitches occur, try increasing the Queue duration parameter. For models containing complicated processing that prevents sustained real-time audio output, try increasing the Initial output delay parameter. \\
Double- and single-precision input data types are played using 16 -bit or 24 -bit samples, depending on the status of the Enable 24 -bit checkbox. int16 input data types are played using 16 -bit samples; uint8 data is played using 8 -bit samples. \\
Only for use with Windows platforms.
\end{tabular}}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\(\left[\begin{array}{l}\text { Parameters } \\ \text { Queue duration (seconds): }\end{array}\right.\)}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{2} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\(\sqrt{V}\) Automatically determine internal buffer size Initial output delay (seconds):}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{0.1} \\
\hline \multicolumn{4}{|l|}{\(\checkmark\) Use default audio device} \\
\hline \multicolumn{4}{|l|}{Audio device: Emu10Kx Audio [B800] 7} \\
\hline \multicolumn{4}{|l|}{Г Enable 24-bit output for double- and single-precision input signals} \\
\hline OK Cancel & Help & Apply & \\
\hline
\end{tabular}

\section*{Queue duration (seconds)}

Specify the overall buffer size. To minimize the chance of dropouts, the block checks to make sure that the queue duration is as least as large as twice the internal buffer size. If it is not, the queue duration is automatically set to twice the internal buffer size.

\section*{Automatically determine internal buffer size}

Select to have the block automatically select the internal buffer size for you. For details, see "Buffering" on page 2-1280.

\section*{To Wave Device (Obsolete)}

\section*{User-defined internal buffer size (samples)}

Define the internal buffer size, or the size of the chunks of data sent by the block to the audio hardware device.

This parameter is only visible when Automatically determine internal buffer size is not selected.

\section*{Initial output delay (seconds)}

Specify the amount of time by which to delay the initial output to the audio device. During this time data accumulates in the block's buffer. Any value less than or equal to the queue duration specifies the smallest possible initial delay, which is a single frame.

\section*{Use default audio device}

Select to direct audio output to the system's default audio device.

\section*{Audio device}

This parameter lists the names of the installed audio devices. Specify the name of the audio device to receive the audio output. Select Use default audio device when the system has only a single audio card installed.

This parameter is only enabled when the Use default audio device check box is not selected.

\section*{Enable 24-bit output for double and single precision input signals}

Select to output 24 -bit data when inputs are double- or single-precision. Otherwise, the block outputs 16 -bit data for double- and single-precision inputs.

\section*{To Wave Device (Obsolete)}

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& • Single-precision floating point \\
& - Signed fixed point with a word length of 16 and a \\
& fraction length of 15 \\
& - 16 -bit signed integers \\
& • 8-bit unsigned integers \\
\hline
\end{tabular}
See Also \begin{tabular}{lll} 
From Wave Device & Signal Processing Blockset \\
(Obsolete)
\end{tabular}\(\quad\) Signal Processing Blockset \(\quad\) To Wave File \(\quad\) audioplayer \(\quad\) MATLAB \(\quad\) sound \(\quad\) MATLAB

Library

\section*{Description}


To Wave

Purpose Write audio data to file in Microsoft Wave (.wav) format
Signal Processing Sinks
dspsnks4
The To Wave File block streams audio data to a Microsoft Wave (.wav) file in the uncompressed pulse code modulation (PCM) format. For compatibility reasons, the sample rate of the discrete-time input signal should typically be one of the standard Windows audio device rates ( \(8000,11025,22050\), or 44100 Hz ), although the block supports arbitrary rates.

The input to the block, \(u\), can contain audio data with one or more channels. A signal with \(C\) channels is represented as a sample-based length- \(C\) vector or a frame-based \(M\)-by- \(C\) matrix. The amplitude of the input should be in the range \(\pm 1\). Values outside this range are clipped to the nearest allowable value.
```

wavwrite(u,Fs,bits,'filename') % Equivalent MATLAB code

```

\section*{Dialog Box}


\section*{File name}

Specify the path and name of the file to write. Paths can be relative or absolute. You do not need to specify the. wav extension.

\section*{Sample width (bits)}

Specify the number of bits used to represent the signal samples in the file. The higher sample width settings require more memory but yield better fidelity for double- and single-precision inputs:
- 8 - Allocates 8 bits to each sample, allowing a resolution of 256 levels
- 16 - Allocates 16 bits to each sample, allowing a resolution of 65536 levels
- 24 - Allocates 24 bits to each sample, allowing a resolution of 16777216 levels
- 32 - Allocates 32 bits to each sample, allowing a resolution of \(2^{32}\) levels ranging from -1 to 1

The 8 -, 16 -, and 24 -bit modes output integer data, while the 32 -bit mode outputs single-precision floating-point data.

\section*{Minimum number of samples for each write to file}

Specify the number of consecutive samples, \(L\), to write with each file access. To reduce the required number of file accesses, the block writes \(L\) consecutive samples to the file during each access for \(L \geq M\). For \(L<M\), the block instead writes \(M\) consecutive samples during each access. Larger values of \(L\) result in fewer file accesses, which reduces run-time overhead.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& • Single-precision floating point \\
& • Signed fixed point with a word length of 16 and a \\
& fraction length of 15 \\
& • 16 -bit signed integers \\
& • 8-bit unsigned integers \\
\hline
\end{tabular}

\section*{See Also}
\begin{tabular}{ll} 
From Wave File & Signal Processing Blockset \\
To Audio Device & Signal Processing Blockset \\
To Workspace & Simulink \\
wavwrite & MATLAB
\end{tabular}

\section*{Purpose}

Compute matrix transpose

\section*{Library}

Description
 dspmtrx3

Math Functions / Matrices and Linear Algebra / Matrix Operations

The Transpose block transposes the M-by-N input matrix to size N-by-M. When you select the Hermitian check box, the block performs the Hermitian (complex conjugate) transpose.
\[
\begin{gathered}
\mathrm{y}=\mathrm{u}^{\prime} \quad \text { \% Equivalent MATLAB code } \\
{\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{21} & u_{22} & u_{23}
\end{array}\right] \quad \mathrm{u}^{\prime} \quad\left[\begin{array}{ll}
u_{11}^{*} & u_{21}^{*} \\
u_{12}^{*} & u_{22}^{*} \\
u_{13}^{*} & u_{23}^{*}
\end{array}\right]}
\end{gathered}
\]

When you do not select the Hermitian check box, the block performs the nonconjugate transpose.
\[
\begin{gathered}
\mathrm{y}=\mathrm{u} . \mathrm{o} \\
{\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{21} & u_{22} & u_{23}
\end{array}\right] \quad}
\end{gathered}
\]

A length-M 1-D vector input is treated as an M-by-1 matrix. The output is always sample based.
The Transpose block supports real and complex floating-point and fixed-point data types. When Hermitian is selected, the block input must be a signed data type.

\section*{Transpose}

\section*{Dialog \\ Box}

\section*{Supported Data Types}


\section*{Hermitian}

When selected, specifies the complex conjugate transpose.

\section*{Saturate on integer overflow}

This parameter is only visible when the Hermitian parameter is selected because overflows can occur when computing the complex conjugate of complex fixed-point signals. When you select this parameter, such overflows saturate. This parameter is ignored for floating-point signals and for real-valued fixed-point signals.

When Hermitian is selected, the block input must be a signed data type.
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point (signed and unsigned) \\
& • Boolean \\
& • 8-, 16-, and 32-bit signed integers \\
\end{tabular}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline & • 8-, 16-, and 32-bit unsigned integers \\
\hline Output & • Double-precision floating point \\
& - Single-precision floating point \\
& - Fixed point (signed and unsigned) \\
& - Boolean \\
& • 8-, 16-, and 32-bit signed integers \\
& • 8-, 16-, and 32-bit unsigned integers \\
\hline
\end{tabular}

\section*{See Also}
\begin{tabular}{ll} 
Math Function & Simulink \\
Permute Matrix & Signal Processing Blockset \\
Reshape & Simulink \\
Submatrix & Signal Processing Blockset
\end{tabular}

\section*{Triggered Delay Line (Obsolete)}
\begin{tabular}{ll} 
Purpose & Buffer sequence of inputs into frame-based output \\
Library & dspobslib
\end{tabular}

Description


Note The Triggered Delay Line block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Delay Line block.

The Triggered Delay Line block acquires a collection of \(\mathrm{M}_{\mathrm{o}}\) input samples into a frame, where you specify \(\mathrm{M}_{\mathrm{o}}\) in the Delay line size parameter. The block buffers a single sample from input 1 whenever it is triggered by the control signal at input \(2(\$)\). When the next triggering event occurs, the newly acquired input sample is appended to the output frame so that the new output overlaps the previous output by \(\mathrm{M}_{\mathrm{o}}-1\) samples. Between triggering events the block ignores input 1 and holds the output at its last value.

You specify the triggering event at input 2 in the Trigger type pop-up menu:
- Rising edge triggers execution of the block when the trigger input rises from a negative value to zero or a positive value, or from zero to a positive value.
- Falling edge triggers execution of the block when the trigger input falls from a positive value to zero or a negative value, or from zero to a negative value.
- Either edge triggers execution of the block when either a rising or falling edge (as described above) occurs.

The Triggered Delay Line block has zero latency, so the new input appears at the output in the same simulation time step. The output frame period is the same as the input sample period, \(\mathrm{T}_{\mathrm{fo}}=\mathrm{T}_{\mathrm{si}}\).

\section*{Triggered Delay Line (Obsolete)}

\section*{Sample-Based Operation}

In sample-based operation, the Triggered Delay Line block buffers a sequence of sample-based length- N vector inputs (1-D, row, or column) into a sequence of overlapping sample-based \(\mathrm{M}_{0}\)-by-N matrix outputs, where you specify \(M_{0}\) in the Delay line size parameter \(\left(M_{0}>1\right)\). That is, each input vector becomes a row in the sample-based output matrix. When \(\mathrm{M}_{\mathrm{o}}=1\), the input is simply passed through to the output, and retains the same dimension. Sample-based full-dimension matrix inputs are not accepted.

\section*{Frame-Based Operation}

In frame-based operation, the Triggered Delay Line block rebuffers a sequence of frame-based \(M_{i}\)-by- N matrix inputs into an sequence of overlapping frame-based \(M_{0}\)-by-N matrix outputs, where \(M_{0}\) is the output frame size specified by the Delay line size parameter (that is, the number of consecutive samples from the input frame to rebuffer into the output frame). \(\mathrm{M}_{\mathrm{o}}\) can be greater or less than the input frame size, \(\mathrm{M}_{\mathrm{i}}\). Each of the N input channels is rebuffered independently.

\section*{Initial Conditions}

The Triggered Delay Line block's buffer is initialized to the value specified by the Initial condition parameter. The block always outputs this buffer at the first simulation step ( \(t=0\) ). When the block's output is a vector, the Initial condition can be a vector of the same size or a scalar value to be repeated across all elements of the initial output. When the block's output is a matrix, the Initial condition can be a matrix of the same size or a scalar to be repeated across all elements of the initial output.

\section*{Triggered Delay Line (Obsolete)}

\section*{Dialog \\ Box}


\section*{Trigger type}

The type of event that triggers the block's execution.

\section*{Delay line size}

The length of the output frame (number of rows in output matrix), \(\mathrm{M}_{\mathrm{o}}\).

\section*{Initial condition}

The value of the block's initial output, a scalar, vector, or matrix.

\section*{Triggered Delay Line (Obsolete)}

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Input & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16 -, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Trigger & - Any data type supported by the Trigger block \\
\hline Output & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16 -, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline
\end{tabular}

See Also
Buffer
Delay Line
Unbuffer

\author{
Signal Processing Blockset \\ Signal Processing Blockset \\ Signal Processing Blockset
}

\section*{Triggered Signal From Workspace}

\begin{abstract}
Purpose Import signal samples from MATLAB workspace when triggered

Library

Description
1:10

Signal Operations
dspsigops
The Triggered Signal From Workspace block imports signal samples from the MATLAB workspace into the Simulink model when triggered by the control signal at the input port ( \(\boldsymbol{\$}\) ). The Signal parameter specifies the name of a MATLAB workspace variable containing the signal to import, or any valid MATLAB expression defining a matrix or 3-D array.

When the Signal parameter specifies an M-by-N matrix ( \(\mathrm{M} \neq 1\) ), each of the N columns is treated as a distinct channel. You specify the frame size in the Samples per frame parameter, \(\mathrm{M}_{0}\), and the output when triggered is an \(\mathrm{M}_{0}\)-by- N matrix containing \(\mathrm{M}_{\mathrm{o}}\) consecutive samples from each signal channel. For \(\mathrm{M}_{0}=1\), the output is sample based; otherwise the output is frame based. For convenience, an imported row vector ( \(\mathrm{M}=1\) ) is treated as a single channel, so the output dimension is \(\mathrm{M}_{0}\)-by- 1 .

When the Signal parameter specifies an M-by-N-by-P array, the block generates a single page of the array (an M-by-N matrix) at each trigger time. The Samples per frame parameter must be set to 1 , and the output is always sample based.
\end{abstract}

\section*{Trigger Event}

You specify the triggering event at the input port in the Trigger type pop-up menu:
- Rising edge triggers execution of the block when the trigger input rises from a negative value to zero or a positive value, or from zero to a positive value.
- Falling edge triggers execution of the block when the trigger input falls from a positive value to zero or a negative value, or from zero to a negative value.

\section*{Triggered Signal From Workspace}
- Either edge triggers execution of the block when either a rising or falling edge (as described above) occurs.

\section*{Initial and Final Conditions}

The Initial output parameter specifies the output of the block from the start of the simulation until the first trigger event arrives. Between trigger events, the block holds the output value constant at its most recent value (that is, no linear interpolation takes place). For single-channel signals, the Initial output parameter value can be a vector of length \(M_{o}\) or a scalar to repeat across the \(M_{o}\) elements of the initial output frames. For matrix outputs ( \(\mathrm{M}_{0}\)-by-N or M-by-N), the Initial output parameter value can be a matrix of the same size or a scalar to be repeated across all elements of the initial output.

When the block has output all of the available signal samples, it can start again at the beginning of the signal, or simply repeat the final value or generate zeros until the end of the simulation. (The block does not extrapolate the imported signal beyond the last sample.) The Form output after final data value by parameter controls this behavior:
- When you specify Setting To Zero, the block generates zero-valued outputs for the duration of the simulation after generating the last frame of the signal.
- When you specify Holding Final Value, the block repeats the final sample for the duration of the simulation after generating the last frame of the signal.
- When you specify Cyclic Repetition, the block repeats the signal from the beginning after generating the last frame. When there are not enough samples at the end of the signal to fill the final frame, the block zero-pads the final frame as necessary to ensure that the output for each cycle is identical (for example, the \(i\) th frame of one cycle contains the same samples as the \(i\) th frame of any other cycle).

\section*{Triggered Signal From Workspace}

\section*{Dialog \\ Box}


\section*{Signal}

The name of the MATLAB workspace variable from which to import the signal, or a valid MATLAB expression specifying the signal.

\section*{Trigger type}

The type of event that triggers the block's execution.

\section*{Initial output}

The value to output until the first trigger event is received.

\section*{Samples per frame}

The number of samples, \(\mathrm{M}_{0}\), to buffer into each output frame.
This value must be 1 when you specify a 3-D array in the Signal parameter.

\section*{Triggered Signal From Workspace}

\section*{Form output after final data value by}

Specifies the output after all of the specified signal samples have been generated. The block can output zeros for the duration of the simulation (Setting to zero), repeat the final data sample (Holding Final Value) or repeat the entire signal from the beginning (Cyclic Repetition).

Supported Data
Types
- Double-precision floating point
- Single-precision floating point
- Fixed point (signed and unsigned)
- 8 -, 16-, and 32 -bit signed integers
- 8-, 16-, and 32 -bit unsigned integers

\section*{See Also}

Signal From Workspace
Signal To Workspace
Triggered To Workspace

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

\section*{Triggered To Workspace}
\begin{tabular}{ll} 
Purpose & Write input sample to MATLAB workspace when triggered \\
Library & \begin{tabular}{l} 
Signal Processing Sinks \\
dspsnks4
\end{tabular}
\end{tabular}

\section*{Description}

\section*{J yout}

The Triggered To Workspace block creates a matrix or array variable in the MATLAB workspace, where it stores the acquired inputs at the end of a simulation. The block overwrites an existing variable with the same name.

For an M-by-N frame-based input, the block creates an N-column workspace matrix in which each group of \(M\) rows represents a single input frame from each of N channels (the most recent frame occupying the last M rows). The maximum size of this workspace variable is limited to P -by- N , where P is the Maximum number of rows parameter. (When the simulation progresses long enough for the block to acquire more than P samples, it stores only the most recent P samples.) The Decimation factor, D, allows you to store only every Dth input frame.

For an M-by-N sample-based input, the block creates a three-dimensional array in which each M-by-N page represents a single sample from each of \(\mathrm{M}^{*} \mathrm{~N}\) channels (the most recent input matrix occupying the last page). The maximum size of this variable is limited to M-by-N-by-P, where \(P\) is the Maximum number of rows parameter. (When the simulation progresses long enough for the block to acquire more than P inputs, it stores only the last P inputs.) The Decimation factor, D , allows you to store only every Dth input matrix.

The block acquires and buffers a single frame from input 1 whenever it is triggered by the control signal at input \(2(\$)\). At all other times, the block ignores input 1 . You specify the triggering event at input 2 in the Trigger type pop-up menu:
- Rising edge triggers execution of the block when the trigger input rises from a negative value to zero or a positive value, or from zero to a positive value.

\section*{Triggered To Workspace}
- Falling edge triggers execution of the block when the trigger input falls from a positive value to zero or a negative value, or from zero to a negative value.
- Either edge triggers execution of the block when either a rising or falling edge (as described above) occurs.

To save a record of the sample time corresponding to each sample value, open the Configuration Parameters dialog box. In the Select pane, click Data Import/Export. In the Save to workspace section, select the Time check box.

The nontriggered version of this block is the Simulink To Workspace block.

Dialog
Box Box


\section*{Trigger type}

The type of event that triggers the block's execution.

\section*{Triggered To Workspace}

\section*{Variable name}

The name of the workspace matrix in which to store the data.
Maximum number of rows
The maximum number of rows (one row per time step) to be saved, P.

\section*{Decimation}

The decimation factor, D.

\section*{Log fixed-point data as a fi object}

Select to log fixed-point data to the MATLAB workspace as a Fixed-Point Toolbox fi object. Otherwise, fixed-point data is logged to the workspace as double.

\section*{Supported Data Types}

See Also

Signal From Workspace
Signal To Workspace
Triggered Signal From Workspace

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

\section*{Purpose}

\section*{Library}

\section*{Description}


Decompose signal into high-frequency subband and low-frequency subband

Filtering / Multirate Filters
```

dspmlti4

```

The Two-Channel Analysis Subband Filter block decomposes the input into a high-frequency subband and a low-frequency subband, each with half the bandwidth and half the sample rate of the input.

The block filters the input with a pair of highpass and lowpass FIR filters, and then downsamples the results by 2 , as illustrated in the following figure.


Note that the block implements the FIR filtering and downsampling steps together using a polyphase filter structure, which is more efficient than the straightforward filter-then-decimate algorithm illustrated above. Each subband is the first phase of the respective polyphase filter.

You must provide the vector of filter coefficients for the two filters. Each filter should be a half-band filter that passes the frequency band that the other filter stops. For frame-based inputs, you also need to specify whether the change in the sample rate of the output gets reflected by a change in the frame size, or the frame rate.

Note By connecting many copies of this block, you can implement a multilevel dyadic analysis filter bank. In some cases, it is more efficient to use the Dyadic Analysis Filter Bank block instead. For more information, see "Creating Multilevel Dyadic Analysis Filter Banks" on page 2-1309.

\section*{Two-Channel Analysis Subband Filter}

\section*{Sections of This Reference Page}
- "Specifying the FIR Filters" on page 2-1306
- "Sample-Based Operation" on page 2-1307
- "Frame-Based Operation" on page 2-1307
- "Latency" on page 2-1308
- "Creating Multilevel Dyadic Analysis Filter Banks" on page 2-1309
- "Fixed-Point Data Types" on page 2-1310
- "Dialog Box" on page 2-1312
- "References" on page 2-1319
- "Supported Data Types" on page 2-1319
- "See Also" on page 2-1319

\section*{Specifying the FIR Filters}

You must provide the vector of numerator coefficients for the lowpass and highpass filters in the Lowpass FIR filter coefficients and Highpass FIR filter coefficients parameters.

For example, to specify a filter with the following transfer function, enter the vector \([b(1) \quad b(2) \ldots b(m)]\).
\[
H(z)=B(z)=b_{1}+b_{2} z^{-1}+\ldots+b_{m} z^{-(m-1)}
\]

Each filter should be a half-band filter that passes the frequency band that the other filter stops. When you plan to use the Two-Channel Synthesis Subband Filter block to reconstruct the input to this block, you need to design perfect reconstruction filters to use in the synthesis subband filter.

The best way to design perfect reconstruction filters is to use the Wavelet Toolbox wfilters function in to design both the filters both in this block and in the Two-Channel Synthesis Subband Filter block. You can also use Filter Design Toolbox functions and Signal

\section*{Two-Channel Analysis Subband Filter}

Processing Toolbox functions. To learn how to design your own perfect reconstruction filters, see "References" on page 2-1319.

The block initializes all filter states to zero.

\section*{Sample-Based Operation}
- "Valid Sample-Based Inputs" on page 2-1307
- "Sample-Based Outputs" on page 2-1307

\section*{Valid Sample-Based Inputs}

The block accepts all M-by-N sample-based matrix inputs. The block treats such inputs as \(M \cdot N\) independent channels, and decomposes each channel over time.

\section*{Sample-Based Outputs}

Given a sample-based M-by-N input, the block outputs two M-by-N sample-based matrices whose sample rates are half the input sample rate. Each output matrix element is the high- or low-frequency subband output of the corresponding input matrix element. Depending on the Simulink configuration parameters, some sample-based outputs can have one sample of latency, as described in "Latency" on page 2-1308.

\section*{Frame-Based Operation}
- "Valid Frame-Based Inputs" on page 2-1307
- "Frame-Based Outputs" on page 2-1307

\section*{Valid Frame-Based Inputs}

The block accepts M-by-N frame-based matrix inputs where M is a multiple of two. The block treats such inputs as N independent channels, and decomposes each channel over time.

\section*{Frame-Based Outputs}

Given a valid frame-based input, the block outputs two frame-based matrices. Each output column is the high- or low-frequency subband of the corresponding input column.

\section*{Two-Channel Analysis Subband Filter}

The sample rate of the outputs are half that of the input. The Framing parameter sets whether the block halves the sample rate by halving the output frame size, or halving the output frame rate:
- Maintain input frame size - The input and output frame sizes are the same, but the frame rate of the outputs are half that of the input. So, the overall sample rate of the output is half that of the input. This setting causes the block to have one frame of latency, as described in "Latency" on page 2-1308.
- Maintain input frame rate - The input and output frame rates are the same, but the frame size of the outputs are half that of the input (the input frame size must be a multiple of two). So, the overall sample rate of the output is half that of the input.

\section*{Latency}

In some cases, the block has nonzero tasking latency, which means that there is a constant delay between the time that the block receives an input, and produces the corresponding output, as summarized below and in the following table:
- For sample-based inputs, there are cases where the block exhibits one-sample latency. In such cases, when the block receives the \(n\)th input sample, it produces the outputs corresponding to the \(n\)-1th input sample. When the block receives the first input sample, the block outputs an initial value of zero in each output channel.
- For frame-based inputs, there are cases where the block exhibits one-frame latency. In such cases, when the block receives the \(n\)th input frame, it produces the outputs corresponding to the \(n\) - 1 th input frame. When the block receives the first input frame, the block outputs a frame of zeros.

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

\section*{Amount of Block Latency for All Possible Block Settings}
\begin{tabular}{l|l|l}
\hline Input & Latency & No Latency \\
\hline Sample based & \begin{tabular}{l} 
One sample of latency when the \\
Tasking mode for periodic \\
sample times parameter is set \\
to MultiTasking or Auto in the \\
Solver pane of the Configuration \\
Parameters dialog box. The first \\
output sample of each channel is \\
always 0.
\end{tabular} & \begin{tabular}{l} 
The Tasking mode for periodic \\
sample times parameter is set to \\
SingleTasking in the Solver pane \\
of the Configuration Parameters \\
dialog box.
\end{tabular} \\
\hline Frame based & \begin{tabular}{l} 
One frame of latency when the \\
Framing parameter is set to \\
Maintain input frame size. The \\
first output frame is always all \\
zeros.
\end{tabular} & \begin{tabular}{l} 
The Framing parameter is set to \\
Maintain input frame rate.
\end{tabular} \\
\hline
\end{tabular}

\section*{Creating Multilevel Dyadic Analysis Filter Banks}

The Two-Channel Analysis Subband Filter block is the basic unit of a dyadic analysis filter bank. You can connect several of these blocks to implement an \(n\)-level filter bank, as illustrated in the following figure. For a review of dyadic analysis filter banks, see the Dyadic Analysis Filter Bank block reference page.

When you create a filter bank by connecting multiple copies of this block, the output values of the filter bank differ depending on whether there is latency. See the previous table,

For instance, for frame-based inputs, the filter bank output values differ depending on whether you set the Framing parameter to Maintain input frame rate (no latency), or Maintain input frame size (one frame of latency for every block). Though the output values differ, both sets of values are valid; the difference arises from changes in latency.

In some cases, rather than connecting several Two-Channel Analysis Subband Filter blocks, it is faster and requires less memory to use the Dyadic Analysis Filter Bank block. In particular, use the Dyadic

\section*{Two-Channel Analysis Subband Filter}

Analysis Filter Bank block when you want to decompose a frame-based signal with frame size a multiple of \(2^{\mathrm{n}}\) into \(n+1\) or \(2^{\mathrm{n}}\) subbands. In all other cases, use Two-Channel Analysis Subband Filter blocks to implement your filter banks.

\section*{3-Level Dyadic Analysis Filter Banks}


The Dyadic Analysis Filter Bank block allows you to specify the filter bank filters by providing vectors of filter coefficients, just as this block does. The Dyadic Analysis Filter Bank block provides an additional option of using wavelet-based filters that the block designs by using a wavelet you specify.

\section*{Fixed-Point Data Types}

The Two-Channel Analysis Subband Filter block is comprised of two FIR Decimation blocks as shown in the following diagram.


For fixed-point signals, you can set the coefficient, product output, accumulator, and output data types of the FIR Decimation blocks as discussed in "Dialog Box" on page 2-1312. For a diagram showing the usage of these data types, see the FIR Decimation block reference page.

\section*{Two-Channel Analysis Subband Filter}

Dialog
The Main pane of the Two-Channel Analysis Subband Filter block dialog appears as follows.


\section*{Lowpass FIR filter coefficients}

Specify a vector of lowpass FIR filter coefficients, in descending powers of \(z\). The lowpass filter should be a half-band filter that
passes the frequency band stopped by the filter specified in the Highpass FIR filter coefficients parameter. The default values of this parameter specify a filter based on a 3rd-order Daubechies wavelet. When you use the Two-Channel Synthesis Subband Filter block to reconstruct the input to this block, you need to design perfect reconstruction filters to use in the synthesis subband filter. For more information, see "Specifying the FIR Filters" on page 2-1306.

\section*{Highpass FIR filter coefficients}

Specify a vector of highpass FIR filter coefficients, in descending powers of \(z\). The highpass filter should be a half-band filter that passes the frequency band stopped by the filter specified in the Lowpass FIR filter coefficients parameter. The default values of this parameter specify a filter based on a 3rd-order Daubechies wavelet. When you use the Two-Channel Synthesis Subband Filter block to reconstruct the input to this block, you need to design perfect reconstruction filters to use in the synthesis subband filter. For more information, see "Specifying the FIR Filters" on page 2-1306.

\section*{Framing}

Specify the method by which to implement the decimation for frame-based inputs:

Select Maintain input frame size to halve the output frame rate

Select Maintain input frame rate to halve the output frame size

For more information, see "Frame-Based Operation" on page \(2-1307\). Some settings of this parameter causes the block to have nonzero latency, as described in "Latency" on page 2-1308.

The Fixed-point pane of the Two-Channel Analysis Subband Filter block dialog appears as follows.

\section*{Two-Channel Analysis Subband Filter}
Function Block Parameters: Two-Channel Analysis Subband filter
Two-Channel Analysis Subband Filter
Decompose a signal into a high-frequency subband (Hi band) and a low-frequency subband (Lo band) using the specified highpass and lowpass FIR filters. Each subband has half the bandwidth and half the sample rate of the original signal. Usually, the highpass and lowpass filters should be half-band filters designed to complement each other. This block accepts sample- and frame-based inputs of all sizes.
To implement a multilevel filter bank that decomposes a signal into more than two subbands, use the Dyadic Analysis Filter Bank block in the Multirate Filters library (accepts only frame-based inputs of certain sizes).
For some fixed-point modes, the FIR filter coefficients fraction length or slope is automatically set for you to "Best precision." In these cases, the scaling is set to the best possible precision given the real-world values and word length of the coefficients. This is equivalent to the "Best Precision: Matrix-wise" scaling option used in some

\section*{Main Fixed-point}
Settings on this pane only apply when block inputs are fixed-point signals.
Fixed-point operational parameters
Rounding mode: Floor \(\quad\) Overflow mode: Wrap
Fixed-point data types

\section*{Mode}
\begin{tabular}{l|l|}
\cline { 2 - 3 } & \multicolumn{1}{l}{ Coefficients } \\
\cline { 2 - 3 } & Same word length as input \\
Product output & Inherit via internal rule \\
\cline { 2 - 3 } & Accumulator \\
\cline { 2 - 3 } & Inherit via internal rule \\
Output & Same as accumulator
\end{tabular}
- Lock scaling against changes by the autoscaling tool


\section*{Two-Channel Analysis Subband Filter}

\section*{Rounding mode}

Select the rounding mode for fixed-point operations. The filter coefficients do not obey this parameter; they always round to Nearest.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations. The filter coefficients do not obey this parameter; they are always saturated.

\section*{Coefficients}

Choose how you specify the word length and the fraction length of the FIR filter coefficients:

When you select Same word length as input, the word length of the filter coefficients match that of the input to the block. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.

When you select Specify word length, you can enter the word length of the coefficients, in bits. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.

When you select Binary point scaling, you can enter the word length and the fraction length of the coefficients, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the coefficients. This block requires power-of-two slope and a bias of zero.

The filter coefficients do not obey the Rounding mode and the Overflow mode parameters; they are always saturated and rounded to Nearest.

\section*{Two-Channel Analysis Subband Filter}

\section*{Product output}

Use this parameter to specify how you would like to designate the product output word and fraction lengths. See "Fixed-Point Data Types" on page 2-516 of the FIR Decimation reference page and "Multiplication Data Types" for illustrations depicting the use of the product output data type in the FIR Decimation blocks of this block:

When you select Inherit via internal rule, the product output word length and fraction length are calculated automatically. For information about how the product output word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".

Note The actual product output word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameters dialog box.

When you select Same as input, these characteristics match those of the input to the block.

When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

\section*{Accumulator}


As depicted above, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as each element of the input is added to it. Use this parameter to specify how you would like to designate this accumulator word and fraction lengths.

You also use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the FIR Decimation blocks in this block. See "Multiplication Data Types" for more information:

When you select Inherit via internal rule, the accumulator word length and fraction length are calculated automatically.
For information about how the accumulator word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".

When you select Same as product output, these characteristics match those of the product output

When you select Same as input, these characteristics match those of the input to the block.

\section*{Two-Channel Analysis Subband Filter}

When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

\section*{Output}

Choose how you specify the output word length and fraction length of the FIR Decimation blocks, as well as of the final overall filter output:

When you select Same as accumulator, these characteristics match those of the accumulator.

A special case occurs when Inherit via internal rule is specified for Accumulator, and block inputs and coefficients are complex. In that case, the output word length is one less than the accumulator word length.

When you select Same as product output, these characteristics match those of the product output

When you select Same as input, these characteristics match those of the input to the block.

When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

\section*{Lock scaling against changes by the autoscaling tool}

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling feature of the Fixed-Point Tool. See the fxptdlg reference page for more information.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{References} & \multicolumn{2}{|l|}{Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets. West Sussex, England: John Wiley \& Sons, 1994.} \\
\hline & Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood Cliffs, NJ: Prentice Hall, 1993. & Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA Wellesley-Cambridge Press, 1996. \\
\hline \begin{tabular}{l}
Supported \\
Data \\
Types
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed only) \\
- 8 -, 16-, and 32 -bit signed integers
\end{tabular}} \\
\hline \multirow[t]{9}{*}{See Also} & DWT & Signal Processing Blockset \\
\hline & Dyadic Analysis Filter Bank & Signal Processing Blockset \\
\hline & FIR Decimation & Signal Processing Blockset \\
\hline & IDWT & Signal Processing Blockset \\
\hline & Two-Channel Synthesis Subband Filter & Signal Processing Blockset \\
\hline & fir1 & Signal Processing Toolbox \\
\hline & fir2 & Signal Processing Toolbox \\
\hline & firls & Signal Processing Toolbox \\
\hline & wfilters & Wavelet Toolbox \\
\hline
\end{tabular}

For related information, see "Multirate Filters".

\section*{Two-Channel Synthesis Subband Filter}

\section*{Purpose Reconstruct signal from high-frequency subband and low-frequency subband \\ Library Filtering / Multirate Filters \\ dspmlti4}

\section*{Description}
3 Lo band

The Two-Channel Synthesis Subband Filter block reconstructs a signal from its high-frequency subband and low-frequency subband, each with half the bandwidth and half the sample rate of the original signal. Use this block to reconstruct signals decomposed by the Two-Channel Analysis Subband Filter block.

The block upsamples the high- and low-frequency subbands by 2 , and then filters the results with a pair of highpass and lowpass FIR filters, as illustrated in the following figure.


Note that the block implements the FIR filtering and downsampling steps together using a polyphase filter structure, which is more efficient than the straightforward interpolate-then-filter algorithm illustrated above.

You must provide the vector of filter coefficients for the two filters. Each filter should be a half-band filter that passes the frequency band that the other filter stops. To use this block to reconstruct the output of a Two-Channel Analysis Subband Filter block, the filters in this block must be designed to perfectly reconstruct the outputs of the analysis filters.

\section*{Two-Channel Synthesis Subband Filter}

Note By connecting many copies of this block, you can implement a multilevel dyadic synthesis filter bank. In some cases, it is more efficient to use the Dyadic Synthesis Filter Bank block instead. For more information, see "Creating Multilevel Dyadic Synthesis Filter Banks" on page 2-1324.

\section*{Sections of This Reference Page}
- "Specifying the FIR Filters" on page 2-1321
- "Sample-Based Operation" on page 2-1322
- "Frame-Based Operation" on page 2-1322
- "Latency" on page 2-1323
- "Creating Multilevel Dyadic Synthesis Filter Banks" on page 2-1324
- "Fixed-Point Data Types" on page 2-1326
- "Dialog Box" on page 2-1328
- "References" on page 2-1334
- "Supported Data Types" on page 2-1334
- "See Also" on page 2-1335

\section*{Specifying the FIR Filters}

You must provide the vector of numerator coefficients for the lowpass and highpass filters in the Lowpass FIR filter coefficients and Highpass FIR filter coefficients parameters.
For example, to specify a filter with the following transfer function, enter the vector \([b(1) \quad b(2) \ldots b(m)]\).
\[
H(z)=B(z)=b_{1}+b_{2} z^{-1}+\ldots+b_{m} z^{-(m-1)}
\]

Each filter should be a half-band filter that passes the frequency band that the other filter stops. To use this block to reconstruct the output of

\section*{Two-Channel Synthesis Subband Filter}
a Two-Channel Analysis Subband Filter block, the filters in this block must be designed to perfectly reconstruct the outputs of the analysis filters.

The best way to design perfect reconstruction filters is to use the Wavelet Toolbox wfilters function for the filters in both this block and in the corresponding Two-Channel Analysis Subband Filter block. You can also use Filter Design Toolbox functions and Signal Processing Toolbox functions. To learn how to design your own perfect reconstruction filters, see "References" on page 2-1334.

The block initializes all filter states to zero.

\section*{Sample-Based Operation}
- "Valid Sample-Based Inputs" on page 2-1322
- "Sample-Based Outputs" on page 2-1322

\section*{Valid Sample-Based Inputs}

The block accepts any two M-by-N sample-based matrices with the same sample rates. The block treats each M-by-N matrix as MxN independent subbands, where MxN is the product of the matrix dimensions. Each matrix element is the high- or low-frequency subband of the corresponding channel in the output matrix. The input to the topmost input port should contain the high-frequency subbands.

\section*{Sample-Based Outputs}

Given valid sample-based inputs, the block outputs one sample-based matrix with the same dimensions as the inputs. The output sample rate is twice that of the input. Each element of the output is a single channel, reconstructed from the corresponding elements in each input matrix. Depending on the Simulink configuration parameters, some sample-based outputs can have one sample of latency, as described in "Latency" on page 2-1323.

\section*{Frame-Based Operation}
- "Valid Frame-Based Inputs" on page 2-1323

\section*{Two-Channel Synthesis Subband Filter}
- "Frame-Based Outputs" on page 2-1323

\section*{Valid Frame-Based Inputs}

The block accepts any two M-by-N frame-based matrices with the same frame rates. The block treats each input column as the high- or low-frequency subbands of the corresponding output channel. The input to the topmost input port should contain the high-frequency subbands.

\section*{Frame-Based Outputs}

Given valid frame-based inputs, the block outputs a frame-based matrix. Each output column is a single channel, reconstructed from the corresponding columns in each input matrix.

The sample rate of the output is twice that of the input. The Framing parameter sets whether the block doubles the sample rate by doubling the output frame size, or doubling the output frame rate:
- Maintain input frame size - The input and output frame sizes are the same, but the frame rate of the output is twice that of the input. So, the overall sample rate of the output is twice that of the input. This setting causes the block to have one frame of latency, as described in "Latency" on page 2-1308.
- Maintain input frame rate - The input and output frame rates are the same, but the frame size of the output is twice that of the input. So, the overall sample rate of the output is twice that of the input.

\section*{Latency}

In some cases, the block has nonzero tasking latency, which means that there is a constant delay between the time that the block receives an input, and produces the corresponding output, as summarized below and in the following table:
- For sample-based inputs, there are cases where the block exhibits one-sample latency. In such cases, when the block receives the \(n\)th input sample, it produces the outputs corresponding to the \(n\) - 1 th

\section*{Two-Channel Synthesis Subband Filter}
input sample. When the block receives the first input sample, the block outputs an initial value of zero in each output channel.
- For frame-based inputs, there are cases where the block exhibits one-frame latency. In such cases, when the block receives the \(n\)th input frame, it produces the outputs corresponding to the \(n\) - 1 th input frame. When the block receives the first input frame, the block outputs a frame of zeros.

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

\section*{Amount of Block Latency for All Possible Block Settings}
\begin{tabular}{l|l|l}
\hline Input & Latency & No Latency \\
\hline Sample based & \begin{tabular}{l} 
One sample of latency when the \\
Tasking mode for periodic \\
sample times parameter is \\
set to MultiTasking or Auto \\
in the Solver pane of the \\
Configuration Parameters \\
dialog box. The first output \\
sample of each channel is always \\
0.
\end{tabular} & \begin{tabular}{l} 
The Tasking mode \\
for periodic sample \\
times parameter is set to \\
SingleTasking in the Solver \\
pane of the Configuration \\
Parameters dialog box.
\end{tabular} \\
\hline Frame based & \begin{tabular}{l} 
One frame of latency when the \\
Framing parameter is set to \\
Maintain input frame size. \\
The first output frame is always \\
all zeros.
\end{tabular} & \begin{tabular}{l} 
The Framing parameter is \\
set to Maintain input frame \\
rate.
\end{tabular} \\
\hline
\end{tabular}

\section*{Creating Multilevel Dyadic Synthesis Filter Banks}

The Two-Channel Synthesis Subband Filter block is the basic unit of a dyadic synthesis filter bank. You can connect several of these blocks to
implement an \(n\)-level filter bank, as illustrated in the following figure. For a review of dyadic synthesis filter banks, see the Dyadic Synthesis Filter Bank block reference page.

When you create a filter bank by connecting multiple copies of this block, the output values of the filter bank differ depending on whether there is latency. See the previous table, Amount of Block Latency for All Possible Block Settings on page 2-1324.

For instance, for frame-based inputs, the filter bank output values differ depending on whether you set the Framing parameter to Maintain input frame rate (no latency), or Maintain input frame size (one frame of latency for every block). Though the output values differ, both sets of values are valid; the difference arises from changes in latency.

In some cases, rather than connecting several Two-Channel Synthesis Subband Filter blocks, it is faster and requires less memory to use the Dyadic Synthesis Filter Bank block. In particular, use the Dyadic Synthesis Filter Bank block to reconstruct a frame-based signal (with frame size a multiple of \(2^{n}\) ) from \(2^{\text {n }}\) or \(n+1\) subbands whose properties match those of the Dyadic Analysis Filter Bank block's outputs. These properties are described in the Dyadic Analysis Filter Bank reference page.

\section*{Two-Channel Synthesis Subband Filter}

\section*{3-Level Dyadic Synthesis Filter Banks}


Both implementations of the dyadic analysis filter bank reconstruct a frame-based signd from \(\mathrm{n}+1\) subbands, where \(\mathrm{n}=3\).

In this case, the Dyadic Synthesis Filter Bank block's implementation is more efficient, since the input subbands have the properties of the outputs of a Dyodic Andysis Filter Bank block.

Use the Two-Channel Synthesis Subband Filter block implementation for other cases, such as to handle separate sample-based vectors or matrices of subbands (rather than a single sample-based vector or matrix of concatenated subbands), or to output sample-bosed signals.


The Dyadic Synthesis Filter Bank block allows you to specify the filter bank filters by providing vectors of filter coefficients, just as this block does. The Dyadic Synthesis Filter Bank block provides an additional option of using wavelet-based filters that the block designs by using a wavelet you specify.

\section*{Fixed-Point Data Types}

The Two-Channel Synthesis Subband Filter block is comprised of two FIR Interpolation blocks as shown in the following diagram.

\section*{Two-Channel Synthesis Subband Filter}


For fixed-point signals, you can set the coefficient, product output, accumulator, and output data types used in the FIR Interpolation blocks as discussed in "Dialog Box" on page 2-1328 below. For a diagram showing the usage of these data types within the FIR blocks, see the FIR Interpolation block reference page.

In addition, the inputs to the Sum block in the diagram above are accumulated using the accumulator data type. The output of the Sum block is then cast from the accumulator data type to the output data type. Therefore the output of the Two-Channel Synthesis Subband Filter block is in the output data type. You also set these data types in the block dialog as discussed in "Dialog Box" on page 2-1328 below.

\section*{Two-Channel Synthesis Subband Filter}

\section*{Dialog Box}

The Main pane of the Two-Channel Synthesis Subband Filter block dialog appears as follows.

\section*{wo-Channel Synthesis Subband Filter}
Reconstruct a signal from a high-frequency subband (Hi band) and a low-frequnecy subband (Lo band) using the specified highpass and lowpass FIR filters. The input subbands should have the same bandwidths and sample rates. Usually, the highpass and lowpass filters should be half-band filters designed to complement each other
This block accepts sample- and frame-based inputs of all sizes.
To create a multilevel filter bank that reconstructs a signal from more than two subbands, use the Dyadic Synthesis Filter Bank block in the Multirate Filters library (has more constraints on its inputs).
For some fixed-point modes, the FIR filter coefficients fraction length or slope is automatically set for you to "Best precision." In these cases, the scaling is set to the best possible precision given the real-world values and word length of the coefficients. This is equivalent to the "Best Precision: Matrix-wise" scaling option used in some Simulink fixed-point blocks.
Main
Main
    Parameters
    Parameters
    Lowpass FIR filter coefficient::[7% 0.8069 0.4599
    Lowpass FIR filter coefficient::[7% 0.8069 0.4599


    Framing:Maintain input frame size
    Framing:Maintain input frame size
OK Cancel
Help

\section*{Lowpass FIR filter coefficients}

A vector of lowpass FIR filter coefficients, in descending powers of \(z\). The lowpass filter should be a half-band filter that passes the frequency band stopped by the filter specified in the Highpass FIR filter coefficients parameter. To use this block to reconstruct the output of a Two-Channel Analysis Subband Filter block, you must design the filters in this block to
perfectly reconstruct the outputs of the analysis filters. For more information, see "Specifying the FIR Filters" on page 2-1321.

\section*{Highpass FIR filter coefficients}

A vector of highpass FIR filter coefficients, in descending powers of \(z\). The highpass filter should be a half-band filter that passes the frequency band stopped by the filter specified in the Lowpass FIR filter coefficients parameter. To use this block to reconstruct the output of a Two-Channel Analysis Subband Filter block, you must design the filters in this block to perfectly reconstruct the outputs of the analysis filters. For more information, see "Specifying the FIR Filters" on page 2-1321.

\section*{Framing}

Select the method by which to implement the interpolation for frame-based inputs:

Select Maintain input frame size to double the output frame rate

Select Maintain input frame rate to double the output frame size

For more information, see "Frame-Based Operation" on page 2-1307. Some settings of this parameter causes the block to have nonzero latency, as described in "Latency" on page 2-1308.

The Fixed-point pane of the Two-Channel Synthesis Subband Filter block dialog appears as follows.

\section*{Two-Channel Synthesis Subband Filter}


\section*{Round mode}

Select the rounding mode for fixed-point operations. The filter coefficients do not obey this parameter; they always round to Nearest.

\section*{Two-Channel Synthesis Subband Filter}

\section*{Overflow mode}

Select the overflow mode for fixed-point operations. The filter coefficients do not obey this parameter; they are always saturated.

\section*{Coefficients}

Choose how you specify the word length and the fraction length of the FIR filter coefficients:

When you select Same word length as input, the word length of the filter coefficients match that of the input to the block. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.

When you select Specify word length, you can enter the word length of the coefficients, in bits. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.

When you select Binary point scaling, you can enter the word length and the fraction length of the coefficients, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the coefficients. This block requires power-of-two slope and a bias of zero.

The filter coefficients do not obey the Rounding mode and the Overflow mode parameters; they are always saturated and rounded to Nearest.

\section*{Product output}

Use this parameter to specify how you would like to designate the product output word and fraction lengths. See "Fixed-Point Data Types" on page 2-535 of the FIR Interpolation reference page and "Multiplication Data Types" for illustrations depicting the use of

\section*{Two-Channel Synthesis Subband Filter}
the product output data type in the FIR Interpolation blocks of this block:

When you select Inherit via internal rule, the product output word length and fraction length are calculated automatically. For information about how the product output word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".

When you select Same as input, these characteristics match those of the input to the block.

When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

\section*{Accumulator}


\section*{Two-Channel Synthesis Subband Filter}
it. Use this parameter to specify how you would like to designate this accumulator word and fraction lengths.

You also use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the FIR Interpolation blocks in this block. See "Multiplication Data Types" for more information:

When you select Inherit via internal rule, the accumulator word length and fraction length are calculated automatically.
For information about how the accumulator word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".

When you select Same as product output, these characteristics match those of the product output

When you select Same as input, these characteristics match those of the input to the block.

When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

\section*{Output}

Choose how you specify the output word length and fraction length of the FIR Interpolation blocks, as well as of the final overall filter output:

When you select Same as accumulator, these characteristics match those of the accumulator.

A special case occurs when Inherit via internal rule is specified for Accumulator, and block inputs and coefficients are

\section*{Two-Channel Synthesis Subband Filter}
complex. In that case, the output word length is one less than the accumulator word length.

When you select Same as product output, these characteristics match those of the product output

When you select Same as input, these characteristics match those of the input to the block.

When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

\section*{Lock scaling against changes by the autoscaling tool}

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling feature of the Fixed-Point Tool. See the fxptdlg reference page for more information.
\begin{tabular}{ll} 
References & Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, \\
& Filter Banks, Wavelets. West Sussex, England: John Wiley \& Sons, \\
& 1994. \\
& Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA: \\
& Wellesley-Cambridge Press, 1996. \\
& Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood \\
& Cliffs, NJ: Prentice Hall, 1993. \\
Supported & - Double-precision floating point \\
Data & - Single-precision floating point \\
Types & - Fixed point (signed only) \\
& - 8-, 16-, and 32 -bit signed integers
\end{tabular}

\section*{Two-Channel Synthesis Subband Filter}
See Also \begin{tabular}{lll} 
DWT & Signal Processing Blockset \\
Dyadic Synthesis Filter Bank & Signal Processing Blockset \\
FIR Interpolation & Signal Processing Blockset \\
IDWT & Signal Processing Blockset \\
Two-Channel Analysis Subband & Signal Processing Blockset \\
Filter & \\
fir1 & Signal Processing Toolbox \\
fir2 & Signal Processing Toolbox \\
firls & wfilters & Signal Processing Toolbox \\
& Wavelet Toolbox
\end{tabular}

For related information, see "Multirate Filters".
\begin{tabular}{ll} 
Purpose & Unbuffer input frame into sequence of scalar outputs \\
Library & \begin{tabular}{l} 
Signal Management / Buffers \\
dspbuff3
\end{tabular}
\end{tabular}

\section*{Description}


The Unbuffer block unbuffers an \(\mathrm{M}_{\mathrm{i}}\)-by- N frame-based input into a 1-by-N sample-based output. That is, inputs are unbuffered row-wise so that each matrix row becomes an independent time-sample in the output. The rate at which the block receives inputs is generally less than the rate at which the block produces outputs.


The block adjusts the output rate so that the sample period is the same at both the input and output, \(\mathrm{T}_{\mathrm{so}}=\mathrm{T}_{\mathrm{si}}\). Therefore, the output sample period for an input of frame size \(\mathrm{M}_{\mathrm{i}}\) and frame period \(\mathrm{T}_{\mathrm{fi}}\) is \(\mathrm{T}_{\mathrm{fi}} / \mathrm{M}_{\mathrm{i}}\), which represents a rate \(\mathrm{M}_{\mathrm{i}}\) times higher than the input frame rate. In the example above, the block receives inputs only once every three sample periods, but produces an output once every sample period. To rebuffer frame-based inputs to a larger or smaller frame size, use the Buffer block.

In the model below, the block unbuffers a four-channel frame-based input with frame size 3. The Initial conditions parameter is set to zero and the tasking mode is set to multitasking, so the first three outputs are zero vectors.


\section*{Zero Latency}

The Unbuffer block has zero-tasking latency in the Simulink single-tasking mode. Zero-tasking latency means that the first input sample (received at \(t=0\) ) appears as the first output sample.

\section*{Nonzero Latency}

For multitasking operation, the Unbuffer block's buffer is initialized with the value specified by the Initial condition parameter, and the block begins unbuffering this frame at the start of the simulation. Inputs to the block are therefore delayed by one buffer length, or \(\mathrm{M}_{\mathrm{i}}\) samples.
The Initial condition parameter can be one of the following:
- A scalar to be repeated for the first \(\mathrm{M}_{\mathrm{i}}\) output samples of every channel
- A length \(-\mathrm{M}_{\mathrm{i}}\) vector containing the values of the first \(\mathrm{M}_{\mathrm{i}}\) output samples for every channel
- An \(\mathrm{M}_{\mathrm{i}}\)-by- N matrix containing the values of the first \(\mathrm{M}_{\mathrm{i}}\) output samples in each of N channels

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.


\section*{Initial conditions}

The value of the block's initial output for cases of nonzero latency; a scalar, vector, or matrix.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& - Single-precision floating point \\
& - Fixed point (signed and unsigned) \\
& - Boolean \\
& - 8-, 16-, and 32-bit signed integers \\
& - 8-, 16-, and 32-bit unsigned integers \\
\hline Output & - Double-precision floating point \\
& - Single-precision floating point \\
& - Fixed point (signed and unsigned) \\
& - Boolean \\
& - 8-, 16-, and 32-bit signed integers \\
& - 8-, 16-, and 32-bit unsigned integers \\
\hline
\end{tabular}

\section*{See Also}

Buffer
Signal Processing Blockset
See "Unbuffering Frame-Based Signals into Sample-Based Signals" for related information.

\section*{Uniform Decoder}
\[
\begin{aligned}
& \text { Purpose Decode integer input into floating-point output } \\
& \text { Library } \\
& \text { Decode integer input into floating-point output } \\
& \text { Quantizers } \\
& \text { dspquant2 } \\
& \text { The Uniform Decoder block performs the inverse operation of the } \\
& \text { Uniform Encoder block, and reconstructs quantized floating-point } \\
& \text { values from encoded integer input. The block adheres to the definition } \\
& \text { for uniform decoding specified in ITU-T Recommendation G.701. } \\
& \text { Inputs can be real or complex values of the following six integer data } \\
& \text { types: uint8, uint16, uint32, int8, int16, or int32. } \\
& \text { The block first casts the integer input values to floating-point values, } \\
& \text { and then uniquely maps (decodes) them to one of } 2^{\mathrm{B}} \text { uniformly spaced } \\
& \text { floating-point values in the range }\left[-\mathrm{V},\left(1-2^{1-\mathrm{B}}\right) \mathrm{V}\right] \text {, where you specify } \mathrm{B} \\
& \text { in the Bits parameter (as an integer between } 2 \text { and 32) and } V \text { is a } \\
& \text { floating-point value specified by the Peak parameter. The smallest } \\
& \text { input value representable by } \mathrm{B} \text { bits ( } 0 \text { for an unsigned input data } \\
& \text { type; }-2^{\mathrm{B}-1} \text { for a signed input data type) is mapped to the value }-\mathrm{V} \text {. } \\
& \text { The largest input value representable by } \mathrm{B} \text { bits ( } 2^{\mathrm{B}}-1 \text { for an unsigned } \\
& \text { input data type; } 2^{\mathrm{B}-1}-1 \text { for a signed input data type) is mapped to the } \\
& \text { value }\left(1-2^{1-\mathrm{B}}\right) \mathrm{V} \text {. Intermediate input values are linearly mapped to the } \\
& \text { intermediate values in the range }\left[-\mathrm{V},\left(1-2^{1-\mathrm{B}}\right) \mathrm{V}\right] \text {. } \\
& \text { To correctly decode values encoded by the Uniform Encoder block, the } \\
& \text { Bits and Peak parameters of the Uniform Decoder block should be set } \\
& \text { to the same values as the Bits and Peak parameters of the Uniform } \\
& \text { Encoder block. The Overflow mode parameter specifies the Uniform } \\
& \text { Decoder block's behavior when the integer input is outside the range } \\
& \text { representable by B bits. When you select Saturate, unsigned input } \\
& \text { values greater than } 2^{\mathrm{B}}-1 \text { saturate at } 2^{\mathrm{B}}-1 \text {; signed input values greater } \\
& \text { than } 2^{\mathrm{B}-1}-1 \text { or less than }-2^{\mathrm{B}-1} \text { saturate at those limits. The real and } \\
& \text { imaginary components of complex inputs saturate independently. } \\
& \text { When you select Wrap, unsigned input values, u, greater than } 2^{\text {B }}-1 \text { are } \\
& \text { wrapped back into the range [ } 0,2^{\mathrm{B}}-1 \text { ] using mod }-2^{\mathrm{B}} \text { arithmetic. }
\end{aligned}
\]

\section*{Uniform Decoder}
\[
u=\bmod \left(u, 2^{\wedge} B\right)
\]

Signed input values, u, greater than \(2^{\text {B-1 }}-1\) or less than \(-2^{\text {B-1 }}\) are wrapped back into that range using mod \(-2^{\mathrm{B}}\) arithmetic.
```

u = (mod}(u+\mp@subsup{2}{}{\wedge}B/2,\mp@subsup{2}{}{\wedge}B)-(2^B/2)

```

The real and imaginary components of complex inputs wrap independently.

The Output type parameter specifies whether the decoded floating-point output is single or double precision. Either level of output precision can be used with any of the six integer input data types.

\section*{Examples}

Consider a Uniform Decoder block with the following parameter settings:
- Peak = 2
- Bits = 3

The input to the block is the uint8 output of a Uniform Encoder block with comparable settings: Peak \(=2\), Bits \(=3\), and Output type \(=\) Unsigned. (Comparable settings ensure that inputs to the Uniform Decoder block do not saturate or wrap. See the example on the Uniform Encoder block reference page for more about these settings.)

The real and complex components of each input are independently mapped to one of \(2^{3}\) distinct levels in the range [-2.0,1.5].
\begin{tabular}{llr}
0 & is mapped to & -2.0 \\
1 & is mapped to & -1.5 \\
2 & is mapped to & -1.0 \\
3 & is mapped to & -0.5 \\
4 & is mapped to & 0.0 \\
5 & is mapped to & 0.5 \\
6 & is mapped to & 1.0 \\
7 & is mapped to & 1.5
\end{tabular}

\section*{Uniform Decoder}

\section*{Dialog \\ Box}


\section*{Peak}

Specify the largest amplitude represented in the encoded input. To correctly decode values encoded with the Uniform Encoder block, set the Peak parameters in both blocks to the same value.

\section*{Bits}

Specify the number of input bits, B, used to encode the data. (This can be less than the total number of bits supplied by the input data type.) To correctly decode values encoded with the Uniform Encoder block, set the Bits parameters in both blocks to the same value.

\section*{Overflow mode}

Specify the block's behavior when the integer input is outside the range representable by B bits. Out-of-range inputs can either saturate at the extreme value, or wrap back into range.

\section*{Output type}

Specify the precision of the floating-point output, single or double.

\section*{Uniform Decoder}
\begin{tabular}{|c|c|}
\hline References & General Aspects of Digital Transmission Systems: Vocabulary of Digital Transmission and Multiplexing, and Pulse Code Modulation (PCM) Terms, International Telecommunication Union, ITU-T Recommendation G.701, March, 1993 \\
\hline \begin{tabular}{l}
Supported \\
Data \\
Types
\end{tabular} & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point
\end{tabular} \\
\hline See Also & Data Type Conversion Simulink \\
\hline & Quantizer Simulink \\
\hline & Scalar Quantizer Decoder Signal Processing Blockset \\
\hline & Uniform Encoder Signal Processing Blockset \\
\hline & udecode Signal Processing Toolbox \\
\hline & uencode Signal Processing Toolbox \\
\hline
\end{tabular}

\section*{Uniform Encoder}


Quantize and encode floating-point input into integer output

Quantizers
dspquant2
The Uniform Encoder block performs the following two operations on each floating-point sample in the input vector or matrix:

1 Quantizes the value using the same precision
2 Encodes the quantized floating-point value to an integer value
In the first step, the block quantizes an input value to one of \(2^{B}\) uniformly spaced levels in the range \(\left[-\mathrm{V},\left(1-2^{1-\mathrm{B}}\right) \mathrm{V}\right]\), where you specify B in the Bits parameter and you specify V in the Peak parameter. The quantization process rounds both positive and negative inputs downward to the nearest quantization level, with the exception of those that fall exactly on a quantization boundary. The real and imaginary components of complex inputs are quantized independently.
The number of bits, B, can be any integer value between 2 and 32, inclusive. Inputs greater than \(\left(1-2^{1-\mathrm{B}}\right) \mathrm{V}\) or less than -V saturate at those respective values. The real and imaginary components of complex inputs saturate independently.

In the second step, the quantized floating-point value is uniquely mapped (encoded) to one of \(2^{\mathrm{B}}\) integer values. When the Output type is set to Unsigned integer, the smallest quantized floating-point value, -V , is mapped to the integer 0 , and the largest quantized floating-point value, \(\left(1-2^{1-\mathrm{B}}\right) \mathrm{V}\), is mapped to the integer \(2^{\mathrm{B}}-1\). Intermediate quantized floating-point values are linearly (uniformly) mapped to the intermediate integers in the range \(\left[0,2^{\mathrm{B}}-1\right]\). For efficiency, the block automatically selects an unsigned output data type (uint8, uint16, or uint32) with the minimum number of bits equal to or greater than \(B\).

When the Output type is set to Signed integer, the smallest quantized floating-point value, -V , is mapped to the integer \(-2^{\mathrm{B}-1}\), and the largest quantized floating-point value, ( \(\left.1-2^{1-\mathrm{B}}\right) \mathrm{V}\), is mapped to the

\section*{Uniform Encoder}
integer \(2^{\mathrm{B}-1}-1\). Intermediate quantized floating-point values are linearly mapped to the intermediate integers in the range \(\left[-2^{\mathrm{B}-1}, 2^{\mathrm{B}-1}-1\right]\). The block automatically selects a signed output data type (int8, int16, or int32) with the minimum number of bits equal to or greater than \(B\).

Inputs can be real or complex, double or single precision. The output data types that the block uses are shown in the table below. Note that most of the Signal Processing Blockset blocks accept only double-precision inputs. Use the Simulink Data Type Conversion block to convert integer data types to double precision. See "Working with Data Types" in the Simulink documentation for a complete discussion of data types, as well as a list of Simulink blocks capable of reduced-precision operations.
\begin{tabular}{l|l|l}
\hline Bits & Unsigned Integer & Signed Integer \\
\hline 2 to 8 & uint8 & int8 \\
\hline 9 to 16 & uint16 & int16 \\
\hline 17 to 32 & uint32 & int32 \\
\hline
\end{tabular}

The Uniform Encoder block operations adhere to the definition for uniform encoding specified in ITU-T Recommendation G. 701 .

\section*{Examples}

The following figure illustrates uniform encoding with the following parameter settings:
- Peak = 2
- Bits = 3
- Output type \(=\) Unsigned

\section*{Uniform Encoder}


The real and complex components of each input (horizontal axis) are independently quantized to one of \(2^{3}\) distinct levels in the range \([-2,1.5]\) and then mapped to one of \(2^{3}\) integer values in the range [0,7].
\begin{tabular}{rl}
-2.0 & is mapped to 0 \\
-1.5 & is mapped to \\
-1.0 & is mapped to \\
-0.5 & is mapped to \\
0.0 & is mapped to \\
0 \\
0.5 & is mapped to \\
1.0 & is mapped to \\
1.5 & is mapped to 7
\end{tabular}

The table below shows the results for a few particular inputs.
\begin{tabular}{l|l|l|l}
\hline Input & \begin{tabular}{l} 
Quantized \\
Input
\end{tabular} & Output & Notes \\
\hline 1.6 & \(1.5+0.0 \mathrm{i}\) & \(7+4 \mathrm{i}\) & \\
\hline-0.4 & \(-0.5+0.0 \mathrm{i}\) & \(3+4 \mathrm{i}\) & \\
\hline-3.2 & \(-2.0+0.0 \mathrm{i}\) & 4 i & \begin{tabular}{l} 
Saturation \\
(real)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l}
\hline Input & \begin{tabular}{l} 
Quantized \\
Input
\end{tabular} & Output & Notes \\
\hline \(0.4-1.2 i\) & \(0.0-1.5 i\) & \(4+i\) & \\
\hline \(0.4-6.0 i\) & \(0.0-2.0 i\) & 4 & \begin{tabular}{l} 
Saturation \\
(imaginary)
\end{tabular} \\
\hline\(-4.2+3.5 i\) & \(-2.0+2.0 i\) & \(7 i\) & \begin{tabular}{l} 
Saturation \\
(real and \\
imaginary)
\end{tabular} \\
\hline
\end{tabular}

The output data type is automatically set to uint8, the most efficient format for this input range.

\section*{Dialog Box}


\section*{Peak}

The largest input amplitude to be encoded, V. Real or imaginary input values greater than \(\left(1-2^{1-\mathrm{B}}\right) \mathrm{V}\) or less than -V saturate (independently for complex inputs) at those limits.

\section*{Uniform Encoder}

\section*{Bits}

The number of levels at which to quantize the floating-point input. (Also the number of bits needed to represent the integer output.)

\section*{Output type}

The data type of the block's output, Unsigned integer or Signed integer. Unsigned outputs are uint8, uint16, or uint32, while signed outputs are int8, int16, or int32.
\begin{tabular}{ll} 
References & \begin{tabular}{l} 
General Aspects of Digital Transmission Systems: Vocabulary of \\
Digital Transmission and Multiplexing, and Pulse Code Modulation \\
(PCM) Terms, International Telecommunication Union, ITU-T
\end{tabular} \\
& \begin{tabular}{l} 
Recommendation G.701, March, 1993
\end{tabular} \\
\begin{tabular}{ll} 
Supported \\
Data \\
Types
\end{tabular} & - Double-precision floating point
\end{tabular}

\section*{See Also}
\begin{tabular}{ll} 
Data Type Conversion & Simulink \\
Quantizer & Simulink \\
Scalar Quantizer Decoder & Signal Processing Blockset \\
Uniform Decoder & Signal Processing Blockset \\
udecode & Signal Processing Toolbox \\
uencode & Signal Processing Toolbox
\end{tabular}
\begin{tabular}{ll} 
Purpose & Unwrap signal phase \\
Library & \begin{tabular}{l} 
Signal Operations \\
dspsigops
\end{tabular} \\
Description & \begin{tabular}{l} 
The Unwrap block unwraps each input channel by adding or subtracting \\
appropriate multiples of 2 2 to each channel element. The input can be \\
any matrix or 1-D vector, and must have radian phase entries. The \\
block recognizes phase discontinuities larger than the Tolerance \\
parameter setting. \\
The block preserves the input size, dimension, and frame status, and \\
the output port rate equals the input port rate. For a detailed discussion \\
of the Unwrap block, see other sections of this reference page. \\
Sections of This Reference Page
\end{tabular} \\
& \begin{tabular}{ll} 
- "Acceptable Inputs and Corresponding Output Characteristics" \\
- "The Two Unwrap Modes" \\
- "Unwrap Method" \\
- "Definition of Phase Unwrap"
\end{tabular} \\
\begin{tabular}{ll} 
Acceptable Inputs and Corresponding Output Characteristics
\end{tabular} \\
\begin{tabular}{ll} 
The Unwrap block preserves the input size, dimension, and frame \\
status, and the output port rate equals the input port rate.
\end{tabular} \\
\hline
\end{tabular}

\section*{Unwrap}

\section*{The Two Unwrap Modes}

You must specify the unwrap mode by setting the parameter, Do not unwrap phase discontinuities between successive frames. The unwrap modes are summarized in the next table.

\section*{Two Unwrap Modes}

\section*{In both unwrap modes, the block adds \(2 \pi k\) to each input channel's elements, where it updates \(\boldsymbol{k}\) at each phase discontinuity. (For more on the updating of \(\boldsymbol{k}\), see "Unwrap Method" on page 2-1353.) The number of times that \(k\) is reset to 0 depends on the unwrap mode.}

\section*{Default Unwrap Mode: Initialize \(\mathbf{k}\) to 0 for Only the First Input Frame}

Do not unwrap phase discontinuities between successive frames
In this mode, \(k\) is initialized to 0 for only the first input matrix or input vector. As \(k\) gets updated, the value of \(k\) is retained between successive input matrices or input vectors. That is, the block unwraps each input's channel by considering phase discontinuities in all previous frames and the current frame.

Nondefault Unwrap Mode: Set k to 0 for Each Successive Input Matrix or Input Vector

Do not unwrap phase discontinuities between successive frames
In this mode, \(k\) is reset to 0 for each successive input matrix or input vector. As \(k\) gets updated, the value of \(k\) is only retained within the current input matrix or vector. That is, the block unwraps each input's channel by considering phase discontinuities in the current input matrix or input vector only, ignoring discontinuities in previous inputs.

\section*{Two Unwrap Modes}

In both unwrap modes, the block adds \(2 \pi k\) to each input channel's elements, where it updates \(\boldsymbol{k}\) at each phase discontinuity. (For more on the updating of \(\boldsymbol{k}\), see "Unwrap Method" on page 2-1353.) The number of times that \(k\) is reset to \(\mathbf{O}\) depends on the unwrap mode.
\begin{tabular}{|c|c|}
\hline Default Unwrap Mode: Initialize \(\mathbf{k}\) to 0 for Only the First Input Frame & Nondefault Unwrap Mode: Set k to 0 for Each Successive Input Matrix or Input Vector \\
\hline \begin{tabular}{l}
In this mode, the block unwraps the columns or each individual element of the input: \\
- Frame-based inputs - unwrap columns \\
- Sample-based inputs - unwrap each element of the input. \\
- 1-D vector inputs - treat as frame-based column
\end{tabular} & \begin{tabular}{l}
In this mode, the block unwraps the columns or rows of the input: \\
- Frame-based inputs - unwrap columns \\
- Sample-based nonrow inputs - unwrap columns \\
- Sample-based row vector inputs unwrap the row. \\
- 1-D vector inputs - treat as frame-based column
\end{tabular} \\
\hline See the following diagrams. & See the following diagrams. \\
\hline
\end{tabular}

\section*{Unwrap}

The following diagrams illustrate how the two unwrap modes operate on various inputs.

\section*{Default Unwrap Mode Operation:}

\section*{Frame-Based Inputs}

The block treats each input column as an independent channel. It unwraps by treating Channel 1 of Frame 2 as a continuation of Channel 1 of Frame 1.


Frame \(2\left[\begin{array}{cc}0 & 0 \\ \frac{2 \pi}{3} \\ \frac{-2 \pi}{3} & 0\end{array}\right] \begin{aligned} & \text { adiacent phase walues greater } \\ & \text { than the walue of the } \\ & \text { Tolerance parameter) }\end{aligned}\)
Frame \(3\left[\begin{array}{cc}0 & 0 \\ \frac{2 \pi}{3} & 0 \\ \frac{-2 \pi}{3} & 0\end{array}\right]\)


Sample-Based Inputs
The block treats each element of the input matrix as an independent channel. (The first sample in Channel 1 is in the upper left corner of the Sample 1 matrix. The second sample of Channel 1 is in the corresponding corner of the Sample 2 matrix, and so on.)


Nondefault Unwrap Mode Operation:
Frame-Based Inputs and Sample-Based (Nonrow) Inputs

The block unwraps each column, treating each input matrix as completely unrelated to the other input matrices.

Input 1

\(\left[\begin{array}{ll}0 & 0\end{array}\right]\) odjocent phose volues gre oter
Input 2
 thon the volue of the Tolerance porometer) Input \(3\left[\begin{array}{cc}0 & 0 \\ \frac{2 \pi}{3} & 0 \\ \frac{-2 \pi}{3} & 0\end{array}\right]\)
\[
\left[\begin{array}{cc}
0 & 0 \\
\frac{2 \pi}{3} & 0 \\
\frac{4 \pi}{3} & 0
\end{array}\right]
\]

Do not unwrap phase discontinuities between successive frames

\section*{Sample-Based Row Vector Inputs}

The block unwraps each row, treating each input row vector as completely independent of the other input row vectors.


Input \(1 \quad\left[0 \frac{2 \pi}{3} \frac{-2 \pi}{3} 0 \frac{2 \pi}{3} \frac{-2 \pi}{3}\right] \quad\left[0 \frac{2 \pi}{3} \frac{4 \pi}{3} \frac{6 \pi}{3} \frac{8 \pi}{3} \frac{10 \pi}{3}\right]\)
Input \(2\left[0 \frac{2 \pi}{3} \frac{-2 \pi}{3} 0 \frac{2 \pi}{3} \frac{-2 \pi}{3}\right]\) \(\left[0 \frac{2 \pi}{3} \frac{4 \pi}{3} \frac{6 \pi}{3} \frac{8 \pi}{3} \frac{10 \pi}{3}\right]\)
Input 3
\(\left[0 \frac{2 \pi}{3} \frac{-2 \pi}{3} 0 \frac{2 \pi}{3} \frac{-2 \pi}{3}\right] \quad\left[0 \frac{2 \pi}{3} \frac{4 \pi}{3} \frac{6 \pi}{3} \frac{8 \pi}{3} \frac{10 \pi}{3}\right]\)

\section*{Unwrap Method}

The Unwrap block unwraps each channel of its input matrix or input vector by adding \(2 \pi k\) to each successive channel element, and updating \(k\) at each phase jump. See the following steps to the unwrap method for details.

\section*{Relevant Unwrap Terms:}
- \(u_{i}\) - ith element of the input channel on which the algorithm operates
- \(a\)-Tolerance parameter value
- Phase jump or phase discontinuity - difference between phase values of two adjacent channel entries that exceeds \(\alpha\). The diagram in the next section indicates phase jumps with red arrows.

\section*{Steps to the Unwrap Method:}

1 Set \(k\) to 0 (See "The Two Unwrap Modes" on page 2-1350 for more on how often this step occurs.)

2 Check for a phase jump between adjacent channel elements \(u_{\mathrm{i}}\) and \(u_{i+1}\) :
- When there is no phase jump between \(u_{\mathrm{i}}\) and \(u_{\mathrm{i}+1}\left(\left|u_{i+1}-u_{i}\right| \leq|\alpha|\right)\), add \(2 \Pi k\) to \(u_{\mathrm{i}}\), and then repeat step 2 to continue checking for phase jumps.
- When there is a phase jump between \(u_{\mathrm{i}}\) and \(u_{\mathrm{i}+1}\left(\left|u_{i+1}-u_{i}\right|>|\alpha|\right)\), add \(2 \pi k\) to \(u_{\mathrm{i}}\), and then go to step 3 to update \(k\).

3 Update \(k\) as follows when there is a phase jump between \(u_{\mathrm{i}}\) and \(u_{i+1}\). Then go back to step 2 to add the updated \(2 \Pi k\) value to \(u_{i+1}\) and succeeding channel elements until the next phase jump:
- When \(u_{i+1}<u_{i}\) (phase jump is negative), increment \(k\).
- When \(u_{i+1}>u_{i}\) (phase jump is positive), decrement \(k\).

\section*{Definition of Phase Unwrap}

Algorithms that compute the phase of a signal often only output phases between \(-\Pi\) and \(\Pi\). For instance, such algorithms compute the phase of \(\sin (2 \Pi+3)\) to be 3 , since \(\sin (3)=\sin (2 \Pi+3)\), and since the actual phase,
\(2 п+3\), is not between \(-п\) and \(п\). Such algorithms compute the phases of \(\sin (-4 \Pi+3)\) and \(\sin (16 \Pi+3)\) to be 3 as well.
Phase unwrap or unwrap is a process often used to reconstruct a signal's original phase. Unwrap algorithms add appropriate multiples of \(2 \pi\) to each phase input to restore original phase values, as illustrated in the following diagram. For more on phase unwrap, see the previous section, "Unwrap Method" on page 2-1353.

Unwrap Restricted Phases:
Input: \(\left[\theta_{0}^{\prime}, \theta_{1}^{\prime}, \ldots, \theta_{N}^{\prime}\right]\)
Output: \(\left[\theta_{0}, \theta_{1}, \ldots, \theta_{N}\right]\)
where \(\quad \theta_{n}=\theta_{n}^{\prime}+2 \pi k\)
Update the value of \(k\) after every large jump in
phase value, indicated by




Block Parameters: Unwrap

\section*{- Unwrap (mask) (link)}

Adds or subtracts appropriate multiples of 2pi to each input element to remove phase discontinuities (unwrap). Inputs should be radian phase values.

When the parameter "Do not unwrap phase discontinuities between successive frames" is unchecked, the block unwraps each input channel by considering all phase discontinuities in the channel, including those in previous frames of the channel. (For frame-based inputs, each column is a channel; for sample-based inputs, each element is a channel.)

When the parameter is checked, the block unwraps by considering phase discontinuities in the current frame only; the block unwraps each column of all frame-based inputs, and unwraps each column of sample-based inputs when the inputs are not row vectors. It unwraps each row of sample-based row vectors.
-Parameters
\(\square\) Do not unwrap phase discontinuities between successive frames
Tolerance (radians):
pi


Do not unwrap phase discontinuities between successive frames
When this parameter is cleared, the block unwraps each input's channels (the input channels are the columns of frame-based inputs and each element of sample-based inputs). When you select this parameter, the block unwraps each row of sample-based
row vector inputs, and unwraps the columns of all other inputs, where each input matrix or input vector is treated as completely unrelated to the other input matrices or input vectors. 1-D vector inputs are always treated as frame-based column vectors. See "The Two Unwrap Modes" on page 2-1350.

\section*{Tolerance}

The jump size that the block recognizes as a true phase discontinuity. The default is set to п (rather than a smaller value) to avoid altering legitimate signal features. To increase the block's sensitivity, set Tolerance to a value slightly less than п.

\section*{Supported \\ Data \\ Types}
- Double-precision floating point
- Single-precision floating point

MATLAB

\section*{Upsample}
\begin{tabular}{ll} 
Purpose & Resample input at higher rate by inserting zeros \\
Library & \begin{tabular}{l} 
Signal Operations \\
dspsigops
\end{tabular}
\end{tabular}

Description

dspsigops
The Upsample block resamples each channel of the \(\mathrm{M}_{\mathrm{i}}\)-by-N input at a rate L times higher than the input sample rate by inserting L-1 zeros between consecutive samples. You specify the integer \(L\) in the Upsample factor parameter. The Sample offset parameter delays the output samples by an integer number of sample periods D , where
\(0 \leq D<(L-1)\), so that any of the \(L\) possible output phases can be selected.

This block supports triggered subsystems if, for Frame-based mode, you select Maintain input frame rate.

\section*{Sample-Based Operation}

When the input is sample based, the block treats each of the \(\mathrm{M}^{*} \mathrm{~N}\) matrix elements as an independent channel, and upsamples each channel over time. The Frame-based mode parameter must be set to Maintain input frame size. The output sample rate is L times higher than the input sample rate \(\left(\mathrm{T}_{\mathrm{so}}=\mathrm{T}_{\mathrm{si}} / \mathrm{L}\right)\), and the input and output sizes are identical.

\section*{Frame-Based Operation}

When the input is frame based, the block treats each of the N input columns as a frame containing \(\mathrm{M}_{\mathrm{i}}\) sequential time samples from an independent channel. The block upsamples each channel independently by inserting L-1 rows of zeros between each row in the input matrix. The Frame-based mode parameter determines how the block adjusts the rate at the output to accommodate the added rows. There are two available options:
- Maintain input frame size

The block generates the output at the faster (upsampled) rate by using a proportionally shorter frame period at the output port than at the input port. For upsampling by a factor of \(L\), the output frame period is L times shorter than the input frame period \(\left(\mathrm{T}_{\mathrm{fo}}=\mathrm{T}_{\mathrm{fi}} / \mathrm{L}\right)\), but the input and output frame sizes are equal.

The model below shows a single-channel input with a frame period of 1 second being upsampled by a factor of 4 to a frame period of 0.25 second. The input and output frame sizes are identical.

- Maintain input frame rate

The block generates the output at the faster (upsampled) rate by using a proportionally larger frame size than the input. For upsampling by a factor of L , the output frame size is L times larger than the input frame size \(\left(\mathrm{M}_{\mathrm{o}}=\mathrm{M}_{\mathrm{i}}{ }^{*} \mathrm{~L}\right)\), but the input and output frame rates are equal.

The model below shows a single-channel input of frame size 16 being upsampled by a factor of 4 to a frame size of 64 . The input and output frame rates are identical.


\section*{Upsample}

\section*{Zero Latency}

The Upsample block has zero-tasking latency for all single-rate operations. The block is single-rate for the particular combinations of sampling mode and parameter settings shown in the table below.
\begin{tabular}{l|l}
\hline Sampling Mode & Parameter Settings \\
\hline Sample based & Upsample factor parameter, L, is 1. \\
\hline Frame based & \begin{tabular}{l} 
Upsample factor parameter, L, is 1, or \\
Frame-based mode parameter is \\
Maintain input frame rate.
\end{tabular} \\
\hline
\end{tabular}

The block also has zero latency for all multirate operations in the Simulink single-tasking mode.

Zero-tasking latency means that the block propagates the first input (received at \(t=0\) ) immediately following the D consecutive zeros specified by the Sample offset parameter. This output ( \(\mathrm{D}+1\) ) is followed in turn by the L-1 inserted zeros and the next input sample. The Initial condition parameter value is not used.

\section*{Nonzero Latency}

The Upsample block has tasking latency only for multirate operation in the Simulink multitasking mode:
- In sample-based mode, the initial condition for each channel appears as output sample \(\mathrm{D}+1\), and is followed by L-1 inserted zeros. The channel's first input appears as output sample \(\mathrm{D}+\mathrm{L}+1\). The Initial condition value can be an \(\mathrm{M}_{\mathrm{i}}\)-by- N matrix containing one value for each channel, or a scalar to be applied to all signal channels.
- In frame-based mode, the first row of the initial condition matrix appears as output sample \(\mathrm{D}+1\), and is followed by \(\mathrm{L}-1\) inserted rows of zeros, the second row of the initial condition matrix, and so on. The first row of the first input matrix appears in the output as sample \(\mathrm{M}_{\mathrm{i}} \mathrm{L}+\mathrm{D}+1\). The Initial condition value can be an \(\mathrm{M}_{\mathrm{i}}\)-by- N matrix, or
a scalar to be repeated across all elements of the \(\mathrm{M}_{\mathrm{i}}\)-by-N matrix. See the example below for an illustration of this case.

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and "Scheduling Considerations" in the Real-Time Workshop User's Guide.

\section*{Examples}

Construct the frame-based model shown below.


Adjust the block parameters as follows:
- Configure the Signal From Workspace block to generate a two-channel signal with frame size of 4 and sample period of 0.25 . This represents an output frame period of \(1\left(0.25^{*} 4\right)\). The first channel should contain the positive ramp signal \(1,2, \ldots, 100\), and the second channel should contain the negative ramp signal \(-1,-2\), ..., -100.
- Signal \(\left.=[(1: 100))^{\prime}(-1:-1:-100){ }^{\prime}\right]\)
- Sample time \(=0.25\)
- Samples per frame \(=4\)
- Configure the Upsample block to upsample the two-channel input by increasing the output frame rate by a factor of 2 relative to the input frame rate. Set a sample offset of 1 , and an initial condition matrix of

\section*{Upsample}
\(\left[\begin{array}{ll}11 & -11 \\ 12 & -12 \\ 13 & -13 \\ 14 & -14\end{array}\right]\)
- Upsample factor \(=2\)
- Sample offset = 1
- Initial condition \(=\left[\begin{array}{llll}11 & -11 ; 12 & -12 ; 13 & -13 ; 14\end{array}\right.\)-14]
- Frame-based mode = Maintain input frame size
- Configure the Probe blocks by clearing the Probe width and Probe complex signal check boxes (if desired).

This model is multirate because there are at least two distinct frame rates, as shown by the two Probe blocks. To run this model in the Simulink multitasking mode, open the Configuration Parameters dialog box. In the Select pane, click Solver. From the Type list, select Fixed-step, and from the Solver list, select Discrete (no continuous states). From the Tasking mode for periodic sample times list, select MultiTasking. Also set the Stop time to 30.

Run the model and look at the output, yout. The first few samples of each channel are shown below.
```

yout =
0
11-11
0
12-12
0
13-13
0
14 -14
0
1 -1

```

\section*{Upsample}
\begin{tabular}{rr}
0 & 0 \\
2 & -2 \\
0 & 0 \\
3 & -3 \\
0 & 0 \\
4 & -4 \\
0 & 0 \\
5 & -5 \\
0 & 0
\end{tabular}

Since we ran this frame-based multirate model in multitasking mode, the first row of the initial condition matrix appears as output sample 2 (that is, sample \(\mathrm{D}+1\), where D is the Sample offset value). It is followed by the other three initial condition rows, each separated by L-1 inserted rows of zeros, where L is the Upsample factor value of 2. The first row of the first input matrix appears in the output as sample 10 (that is, sample \(\mathrm{M}_{\mathrm{i}} \mathrm{L}+\mathrm{D}+1\), where \(\mathrm{M}_{\mathrm{i}}\) is the input frame size).

\section*{Dialog Box}


\section*{Upsample}

\section*{Upsample factor}

The integer factor, \(L\), by which to increase the input sample rate.

\section*{Sample offset}

The sample offset, D , which must be an integer in the range [0,L-1].

\section*{Initial conditions}

The value with which the block is initialized for cases of nonzero latency, a scalar or matrix. This value (first row in frame-based mode) appears in the output as sample \(\mathrm{D}+1\).

\section*{Frame-based mode}

For frame-based operation, the method by which to implement the upsampling: Maintain input frame size (that is, increase the frame rate), or Maintain input frame rate (that is, increase the frame size). The Framing parameter must be set to Maintain input frame size for sample-base inputs.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& - Single-precision floating point \\
& - Fixed point (signed and unsigned) \\
& - Boolean \\
& • 8-, 16-, and 32-bit signed integers \\
& • 8-, 16-, and 32-bit unsigned integers \\
\hline Output & - Double-precision floating point \\
& - Single-precision floating point \\
& - Fixed point (signed and unsigned) \\
& • Boolean \\
& • 8-, 16-, and 32-bit signed integers \\
& • 8-, 16-, and 32-bit unsigned integers \\
\hline
\end{tabular}
\begin{tabular}{lll} 
See Also & Downsample & Signal Processing Blockset \\
& FIR Interpolation & Signal Processing Blockset \\
& FIR Rate Conversion & Signal Processing Blockset \\
& Repeat & Signal Processing Blockset
\end{tabular}

\section*{Variable Fractional Delay}

Purpose
Library

\section*{Description}


Delay input by time-varying fractional number of sample periods
Signal Operations
dspsigops
The Variable Fractional Delay block delays each element of the discrete-time N-D input array, \(u\), by a variable number of sample intervals. The input delay values can be integer or noninteger values. The block provides three different interpolation modes: Linear, FIR, and Farrow.

The block computes the value for each channel of the output based on the stored samples in memory most closely indexed by the Delay input, \(v\), and the interpolation method specified by the Interpolation mode parameter.
- In Linear interpolation mode, the block stores the \(D_{\text {max }}+1\) most recent samples received at the In port for each channel, where \(D_{\max }\) is the value specified for the Maximum delay (Dmax) in samples parameter.
- In FIR interpolation mode, the block stores the \(D_{\max }+P+1\) most recent samples received at the In port for each channel, where \(P\) is the value specified for the Interpolation filter half-length ( \(\mathbf{P}\) ) parameter.
- In Farrow interpolation mode, the block stores the \(D_{\max }+\frac{N}{2}+1\) most recent samples received at the In port for each channel, where \(N\) is the value specified for the Farrow filter length (N) parameter.

The Variable Fractional Delay block assumes that the input values at the Delay port are between \(D_{\min }\) and \(D_{\max }\), where \(D_{\min }\) appears in the Valid delay range section on the Main pane of the block mask, and \(D_{\max }\) is the value of the Maximum delay (Dmax) in samples parameter. The block clips delay values less than \(D_{\text {min }}\) to \(D_{\text {min }}\) and delay values greater than \(D_{\max }\) to \(D_{\max }\).

\section*{Variable Fractional Delay}

If you are working with frame-based signals and select the Disable direct feedthrough by increasing the minimum possible delay by one check box, the smallest possible delay value is increased by frame-size-1. Thus, all input delay values less than Dmin + frame-size-1 are clipped to Dmin + frame-size-1.

You must consider additional factors when selecting valid Delay values for the FIR and Farrow interpolation modes. For more information about these considerations, refer to FIR Interpolation Mode on page 1369 or Farrow Interpolation Mode on page 1371, respectively.

The Variable Fractional Delay block is similar to the Variable Integer Delay block, in that they both store a minimum of \(D_{\text {max }}+1\) past samples in memory. The Variable Fractional Delay block differs only in the way that these stored samples are accessed; a fractional delay requires the computation of a value by interpolation from the nearby samples in memory.

\section*{Sample-Based Operation}

For sample-based inputs, the block treats each element of the N-D input array, \(u\), as an independent channel. The input to the Delay port, \(v\), must either be an N-D array of the same size and dimension as the input \(u\), or be a scalar value, such that \(D_{\min } \leq v \leq D_{\max }\).
For example, consider an \(M\)-by- \(N\) input matrix. The block treats each of the \(M^{*} N\) matrix elements as independent channels. The input to the Delay port can be an \(M\)-by- \(N\) matrix of floating-point values in the range \(D_{\text {min }} \leq v \leq D_{\text {max }}\) that specifies the number of sample intervals to delay each channel of the input, or it can be a scalar floating-point value, \(D_{\min } \leq v \leq D_{\max }\), by which to equally delay all channels.

The block treats a 1-D vector input as an \(M\)-by- 1 matrix, and outputs a 1-D vector.

The Initial conditions parameter specifies the values in the block's memory at the start of the simulation in the same manner as the Variable Integer Delay block. See the Variable Integer Delay block reference page for more information.

\section*{Variable Fractional Delay}

\section*{Frame-Based Operation}

For frame-based inputs, the block treats each of the \(N\) input columns as a frame containing \(M_{i}\) sequential time samples from an independent channel.

The input to the Delay port, \(v\), contains floating-point values that specify the number of sample intervals to delay the current input. When you clear the Disable direct feedthrough by increasing minimum possible delay by one check box, the valid range of delay values is \(D_{\min } \leq v \leq D_{\max }\). When you select the Disable direct feedthrough by increasing minimum possible delay by one check box, the valid range of delay values is \(D_{\text {min }}+\) frame-size \(-1 \leq v \leq D_{\text {max }}\).
The input to the Delay port can be a scalar value to uniformly delay every sample in every channel. It can also be a column-based length- \(M\) vector, containing one delay for each sample in the input frame. The block applies the set of delays contained in the vector identically to every channel of a multichannel input. The Delay port entry can also be a row-based length- \(N\) vector, containing one delay for each channel. Finally, the Delay port entry can be an \(M\)-by- \(N\) matrix, containing a different delay for each corresponding element of the input.
For example, if \(v\) is the \(M_{i}\)-by- 1 matrix \([v(1) \vee(2) \ldots \quad \vee(\mathrm{Mi})]\) ', the earliest sample in the current frame is delayed by \(v(1)\) fractional sample intervals, the following sample in the frame is delayed by \(\mathrm{v}(2)\) fractional sample intervals, and so on. The block applies the set of fractional delays contained in \(v\) identically to every channel of a multichannel input.

The Initial conditions parameter specifies the values in the block's memory at the start of the simulation in the same manner as the Variable Integer Delay block. See the Variable Integer Delay block reference page for more information.

\section*{Interpolation Modes}

The delay value specified at the Delay port serves as an index into the block's memory, U, which stores, at a minimum, the \(D_{\text {max }}+1\) most recent samples received at the In port for each channel. For example, an
integer delay of 5 on a scalar input sequence retrieves and outputs the fifth most recent input sample from the block's memory, \(U(6)\). The block computes fractional delays by interpolating between stored samples; the three available interpolation modes are Linear, FIR and Farrow.

\section*{Linear Interpolation Mode}

For noninteger delays, at each sample time, the Linear Interpolation mode uses the two samples in memory nearest to the specified delay to compute a value for the sample at that time. If \(v\) is the specified fractional delay for a scalar input, the output sample, \(y\), is computed as follows.
```

vi = floor(v) % vi = integer delay
vf = v-vi % vf = fractional delay
y = (1-vf)*U(vi+1) + vf*U(vi)

```

\section*{FIR Interpolation Mode}

In FIR Interpolation mode, the block provides a discrete set of fractional delays described by:
\[
v+\frac{i}{L}, \quad v \geq P-1, \quad i=0,1, \ldots, L-1
\]

If \(v\) is less than \(P-1\), the block's behavior depends on the setting of the For small input delay values parameter. You can specify the block's behavior when the input delay value is too small to center the kernel (less than \(P\)-1), by setting the For small input delay values parameter:
- If you select Clip to the minimum value necessary for centered kernel, the block remains in FIR interpolation mode by clipping small input delay values to the smallest value necessary to center the kernel.

To determine the minimum delay value, select Clip to the minimum value necessary for centered kernel, and click Apply on the block mask. All input delay values less than the value displayed for \(D_{\min }\) will be clipped to \(D_{\min }\).

\section*{Variable Fractional Delay}
- If you select Switch to linear interpolation if kernel cannot be centered, the block computes fractional delays using linear interpolation when the input delay value is less than \(P-1\).

To add an extra delay to the minimum possible delay value, select the Disable direct feedthrough by increasing minimum possible delay by one check box. Checking this box prevents algebraic loops from occurring when you use the block inside a feedback loop.

Note If the input to the block is frame based and you select the Disable direct feedthrough by increasing minimum possible delay by one check box, the minimum possible delay (Dmin) increases by frame-size-1.

In FIR Interpolation mode, the block implements a polyphase structure to compute a value for each sample at the desired delay. Each arm of the structure corresponds to a different delay value and the output computed for each sample corresponds to the output of the arm with a delay value nearest to the desired input delay. Thus, only a discrete set of delays is actually possible. The number of coefficients in each of the \(L\) filter arms of the polyphase structure is \(2 P\). In most cases, using values of \(P\) between 4 and 6 will provide you with reasonably accurate interpolation values.

In this mode, the Signal Processing Toolbox intfilt function computes an FIR filter for interpolation.

For example, when you set the parameters on the block mask to the following values:
- Interpolation filter half-length (P): 4
- Interpolation points per input sample: 10
- Normalized input bandwidth: 1

The filter coefficients are given by:

\section*{Variable Fractional Delay}
```

b = intfilt(10,4,1);

```

The block then implements this filter as a polyphase structure, as described previously.

Increasing the Interpolation filter half length (P) increases the accuracy of the interpolation, but also increases the number of computations performed per input sample, as well as the amount of memory needed to store the filter coefficients. Increasing the Interpolation points per input sample ( \(L\) ) increases the number of representable discrete delay points, but also increases the simulation's memory requirements and does not affect the computational load per sample.

The Normalized input bandwidth (0 to 1) parameter allows you to take advantage of the bandlimited frequency content of the input. For example, if you know that the input signal does not have frequency content above F /4, you can specify a value of 0.5 for the Normalized input bandwidth (0 to 1) to constrain the frequency content of the output to that range.

Note You can consider each of the \(L\) interpolation filters to correspond to one output phase of an "upsample-by-L" FIR filter. Thus, the Normalized input bandwidth ( \(\mathbf{0}\) to \(\mathbf{1}\) ) value improves the stopband in critical regions, and relaxes the stopband requirements in frequency regions where there is no signal energy.

\section*{Farrow Interpolation Mode}

In Farrow interpolation mode, the block uses the LaGrange method to interpolate values.

To add an extra delay of 1 to the minimum possible delay value, select the Disable direct feedthrough by increasing minimum possible delay by one check box. Checking this box prevents algebraic loops from occurring when you use the block inside a feedback loop.

\section*{Variable Fractional Delay}

Note If the input to the block is frame-based and you select the Disable direct feedthrough by increasing minimum possible delay by one check box, the minimum possible delay (Dmin) increases by frame-size-1.

To specify the block's behavior when the input delay value is too small to center the kernel (less than \(\frac{N}{2}-1\) ), set the For small input delay values parameter:
- If you select Clip to the minimum value necessary for centered kernel, the block clips small input delay values to the smallest value necessary to keep the kernel centered. This increases \(D_{\text {min }}\) but yields more accurate interpolation values.
To determine the minimum delay value, select Clip to the minimum value necessary for centered kernel, and click Apply on the block mask. All input delay values less than the value displayed for \(D_{\text {min }}\) will be clipped to \(D_{\text {min }}\).
- If you select Use off-centered kernel, the block computes fractional delays using a Farrow filter with an off-centered kernel. This mode does not increase \(D_{\text {min }}\), but if there are input delay values
less than \(\frac{N}{2}-1\), the results are less accurate than the results achieved by keeping the kernel centered.

\section*{Fixed-Point Data Types}

The diagrams in the following sections show the data types used within the Variable Fractional Delay block for fixed-point signals.

Although you can specify most of these data types on the Fixed-point pane of the block mask, the following data types are computed internally by the block and cannot be directly specified on the block mask.

\section*{Variable Fractional Delay}
\begin{tabular}{l|l|l}
\hline Data Type & Word Length & Fraction Length \\
\hline vf data type & \begin{tabular}{l} 
Same word length as \\
the Coefficients
\end{tabular} & \begin{tabular}{l} 
Same as the word \\
length
\end{tabular} \\
\hline \begin{tabular}{l} 
HoldInteger data \\
type
\end{tabular} & \begin{tabular}{l} 
Same word length as \\
the input delay value
\end{tabular} & 0 bits \\
\hline Integer data type & 32 bits & 0 bits \\
\hline
\end{tabular}

To compute the integer \(\left(v_{i}\right)\) and fractional \(\left(v_{f}\right)\) parts of the input delay value (v), the Variable Fractional Delay block uses the following equations:
\[
\begin{aligned}
& D_{\min }<v<D_{\max } \Rightarrow\left\{\begin{array}{l}
v_{i}=\text { floor }(v) \\
v_{f}=v-v i
\end{array}\right. \\
& v \leq D_{\min } \Rightarrow\left\{\begin{array}{l}
v_{i}=D_{\min } \\
v_{f}=0
\end{array}\right. \\
& v \geq D_{\max } \Rightarrow\left\{\begin{array}{l}
v_{i}=D_{\max } \\
v_{f}=0
\end{array}\right.
\end{aligned}
\]

\section*{Linear Interpolation Mode}

The following diagram shows the fixed-point data types used by the Linear interpolation mode of the Variable Fractional Delay block.


\section*{Variable Fractional Delay}

\section*{FIR Interpolation Mode}

The following diagram illustrates how the Variable Fractional Delay block selects the arm of the polyphase filter structure that most closely matches the fractional delay value \(\left(v_{f}\right)\).


See the "Fixed-Point Data Types" on page 2-535 section of the FIR Interpolation reference page for a diagram showing the fixed-point data types used by the Variable Fractional Delay block in FIR interpolation mode.

\section*{Farrow Interpolation Mode}

The following diagram shows the fixed-point data types used by the Farrow interpolation mode of the Variable Fractional Delay block where:
- Farrow filter length \((N)=4\)
- For small input delay values = Clip to the minimum value necessary to for centered kernel

\section*{Variable Fractional Delay}


The following diagram shows the fixed-point data types used by the Farrow interpolation mode of the Variable Fractional Delay block where:
- Farrow filter length (N) = 4
- For small input delay values \(=\) Use off-centered kernel

\section*{Variable Fractional Delay}


Diff is computed from the integer part of the delay value \(\left(v_{i}\right)\) and the Farrow filter length (N) according to the following equation:
\[
\begin{aligned}
& \text { Diff }=v_{i}-\left(\frac{N-1}{2}\right) \\
& \text { Diff } \geq 0 \Rightarrow \text { Diff }=0 \\
& \text { Diff }<0 \Rightarrow \text { Diff }=- \text { Diff }
\end{aligned}
\]

\section*{Variable Fractional Delay}

The following diagram shows the fixed-point data types used by the Digital Filter block's FIR direct form filter.


\section*{Examples}

The dspaudioeffects demo illustrates three audio effects applied to a short segment of music. When you set the Audio effect of the Effect block to Flanging, the model uses the Variable Fractional Delay block to mix the original signal with a delayed version of itself.
To see the Flanging subsystem, right-click the Effect block, and select Look Under Mask. Next, double-click the Flanging block in the Effect block subsystem that just opened. The Flanging subsystem opens, and you can see the parameters of the Variable Fractional Delay block.

\section*{Variable Fractional Delay}

Dialog Box

The Main pane of the Variable Fractional Delay block dialog appears as follows.

\section*{Function Block Parameters: Variable Fractional Delay}
-Variable Fractional Delay
Delay discrete-time input by the time-varying fractional number of sample periods specified by the 'Delay' input. The block provides Linear, FIR, and Farrow interpolation modes. In FIR mode, the filter is designed using the 'intfilt' function from the Signal Processing Toolbox.

The input delay is clipped to a valid range (Dmin to Dmax) that is determined by the parameter settings.
Main Fixed-point
Interpolation mode: Linear
Initial conditions: 0
Maximum delay (Dmax) in samples: 100
D Disable direct feedthrough by increasing minimum possible delay by one

\section*{- Valid delay range}

Possible delay range (in samples) based on block parameter settings:
Dmin:0
Dmax: 100

OK
Cancel
Help
Apply

\section*{Interpolation mode}

The method by which to interpolate between adjacent stored samples to obtain a value for the sample indexed by the input at the Delay port.

\section*{Interpolation filter half-length ( P )}

Half the number of input samples to use in the FIR interpolation filter. This parameter is only visible when the Interpolation mode is set to FIR.

\section*{Farrow filter length (N)}

The number of input samples to use in the Farrow interpolation filter. This parameter is only visible when the Interpolation mode is set to Farrow.

\section*{Interpolation points per input sample}

The number of points per input sample, \(L\), at which a unique FIR interpolation filter is computed. This parameter is only visible when the Interpolation mode is set to FIR.

\section*{Normalized input bandwidth (0 to 1)}

The bandwidth to which the interpolated output samples should be constrained. The value must be a real scalar between 0 and 1 . A value of 1 specifies half the sample frequency. This parameter is only visible when the Interpolation mode is set to FIR.

\section*{Initial conditions}

The values with which the block's memory is initialized. See the Variable Integer Delay block for more information.
Maximum delay (Dmax) in samples
The maximum delay that the block can produce, \(D_{\max }\). Input delay values exceeding this maximum are clipped to \(D_{\max }\).
Disable direct feedthrough by increasing minimum possible delay by one

Select this box to disable direct feedthrough by adding one to the minimum possible delay value. Checking this box allows the Variable Fractional Delay block to be used in feedback loops.

\section*{Variable Fractional Delay}

\section*{For small input delay values}

Specify the block's behavior when the input delay values are too small to center the kernel. This parameter is only visible when the Interpolation mode is set to FIR or Farrow.

You can specify how the block handles input delay values that are too small for the kernel to be centered using one of the following choices:
- In both FIR and Farrow interpolation modes, you can select Clip to the minimum value necessary for centered kernel. This option forces the block to increase \(D_{\text {min }}\) to the smallest value necessary to keep the kernel centered.
- In FIR interpolation mode, you can select Switch to linear interpolation if kernel cannot be centered. This option forces the block to preserve the value of \(D_{\min }\) and compute all interpolated values using Linear interpolation.
- In Farrow interpolation mode, you can select Use off-centered kernel. This option forces the block to preserve the value of \(D_{\text {min }}\) and compute the interpolated values using a farrow filter with an off-centered kernel.

\section*{Valid delay range}

The values displayed in this section of the Main pane are calculated (in samples) by the block based on the current parameter settings. To update the values displayed in this section after changing parameter values on the block mask, click Apply.
- Dmin is the smallest possible valid delay value (in samples) based on the current settings of the block parameters. All input delay values less than Dmin are clipped to Dmin.

> Note If you are working with frame-based signals and have the Disable direct feedthrough by increasing the minimum possible delay by one check box selected, you must compute the smallest possible valid delay value by adding frame-size - 1 to Dmin.
- Dmax is the maximum valid delay value (in samples) based on the current settings of the block parameters. All input delay values greater than Dmax are clipped to Dmax.

The Fixed-point pane of the Variable Fractional Delay block dialog appears as follows.

\section*{Variable Fractional Delay}


\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Coefficients}

Choose how you specify the word length and fraction length of the filter coefficients.
- When you select Same word length as input, the word length of the filter coefficients match that of the input to the block. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Specify word length, you can enter the word length of the coefficients, in bits. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.

\section*{Product output}

Use this parameter to specify how you would like to designate the product output word and fraction lengths. See "Fixed-Point Data Types" on page 2-516 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block.
- When you select Same as first input, these characteristics match those of the first input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

\section*{Accumulator}

Use this parameter to specify how you would like to designate the accumulator word and fraction lengths. See "Fixed-Point

\section*{Variable Fractional Delay}

Data Types" on page 2-667 and "Multiplication Data Types" for illustrations depicting the use of the accumulator data type in this block:
- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as first input, these characteristics match those of the first input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

\section*{Output}

Choose how you specify the output word length and fraction length:
- When you select Same as accumulator, these characteristics match those of the accumulator.
- When you select Same as first input, these characteristics match those of the first input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

\section*{Product output polyval}

Choose how you specify the word length and fraction length of the product output polyval data type. This parameter is only visible when the Interpolation mode is set to Farrow.
- When you select Same as first input, these characteristics match those of the first input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output polyval in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output polyval. This block requires power-of-two slope and a bias of zero.

\section*{Accumulator polyval}

Choose how you specify the word length and fraction length of the accumulator polyval data type. This parameter is only visible when the Interpolation mode is set to Farrow.
- When you select Same as first input, these characteristics match those of the first input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator polyval in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator polyval. This block requires power-of-two slope and a bias of zero.

\section*{Multiplicand polyval}

Choose how you specify the word length and fraction length of the multiplicand polyval data type. This parameter is only visible when the Interpolation mode is set to Farrow.
- When you select Same as first input, these characteristics match those of the first input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the multiplicand polyval, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the multiplicand polyval. This block requires power-of-two slope and a bias of zero.

\section*{Variable Fractional Delay}

\section*{Lock scaling against changes by the autoscaling tool}

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling feature of the Fixed-Point Tool. See the fxptdlg reference page for more information.

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Input & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Delay & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Output & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- 8 -, 16 -, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}

Delay
Unit Delay
Variable Integer Delay

Signal Processing Blockset
Simulink
Signal Processing Blockset

\section*{Variable Integer Delay}

\section*{Purpose}

Delay input by time-varying integer number of sample periods

\section*{Library}

\section*{Description}


Signal Operations
dspsigops
The Variable Integer Delay block delays the discrete-time input at the In port by the integer number of sample intervals specified by the input to the Delay port. The sample rate of the input signal at the Delay port must be the same as the sample rate of the input signal at the In
port. When these sample rates are not the same, you need to insert a Zero-Order Hold or Rate Transition block in order to make the sample rates identical. The delay for an N-D sample-based input can be a scalar value to uniformly delay every sample in every channel, or a matrix containing one delay value for each channel of the input. The delay for a frame-based input sequence can be a scalar value to uniformly delay every sample in every channel, a vector containing one delay value for each sample in the input frame, or a vector containing one delay value for each channel in the input frame.

The delay values should be in the range of 0 to \(D\), where \(D\) is the Maximum delay. Delay values greater than \(D\) or less than 0 are clipped to those respective values and noninteger delays are rounded to the nearest integer value.
The Variable Integer Delay block differs from the Delay block in the following ways.
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Variable Integer Delay \\
Block
\end{tabular} & Delay Block \\
\hline \begin{tabular}{l} 
The delay is provided as an \\
input to the Delay port.
\end{tabular} & \begin{tabular}{l} 
You specify the delay as a parameter \\
setting in the dialog box.
\end{tabular} \\
\hline
\end{tabular}

\section*{Variable Integer Delay}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Variable Integer Delay \\
Block
\end{tabular} & Delay Block \\
\hline \begin{tabular}{l} 
Delay can vary with time; for \\
example, for a frame-based \\
input, the \(n\)th element's delay \\
in the first input frame can \\
differ from the \(n\)th element's \\
delay in the second input \\
frame.
\end{tabular} & \begin{tabular}{l} 
Delay cannot vary with time; for \\
example, for a frame-based input, \\
the \(n\)th element's delay is the same \\
for every input frame.
\end{tabular} \\
\hline \begin{tabular}{l} 
When the Variable Integer \\
Delay block is used in a \\
feedback loop, you must \\
check the Disable direct \\
feedthrough by increasing \\
minimum possible delay by \\
one checkbox. This prevents \\
the occurrence of an algebraic \\
loop when the delay of the
\end{tabular} & \\
\begin{tabular}{l} 
Variable Integer Delay block is \\
driven to zero.
\end{tabular} & \begin{tabular}{l} 
You can use the Delay block to break \\
an algebraic loop.
\end{tabular} \\
\hline
\end{tabular}

\section*{Sample-Based Operation}

The Variable Integer Delay block supports N-D input arrays. When the input is an \(M\)-by- \(N\)-by- \(P\) sample-based array, the block treats each of the \(M^{*} N^{*} P\) elements as independent channels, and applies the delay at the Delay port to each channel.

The Variable Integer Delay block stores the D+1 most recent samples received at the In port for each channel. At each sample time the block outputs the stored sample(s) indexed by the input to the Delay port.
For example, when the input to the In port, \(u\), is a scalar signal, the block stores a vector, U , of the \(\mathrm{D}+1\) most recent signal samples. When the current input sample is \(U(1)\), the previous input sample is \(U(2)\), and so on, then the block's output is
\[
y=U(v+1) ; \quad \% \text { Equivalent MATLAB code }
\]

\section*{Variable Integer Delay}
where \(v\) is the input to the Delay port. A delay value of \(0(v=0)\) causes the block to pass through the sample at the In port in the same simulation step that it is received. The block's memory is initialized to the Initial conditions value at the start of the simulation (see below).

The next figure shows the block output for a scalar ramp sequence at the In port, a Maximum delay of 5, an Initial conditions of 0 , and a variety of different delays at the Delay port.


The current input at each time step is immediately stored in memory as \(\mathrm{U}(1)\). This allows the current input to be available at the output for a delay of \(0(\mathrm{v}=0)\).

The Initial conditions parameter specifies the values in the block's memory at the start of the simulation. Unlike the Delay block, the Variable Integer Delay block does not have a fixed initial delay period during which the initial conditions appear at the output. Instead, the initial conditions are propagated to the output only when they are indexed in memory by the value at the Delay port. Both fixed and

\section*{Variable Integer Delay}
time-varying initial conditions can be specified in a variety of ways to suit the dimensions of the input sequence.

\section*{Fixed Initial Conditions}

The settings in this section specify fixed initial conditions. For a fixed initial condition, the block initializes each of \(D\) samples in memory to the value entered in the Initial conditions parameter. A fixed initial condition in sample-based mode can be specified in one of the following ways:
- Scalar value with which to initialize every sample of every channel in memory. For a general \(M\)-by- \(N\) input and the parameter settings in this figure,

the block initializes \(100 M\)-by- \(N\) matrices in memory with zeros.
- Array of size \(M\)-by- \(N\)-by- \(D\). In this case, you can specify different fixed initial conditions for each channel. See the Array bullet in "Time-Varying Initial Conditions" on page 2-1390 below for details.

\section*{Time-Varying Initial Conditions}

The following settings specify time-varying initial conditions. For a time-varying initial condition, the block initializes each of \(D\) samples in memory to one of the values entered in the Initial conditions parameter. This allows you to specify a unique output value for each sample in memory. A time-varying initial condition in sample-based mode can be specified in one of the following ways:
- Vector containing \(D\) elements with which to initialize memory samples \(U(2: D+1)\), where \(D\) is the Maximum delay. For a scalar input and the parameters in the next figure, the block initializes \(\mathrm{U}(2: 6)\) with values \([-1,-1,-1,0,1]\).

\section*{Variable Integer Delay}

- Array of dimension \(M\)-by- \(N\)-by- \(D\) with which to initialize memory samples \(U(2: D+1)\), where \(D\) is the Maximum delay and \(M\) and \(N\) are the number of rows and columns, respectively, in the input matrix. For a 2 -by- 3 input and the following parameters, the block initializes memory locations \(U(2: 5)\) with values
\[
\mathbf{U}(2)=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], \mathbf{U}(3)=\left[\begin{array}{lll}
2 & 2 & 2 \\
2 & 2 & 2
\end{array}\right], \mathbf{U}(4)=\left[\begin{array}{lll}
3 & 3 & 3 \\
3 & 3 & 3
\end{array}\right], \mathbf{U}(5)=\left[\begin{array}{lll}
4 & 4 & 4 \\
4 & 4 & 4
\end{array}\right]
\]


An \(M\)-by- \(N\)-by- \(P\)-by- \(D\) matrix can be entered for the Initial Conditions parameter when the input is an \(M\)-by- \(N\)-by- \(P\) array. The ( \(M, N, P, T\) )th sample of the Initial Conditions matrix provides the initial condition value for the \((M, N, P)\) th channel of the input matrix at delay \(=D-t+1\) samples.

\section*{Frame-Based Operation}

When the input is an \(M\)-by- \(N\) frame-based matrix, the block treats each of the \(N\) input columns as a frame containing \(M\) sequential time samples from an independent channel.

In frame-based mode, the input at the Delay port can be a scalar value to uniformly delay every sample in every channel. It can also be a column-based length- \(M\) vector, containing one delay for each sample in the input frame(s). The set of delays contained in the vector is applied identically to every channel of a multichannel input. The Delay port entry can also be a row-based length- \(N\) vector, containing one delay for each channel. Finally, the Delay port entry can also be an \(M\)-by- \(N\)

\section*{Variable Integer Delay}
matrix, containing a different delay for each corresponding element of the input.
Vector v does not specify when the samples in the current input frame will appear in the output. Rather, v indicates which previous input samples (stored in memory) should be included in the current output frame. The first sample in the current output frame is the input sample \(v(1)\) intervals earlier in the sequence, the second sample in the current output frame is the input sample \(v(2)\) intervals earlier in the sequence, and so on.

The illustration below shows how this works for an input with a sample period of 1 and frame size of 4 . The Maximum delay (Dmax) is 5, and the Initial conditions parameter is set to -1. The delay input changes from [ \(\left.\begin{array}{llll}1 & 3 & 0 & 5\end{array}\right]\) to \(\left[\begin{array}{llll}2 & 0 & 0 & 2\end{array}\right]\) after the second input frame. The samples in each output frame are the values in memory indexed by the elements of v :
```

y(1) = U(v(1)+1)
y(2) = U(v(2)+1)
y(3) = U(v(3)+1)
y(4) = U(v(4)+1)

```

\section*{Variable Integer Delay}


The Initial conditions parameter specifies the values in the block's memory at the start of the simulation. Both fixed and time-varying initial conditions can be specified.

\section*{Fixed Initial Conditions}

The settings shown in this section specify fixed initial conditions. For a fixed initial condition, the block initializes each of \(D\) samples in memory to the value entered in the Initial conditions parameter. A fixed initial condition in frame-based mode can be one of the following:
- Scalar value with which to initialize every sample of every channel in memory. For a general \(M\)-by- \(N\) input with the parameter settings below, the block initializes five samples in memory with zeros.

\section*{Variable Integer Delay}

- Array of size 1-by- \(N\)-by- \(D\). In this case, you can specify different fixed initial conditions for each channel. See the Array bullet in "Time-Varying Initial Conditions" on page 2-1394 below for details.

\section*{Time-Varying Initial Conditions}

The following setting specifies a time-varying initial condition. For a time-varying initial condition, the block initializes each of \(D\) samples in memory to one of the values entered in the Initial conditions parameter. This allows you to specify a unique output value for each sample in memory. A time-varying initial condition in frame-based mode can be specified in the following ways:
- Vector containing \(D\) elements. In this case, all channels have the same set of time-varying initial conditions specified by the entries of the vector. For the ramp input \([1: 100 ; 1: 100]\) ' with a frame size of 4 , delay of 5 , and the following parameter settings, the block outputs the following sequence of frames at the start of the simulation:
\[
\left[\begin{array}{cc}
-1 & -1 \\
-2 & -2 \\
-3 & -3 \\
-4 & -4
\end{array}\right],\left[\begin{array}{cc}
-5 & -5 \\
1 & 1 \\
2 & 2 \\
3 & 3
\end{array}\right],\left[\begin{array}{ll}
4 & 4 \\
5 & 5 \\
6 & 6 \\
7 & 7
\end{array}\right], \ldots
\]

- Array of size 1-by- \(N\)-by- \(D\). In this case, you can specify different time-varying initial conditions for each channel. For the ramp input \([1: 100 ; 1: 100]^{\prime}\) with a frame size of 4 , delay of 5 , and the following
parameter settings, the block outputs the following sequence of frames at the start of the simulation:
\[
\left[\begin{array}{ll}
-1 & -11 \\
-2 & -22 \\
-3 & -33 \\
-4 & -44
\end{array}\right],\left[\begin{array}{cc}
-5 & -55 \\
1 & 1 \\
2 & 2 \\
3 & 3
\end{array}\right],\left[\begin{array}{ll}
4 & 4 \\
5 & 5 \\
6 & 6 \\
7 & 7
\end{array}\right], \ldots
\]


By specifying a 1 -by- \(N\)-by- \(D\) initial condition array such that each 1-by- \(N\) vector entry is identical, you can implement different fixed initial conditions for each channel.

\section*{Examples}

See "Basic Algorithmic Delay" in the Signal Processing Blockset User's Guide.

\section*{Variable Integer Delay}

\section*{Dialog \\ Box}


\section*{Maximum delay}

The maximum delay that the block can produce for any sample. Delay input values exceeding this maximum are clipped at the maximum.

\section*{Initial conditions}

The values with which the block's memory is initialized.

\section*{Disable direct feedthrough by increasing minimum possible delay by one}

Select this box to disable direct feedthrough by adding one to the minimum possible delay value. Checking this box allows the Variable Integer Delay block to be used in feedback loops.

\section*{Variable Integer Delay}

Supported Data Types
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline In & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Delay & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Out & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16 -, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline
\end{tabular}

\author{
See Also \\ Delay \\ Variable Fractional Delay
}

Signal Processing Blockset
Signal Processing Blockset


Select subset of rows or columns from input
Signal Management / Indexing
dspindex
The Variable Selector block extracts a subset of rows or columns from the \(M\)-by- \(N\) input matrix u at each input port. You specify the number of input and output ports in the Number of input signals parameter.
When the Select parameter is set to Rows, the Variable Selector block extracts rows from each input matrix, while if the Select parameter is set to Columns, the block extracts columns.

When the Selector mode parameter is set to Variable, the length- \(L\) vector input to the Idx port selects \(L\) rows or columns of each input to pass through to the output. The elements of the indexing vector can be updated at each sample time, but the vector length must remain the same throughout the simulation.

When the Selector mode parameter is set to Fixed, the Idx port is disabled, and the length- \(L\) vector specified in the Elements parameter selects \(L\) rows or columns of each input to pass through to the output. The Elements parameter is tunable, so you can change the values of the indexing vector elements at any time during the simulation; however, the vector length must remain the same.

For both variable and fixed indexing modes, the row selection operation is equivalent to
\[
y=u(i d x,:) \quad \% \text { Equivalent MATLAB code }
\]
and the column selection operation is equivalent to
\[
y=u(:, i d x) \quad \% \text { Equivalent MATLAB code }
\]
where idx is the length- \(L\) indexing vector. The row selection output size is \(L\)-by- \(N\) and the column selection output size is \(M\)-by- \(L\). Input rows or columns can appear any number of times in the output, or not at all.

\section*{Variable Selector}

When the input is a \(1-D\) vector, the Select parameter is ignored; the output is a \(1-D\) vector of length \(L\) containing those elements specified by the length- \(L\) indexing vector.

When an element of the indexing vector references a nonexistent row or column of the input, the block reacts with the behavior specified by the Invalid index parameter. The following options are available:
- Clip index - Clip the index to the nearest valid value, and do not issue an alert. Example: For a 64 -by- \(N\) input, an index of 72 is clipped to 64 ; an index of -2 is clipped to 1 .
- Clip and warn - Display a warning message in the MATLAB Command Window, and clip as above.
- Generate error - Display an error dialog box and terminate the simulation.

When the indexing vector elements are of Boolean data type, the block performs logical indexing. Select Fill empty spaces in outputs (for logical indexing) to access the Fill values parameter. These values are appended to the output to make it as long as the input elements.

Note The Variable Selector block always copies the selected input rows to a contiguous block of memory (unlike the Simulink Selector block).

\section*{Variable Selector}

\section*{Dialog \\ Box}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{國Function Block Parameters: Variable Selector} & \multirow[t]{2}{*}{区} \\
\hline \multicolumn{3}{|l|}{-Variable Selector (mask) (link)} & \\
\hline \multicolumn{4}{|l|}{Selects and/or reorders the rows or columns of the input according to a specified vector of indices (the indices need not be unique). The 'Selector mode' parameter determines whether the block uses the same indices for every input ('Fixed'), or uses different indices for every input ('Variable'). When set to 'Variable', you provide the vector of indices through an input port.} \\
\hline \multicolumn{4}{|l|}{-Parameters} \\
\hline \multicolumn{4}{|l|}{Number of input signals:} \\
\hline \multicolumn{4}{|l|}{1} \\
\hline Select: Rows & & & \\
\hline Selector mode: \(\sqrt{\text { Fixed }}\) & & & \\
\hline \multicolumn{4}{|l|}{Elements:} \\
\hline \multicolumn{4}{|l|}{[13]} \\
\hline Index mode: One-based & & & \\
\hline Invalid index: Clip Index & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Fill empty spaces in outputs (for logical indexing) Fill values:}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{0} \\
\hline QK Cancel & Help & Apply & \\
\hline
\end{tabular}

\section*{Number of input signals}

Specify the number of input signals. An input port is created on the block for each input signal.

\section*{Select}

The dimension of the input to select, Rows or Columns.

\section*{Selector mode}

The type of indexing operation to perform, Variable or Fixed.
Variable indexing uses the input at the Idx port to select rows or

\section*{Variable Selector}
columns from the input at the In port. Fixed indexing uses the Elements parameter value to select rows from the input at the In port, and disables the Idx port.

\section*{Elements}

A vector containing the indices of the input rows or columns that will appear in the output matrix. This parameter is only visible when you select Fixed for the Selector mode parameter.

\section*{Index mode}

When set to One-based, an index value of 1 refers to the first row or column of the input. When set to Zero-based, an index value of 0 refers to the first row or column of the input.

\section*{Invalid index}

Response to an invalid index value. Tunable.

\section*{Fill empty spaces in outputs (for logical indexing)}

When the indexing vector elements are of Boolean data type, the block performs logical indexing. This can cause empty spaces in the output. Select this parameter to designate values to be appended to the output in the Fill values parameter.

\section*{Fill values}

Specify the fill values when the block performs logical indexing. This parameter is only visible when the Fill empty spaces in outputs (for logical indexing) parameter is selected.

\section*{Supported Data Types}
\begin{tabular}{l|l|}
\hline Port & Supported Data Types \\
\hline In & • Double-precision floating point \\
& - Single-precision floating point \\
& - Fixed point (signed and unsigned) \\
& - Boolean \\
& \(\bullet 8-, 16-\), and 32 -bit signed integers \\
& \(\bullet 8-, 16\)-, and 32 -bit unsigned integers \\
&
\end{tabular}

\section*{Variable Selector}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline & - Enumerated \\
\hline Idx & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Boolean \\
- 8-, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers \\
- Enumerated
\end{tabular} \\
\hline Out & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed and unsigned) \\
- Boolean \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers \\
- Enumerated
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}
\begin{tabular}{ll} 
Multiport Selector & Signal Processing Blockset \\
Permute Matrix & Signal Processing Blockset \\
Selector & Simulink \\
Submatrix & Signal Processing Blockset
\end{tabular}


Compute variance of input or sequence of inputs
Statistics
dspstat3

The Variance block computes the unbiased variance of each row or column of the input, along vectors of a specified dimension of the input, or of the entire input. The Variance block can also track the variance of a sequence of inputs over a period of time. The Running variance parameter selects between basic operation and running operation.

\section*{Basic Operation}

When you do not select the Running variance check box, the block computes the variance of each row or column of the input, along vectors of a specified dimension of the input, or of the entire input at each individual sample time, and outputs the array \(y\). Each element in \(y\) is the variance of the corresponding column, row, vector, or entire input. The output \(y\) depends on the setting of the Find the variance value over parameter. For example, consider a 3-dimensional input signal of size \(M\)-by- \(N\)-by- \(P\) :
- Entire input - The output at each sample time is a scalar that contains the variance of the entire input. In this mode, the output is always sample based.
\[
y=\operatorname{var}(u(:)) \quad \% \text { Equivalent MATLAB code }
\]
- Each row - The output at each sample time consists of an \(M\)-by-1-by- \(P\) array, where each element contains the variance of each vector over the second dimension of the input. For an input that is an \(M\)-by- \(N\) matrix, the output at each sample time is an \(M\)-by- 1 column vector. In this mode, the frame status of the output is the same as that of the input.
\[
y=\operatorname{var}(u, 0,2) \quad \% \text { Equivalent MATLAB code }
\]

\section*{Variance}
- Each column - The output at each sample time consists of a 1-by- \(N\)-by- \(P\) array, where each element contains the variance of each vector over the first dimension of the input. For an input that is an \(M\)-by- \(N\) matrix, the output at each sample time is a 1 -by- \(N\) row vector. In this mode, the frame status of the output is the same as that of the input.
```

y = var(u,0,1) % Equivalent MATLAB code

```

For convenience, length-M 1-D vector inputs are treated as \(M\)-by-1 column vectors when the block is in this mode. Sample-based length- \(M\) row vector inputs are also treated as \(M\)-by- 1 column vectors when the Treat sample-based row input as a column check box is selected
- Specified dimension - The output at each sample time depends on Dimension. If Dimension is set to 1 , the output is the same as that when you select Each column. If Dimension is set to 2, the output is the same as when you select Each row. If Dimension is set to 3, the output at each sample time is an \(M\)-by- \(N\) matrix containing the variance of each vector over the third dimension of the input. In this mode, the frame status of the output is the same as that of the input.
y = var(u,0,Dimension) \% Equivalent MATLAB code

For purely real or purely imaginary inputs, the variance of an M-by-N matrix is the square of the standard deviation:
\[
y=\sigma^{2}=\frac{\sum_{i=1}^{M} \sum_{j=1}^{N}\left|u_{i j}\right|^{2}-\frac{\left|\sum_{i=1}^{M} \sum_{j=1}^{N} u_{i j}\right|^{2}}{M * N}}{M^{*} N-1}
\]

For complex inputs, the variance is given by the following equation:
\[
\sigma^{2}=\sigma_{\operatorname{Re}}^{2}+\sigma_{\mathrm{Im}}^{2}
\]

\section*{Running Operation}

When you select the Running variance check box, the block tracks the variance of successive inputs to the block. For sample-based \(M\)-by- \(N\) inputs, the output is a sample-based \(M\)-by- \(N\) matrix with each element \(y_{i j}\) containing the variance of element \(u_{i j}\) over all inputs since the last reset. For frame-based \(M\)-by- \(N\) inputs, the output is a frame-based \(M\)-by- \(N\) matrix with each element \(y_{i j}\) containing the variance of the \(j\) th column over all inputs since the last reset, up to and including element \(u_{i j}\) of the current input.
N-D signals cannot be frame based. When the block is set to Running mode, each element of the N-D signal is treated as a separate channel.

There are \(\prod d_{i}\) channels, where \(d_{i}\) is the size of the \(i\) th dimension.

\section*{Resetting the Running Variance}

The block resets the running variance whenever a reset event is detected at the optional Rst port. The reset sample time must be a positive integer multiple of the input sample time.
You specify the reset event in the Reset port parameter:
- None disables the Rst port.
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

\section*{Variance}

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described earlier)
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

\begin{abstract}
Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port rate before the block applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and the topic on models with multiple sample rates in the Real-Time Workshop documentation.
\end{abstract}

\section*{ROI Processing}

To calculate the statistical value within a particular region of interest (ROI) of the input, select the Enable ROI processing check box. This option is only available when the Find the variance value over parameter is set to Entire input and the Running variance check box is not selected. ROI processing is only supported for 2-D inputs.

Note Full ROI processing is only available to users who have a Video and Image Processing Blockset license. If you only have a Signal Processing Blockset license, you can still use ROI processing, but are limited to the ROI type Rectangles.

Use the ROI type parameter to specify whether the ROI is a binary mask, label matrix, rectangle, or line. ROI processing is only supported for 2-D inputs.
- A binary mask is a binary image that enables you to specify which pixels to highlight, or select.
- In a label matrix, pixels equal to 0 represent the background, pixels equal to 1 represent the first object, pixels equal to 2 represent the second object, and so on. When the ROI type parameter is set to Label matrix, the Label and Label Numbers ports appear on the block. Use the Label Numbers port to specify the objects in the label matrix for which the block calculates statistics. The input to this

\section*{Variance}
port must be a vector of scalar values that correspond to the labeled regions in the label matrix.
- For more information about the format of the input to the ROI port when the ROI is a rectangle or a line, see the Draw Shapes reference page.

Note For rectangular ROIs, use the ROI portion to process parameter to specify whether to calculate the statistical value for the entire ROI or just the ROI perimeter.

Use the Output parameter to specify the block output. The block can output separate statistical values for each ROI or the statistical value for all specified ROIs. This parameter is not available if, for the ROI type parameter, you select Binary mask.

If, for the ROI type parameter, you select Rectangles or Lines, the Output flag indicating if ROI is within image bounds check box appears in the dialog box. If you select this check box, the Flag port appears on the block. The following tables describe the Flag port output based on the block parameters.

\section*{Output = Individual Statistics for Each ROI}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Flag \\
Port \\
Output
\end{tabular} & Description \\
\hline 0 & ROI is completely outside the input image. \\
\hline 1 & ROI is completely or partially inside the input image. \\
\hline
\end{tabular}

\section*{Output = Single Statistic for All ROls}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Flag \\
Port \\
Output
\end{tabular} & Description \\
\hline 0 & All ROIs are completely outside the input image. \\
\hline 1 & \begin{tabular}{l} 
At least one ROI is completely or partially inside the \\
input image.
\end{tabular} \\
\hline
\end{tabular}

If the ROI is partially outside the image, the block only computes the statistical values for the portion of the ROI that is within the image.

If, for the ROI type parameter, you select Label matrix, the Output flag indicating if input label numbers are valid check box appears in the dialog box. If you select this check box, the Flag port appears on the block. The following tables describe the Flag port output based on the block parameters.

Output = Individual Statistics for Each ROI
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Flag \\
Port \\
Output
\end{tabular} & Description \\
\hline 0 & Label number is not in the label matrix. \\
\hline 1 & Label number is in the label matrix. \\
\hline
\end{tabular}

Output = Single Statistic for All ROls
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Flag \\
Port \\
Output
\end{tabular} & Description \\
\hline 0 & None of the label numbers are in the label matrix. \\
\hline 1 & At least one of the label numbers is in the label matrix. \\
\hline
\end{tabular}

\section*{Variance}

\section*{Fixed-Point Data Types}

The parameters on the Fixed-Point pane of the block dialog are only used for fixed-point inputs. For purely real or purely imaginary inputs, the variance of the input is the square of its standard deviation. For complex inputs, the output is the sum of the variance of the real and imaginary parts of the input.

The following diagram shows the data types used within the Variance block for fixed-point signals.


The results of the magnitude-squared calculations in the figure are in the product output data type. You can set the accumulator, product output, and output data types in the block dialog as discussed in "Dialog Box" on page 2-1413.

\section*{Examples}

The Variance block in the next model calculates the running variance of a frame-based 3 -by-2 (two-channel) matrix input, \(u\). The running variance is reset at \(t=2\) by an impulse to the block's Rst port.


The Variance block has the following settings:
- Running variance \(=\nabla\)
- Reset port = Non-zero sample

The Signal From Workspace block has the following settings:
- Signal = dsp_examples_u
- Sample time \(=1 / 3\)
- Samples per frame \(=3\)
where
```

dsp_examples_u = [l6 1 3 -7 2 5 8 0 - - - 3 2 1;1 3 9 2 4 1 6 2 5 0 4 17]'

```

The Discrete Impulse block has the following settings:
- Delay \((\) samples \()=2\)
- Sample time = 1
- Samples per frame \(=1\)

The next figure shows the block's operation.

\section*{Variance}


Dialog Box

The Main pane of the Variance block dialog appears as follows.


\section*{Running variance}

Enables running operation when selected.

\section*{Reset port}

Determines the reset event that causes the block to reset the running variance. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input. This parameter is enabled only when you select the Running variance parameter. For more information, see "Resetting the Running Variance" on page 2-1405

\section*{Variance}

\section*{Find the variance value over}

Specify whether to find the variance along rows, columns, entire input, or the dimension specified in the Dimension parameter. For more information, see "Basic Operation" on page 2-1403.

\section*{Treat sample-based row input as a column}

Select to treat sample-based length- \(M\) row vector inputs as \(M\)-by- 1 column vectors. This parameter is only visible when the Find the variance value over parameter is set to Each column.

\section*{Dimension}

Specify the dimension (one-based value) of the input signal, over which the variance is computed. The value of this parameter cannot exceed the number of dimensions in the input signal. This parameter is only visible when the Find the variance value over parameter is set to Specified dimension.

\section*{Enable ROI Processing}

Select this check box to calculate the statistical value within a particular region of each image. This parameter is only available when the Find the variance value over parameter is set to Entire input, and the block is not in running mode.

Note Full ROI processing is only available to users who have a Video and Image Processing Blockset license. If you only have a Signal Processing Blockset license, you can still use ROI processing, but are limited to the ROI type Rectangles.

\section*{ROI type}

Specify the type of ROI you want to use. Your choices are Rectangles, Lines, Label matrix, or Binary mask.

\section*{ROI portion to process}

Specify whether you want to calculate the statistical value for the entire ROI or just the ROI perimeter. This parameter is only visible if, for the ROI type parameter, you specify Rectangles.

\section*{Output}

Specify the block output. The block can output a vector of separate statistical values for each ROI or a scalar value that represents the statistical value for all the specified ROIs. This parameter is not available if, for the ROI type parameter, you select Binary mask.

\section*{Output flag}
\(\sqrt{V}\) Output flag indicating if ROI is within image bounds
Output flag indicating if label numbers are valid
When you select either of these check boxes, the Flag port appears on the block. For a description of the Flag port output, see the tables in "ROI Processing" on page 2-1407.

The Output flag indicating if ROI is within image bounds check box is only visible when you select Rectangles or Lines as the ROI type.

The Output flag indicating if label numbers are valid check box is only visible when you select Label matrix for the ROI type parameter.

The Fixed-point pane of the Variance block dialog appears as follows.

\section*{Variance}


\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

Note See "Fixed-Point Data Types" on page 2-1410 for more information on how the product output, accumulator, and output data types are used in this block.

\section*{Input-squared product}

Use this parameter to specify how to designate the input-squared product word and fraction lengths:
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the input-squared product, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the input-squared product. This block requires power-of-two slope and a bias of zero.

\section*{Input-sum-squared product}

Use this parameter to specify how to designate the input-sum-squared product word and fraction lengths:
- When you select Same as input-squared product, these characteristics match those of the input-squared product.
- When you select Binary point scaling, you can enter the word length and the fraction length of the input-sum-squared product, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the input-sum-squared product. This block requires power-of-two slope and a bias of zero.

\section*{Accumulator}

Use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the block:
- When you select Same as input-squared product, these characteristics match those of the input-squared product.
- When you select Same as input, these characteristics match those of the input to the block.

\section*{Variance}
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

\section*{Output}

Choose how you specify the output word length and fraction length:
- When you select Same as accumulator, these characteristics match those of the accumulator.
- When you select Same as input-squared product, these characteristics match those of the input-squared product.
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling feature of the Fixed-Point Tool. See the fxptdlg reference page for more information.

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Input & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline Reset & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Boolean \\
- 8 -, 16 -, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline ROI & \begin{tabular}{l}
Rectangles and lines: \\
- Double-precision floating point \\
- Single-precision floating point \\
- Boolean \\
- 8 -, 16 -, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers \\
Binary Mask: \\
- Boolean
\end{tabular} \\
\hline Label & - 8-, 16-, and 32 -bit unsigned integers \\
\hline \begin{tabular}{l}
Label \\
Numbers
\end{tabular} & - 8 -, 16-, and 32 -bit unsigned integers \\
\hline
\end{tabular}

\section*{Variance}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Output & \(\bullet\) Double-precision floating point \\
& \(\bullet\) Single-precision floating point \\
& \(\bullet\) Fixed point \\
& \(\bullet 8-, 16\)-, and 32 -bit signed integers \\
& \(\bullet 8-, 16-\) - and 32 -bit unsigned integers \\
\hline Flag & \(\bullet\) Boolean \\
\hline
\end{tabular}

See Also
\begin{tabular}{ll} 
Mean & Signal Processing Blockset \\
RMS & Signal Processing Blockset \\
Standard Deviation & Signal Processing Blockset \\
var & MATLAB
\end{tabular}

\section*{Vector Quantizer Decoder}

\section*{Purpose}

\section*{Library}

\section*{Description}


Find vector quantizer codeword that corresponds to given, zero-based index value

Quantizers
dspquant2
The Vector Quantizer Decoder block associates each input index value with a codeword, a column vector of quantized output values defined in the Codebook values parameter. When you input multiple index values into this block, the block outputs a matrix of quantized output vectors. This matrix is created by horizontally concatenating the codeword vectors that correspond to each index value.

You can select how you want to enter the codebook values using the Source of codebook parameter. When you select Specify via dialog, you can type the codebook values into the block parameters dialog box. Select Input port and port C appears on the block. The block uses the input to port C as the Codebook values parameter.

The Codebook values parameter is a \(k\)-by- \(N\) matrix of values, where \(k \geq 1\) and \(N \geq 1\). Each column of this matrix is a codeword vector, and each codeword vector corresponds to an index value. The index values are zero based; therefore, the first codeword vector corresponds to an index value of 0 , the second codeword vector corresponds to an index value of 1 , and so on.

The input to this block is a vector of index values, where \(0 \leq i n d e x<N\) and \(N\) is the number of columns of the codebook matrix. Use the Action for out of range index value parameter to determine how the block behaves when an input index value is out of this range. When you want any index values less than 0 to be set to 0 and any index values greater than or equal to \(N\) to be set to \(N-1\), select Clip. When you want to be warned when any index values less than 0 are set to 0 and any index values greater than or equal to \(N\) are set to \(N-1\), select Clip and warn. When you want the simulation to stop and display an error when the index values are out of range, select Error.

\section*{Vector Quantizer Decoder}

\section*{Data Type Support}

The input to the block can be the index values and the codebook values. The data type of the index input to the block at port I can be uint8, uint16, uint32, int8, int16, or int32. The data type of the codebook values can be double, single, or Fixed-point.

The output of the block is the quantized output values. These quantized output values always have the same data type as the codebook values. When the codebook values are specified via an input port, the block assigns the same data type to the \(\mathrm{Q}(\mathrm{U})\) output port. When the codebook values are specified via the dialog, use the Codebook and output data type parameter to specify the data type of the \(Q(U)\) output port. The data type of the codebook and quantized output can be Same as input, double, single, Fixed-point, User-defined, or Inherit via back propagation.

\section*{Dialog Box}
\begin{tabular}{|c|c|c|c|}
\hline B Block Parameters: Vector Quantizer Decoder & & \multicolumn{2}{|r|}{? \({ }^{\text {x }}\)} \\
\hline \multicolumn{4}{|l|}{-Vector Quantizer Decoder (mask) (link)} \\
\hline \multicolumn{4}{|l|}{For each input index value, the block outputs the corresponding codeword. Each column of the Codebook parameter represents a codeword.} \\
\hline \multicolumn{4}{|l|}{-Parameters} \\
\hline \multicolumn{4}{|l|}{} \\
\hline Action for out of range index value: \(\boldsymbol{C l i p}\) & & v & \\
\hline \multicolumn{4}{|l|}{Codebook values:} \\
\hline \multicolumn{4}{|l|}{} \\
\hline Codebook and output data type: double & & & \\
\hline QK Cancel & Help & Apply & \\
\hline
\end{tabular}

\section*{Vector Quantizer Decoder}

\section*{Source of codebook}

Choose Specify via dialog to type the codebook values into the block parameters dialog box. Select Input port to specify the codebook values using the block's input port, C.

\section*{Action for out of range index value}

Choose the behavior of the block when an input index value is out of range, where \(0 \leq i n d e x<N\) and \(N\) is the length of the codebook vector. Select Clip when you want any index values less than 0 to be set to 0 and any index values greater than or equal to \(N\) to be set to \(N-1\). Select Clip and warn when you want to be warned when any index values less than 0 are set to 0 and any index values greater than or equal to \(N\) are set to \(N-1\). Select Error when you want the simulation to stop and display an error when the index values are out of range.

\section*{Codebook values}

Enter a \(k\)-by- \(N\) matrix of quantized output values, where \(1 \leq k\) and \(1 \leq N\). Each column of your matrix corresponds to an index value. This parameter is visible if, from the Source of codebook list, you select Specify via dialog.

\section*{Codebook and output data type}

Use this parameter to specify the data type of the codebook and quantized output values. The data type can be Same as input, double, single, Fixed-point, User-defined, orInherit via back propagation. This parameter becomes visible when you select Specify via dialog for the Source of codebook parameter.

\section*{Vector Quantizer Decoder}


\section*{Signed}

Select to output a signed fixed-point signal. Otherwise, the signal is unsigned. This parameter is only visible if, from the Codebook and output data type list, you select Fixed-point.

\section*{Word length}

Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible if, from the Codebook and output data type list, you select Fixed-point.

\section*{Set fraction length in output to}

Specify the scaling of the fixed-point output by either of the following two methods:
- Choose Best precision to have the output scaling automatically set such that the output signal has the best possible precision.
- Choose User-defined to specify the output scaling in the Fraction length parameter.

This parameter is only visible if, from the Codebook and output data type list, you select Fixed-point or when you select User-defined and the specified output data type is a fixed-point data type.

\section*{Fraction length}

For fixed-point output data types, specify the number of fractional bits, or bits to the right of the binary point. This parameter is only visible when you select Fixed-point or User-defined for the Codebook and output data type parameter and User-defined for the Set fraction length in output to parameter.

\section*{Vector Quantizer Decoder}


\section*{User-defined data type}

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the following Simulink Fixed Point functions: sfix, ufix, sint, uint, sfrac, and ufrac. This parameter is only visible when you select User-defined for the Codebook and output data type parameter.

References Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer Academic Publishers, 1992.

\section*{Vector Quantizer Decoder}

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline I & \begin{tabular}{l}
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline C & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- 8 -, 16-, and 32 -bit signed integers
\end{tabular} \\
\hline Q(U) & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline
\end{tabular}

Quantizer
Scalar Quantizer Decoder

Scalar Quantizer Design
Uniform Encoder
Uniform Decoder
Vector Quantizer Encoder

Simulink
Signal Processing Blockset

\section*{Vector Quantizer Design}

\section*{Purpose \\ Library \\ Description \\ Vector Quantizer Design \\ } Design vector quantizer using Vector Quantizer Design Tool (VQDTool)

Quantizers
dspquant2
Double-click on the Vector Quantizer Design block to start VQDTool, a GUI that allows you to design and implement a vector quantizer. You can also start VQDTool by typing vqdtool at the MATLAB command prompt. Based on your specifications, VQDTool iteratively calculates the codebook values that minimize the mean squared error between the training set and the codebook until the stopping criteria for the design process is satisfied. The block uses the resulting codebook values to implement your vector quantizer.

For the Training Set parameter, enter a \(k\)-by- \(M\) matrix of values you want to use to train the quantizer codebook. The variable k , where \(k \geq 1\), is the length of each training vector. It also represents the dimension of your quantizer. The variable \(M\), where \(M \geq 2\), is the number of training vectors. This data can be created using a MATLAB function, such as the default value randn \((10,1000)\), or it can be any variable defined in the MATLAB workspace.

You have two choices for the Source of initial codebook parameter. Select Auto-generate to have the block choose the values of the initial codebook. In this case, the block picks \(N\) random training vectors as the initial codebook, where \(N\) is the Number of levels parameter and \(N \geq 2\). When you select User defined, enter the initial codebook values in the Initial codebook field. The initial codebook matrix must have the same number of rows as the training set. Each column of the codebook is a codeword, and your codebook must have at least two codewords.

For the given training set and initial codebook, the block performs an iterative process, using the Generalized Lloyd Algorithm (GLA), to design a final codebook. For each iteration of the GLA, the block first associates each training vector with its nearest codeword by calculating

\section*{Vector Quantizer Design}
the distortion. You can specify one of the two possible methods for calculating distortion using the Distortion measure parameter.

When you select Squared error for the Distortion measure parameter, the block finds the nearest codeword by calculating the squared error (unweighted). Consider the codebook
\(C B=\left[\begin{array}{llll}C W_{1} & C W_{2} & \ldots & C W_{N}\end{array}\right]\). This codebook has \(N\) codewords; each codeword has \(k\) elements. The \(i\)-th codeword is defined as \(C W_{i}=\left[\begin{array}{llll}a_{1 i} & a_{2 i} & \ldots & a_{k i}\end{array}\right]\). The training set has \(M\) columns and is defined as \(U=\left[\begin{array}{llll}U_{1} & U_{2} & \ldots & U_{M}\end{array}\right]\), where the \(p\)-th training vector is \(U_{p}=\left[\begin{array}{llll}u_{1 p} & u_{2 p} & \ldots & u_{k p}\end{array}\right]^{\prime}\). The squared error (unweighted) is calculated using the equation
\[
D=\sum_{j=1}^{k}\left(a_{j i}-u_{j p}\right)^{2}
\]

When you select Weighted squared error for the Distortion measure parameter, enter a vector or matrix for the Weighting factor parameter. When the weighting factor is a vector, its length must be equal to the number of rows in the training set. This weighting factor is used for each training vector. When the weighting factor is a matrix, it must be the same size as the training set matrix. The block finds the nearest codeword by calculating the weighted squared error. If the weighting factor for the \(p\)-th column of the training vector, \(U_{p}\), is defined as \(W p=\left[\begin{array}{llll}w_{1 p} & w_{2 p} & \ldots & w_{k p}\end{array}\right]^{\prime}\), then the weighted squared error is defined by the equation
\[
D=\sum_{j=1}^{k} w_{j p}\left(a_{j i}-u_{j p}\right)^{2}
\]

Once the block has associated all the training vectors with their nearest codeword vectors, the block calculates the mean squared error for the

\section*{Vector Quantizer Design}
codebook and checks to see if the stopping criteria for the process has been satisfied.

The two possible options for the Stopping criteria parameter are Relative threshold and Maximum iteration. When you want the design process to stop when the fractional drop in the squared error is below a certain value, select Relative threshold. Then, type the maximum acceptable fractional drop in the Relative threshold field. The fraction drop in the squared error is defined as
> error at previous iteration - error at current iteration
> error at previous iteration

When you want the design process to stop after a certain number of iterations, choose Maximum iteration. Then, enter the maximum number of iterations you want the block to perform in the Maximum iteration field. For Stopping criteria, you can also choose Whichever comes first and enter Relative threshold and Maximum iteration values. The block stops iterating as soon as one of these conditions is satisfied.

When a training vector has the same distortion for two different codeword vectors, the algorithm uses the Tie-breaking rule parameter to determine which codeword vector the training vector is associated with. When you want the training vector to be associated with the lower indexed codeword, select Lower indexed codeword. To associate the training vector with the higher indexed codeword, select Higher indexed codeword.

With each iteration, the block updates the codeword values in order to minimize the distortion. The Codebook update method parameter defines the way the block calculates these new codebook values.

Note If, for the Distortion measure parameter, you choose Squared error, the Codebook update method parameter is set to Mean.

\section*{Vector Quantizer Design}

If, for the Distortion measure parameter, you choose Weighted squared error and you choose Mean for the Codebook update method parameter, the new codeword vector is found as follows. Suppose there are three training vectors associated with one codeword vector. The training vectors are
\[
T S_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], T S_{3}=\left[\begin{array}{l}
10 \\
12
\end{array}\right], \text { and } T S_{7}=\left[\begin{array}{l}
11 \\
12
\end{array}\right]
\]

The new codeword vector is calculated as
\[
C W_{\text {new }}=\left[\begin{array}{l}
\frac{1+10+11}{3} \\
\frac{2+12+12}{3}
\end{array}\right]
\]
where the denominator is the number of training vectors associated with this codeword. If, for the Codebook update method parameter, you choose Centroid and you specify the weighting factors \(W_{1}=\left[\begin{array}{l}0.1 \\ 0.2\end{array}\right]\),
\[
\begin{gathered}
W_{3}=\left[\begin{array}{c}
1 \\
0.6
\end{array}\right], \text { and } W_{7}=\left[\begin{array}{l}
0.3 \\
0.4
\end{array}\right], \text { the new codeword vector is calculated as } \\
C W_{\text {new }}=\left[\begin{array}{c}
\frac{(0.1)(1)+(1)(10)+(0.3)(11)}{0.1+1+0.3} \\
\frac{(0.2)(2)+(0.6)(12)+(0.4)(12)}{0.2+0.6+0.4}
\end{array}\right]
\end{gathered}
\]

Click Design and Plot to design the quantizer with the parameter values specified on the left side of the GUI. The performance curve and the entropy of the quantizer are updated and displayed in the figures on the right side of the GUI.

\section*{Vector Quantizer Design}

Note You must click Design and Plot to apply any changes you make to the parameter values in the VQDTool dialog box.

The following is an example of how the block calculates the entropy of the quantizer at each iteration. Suppose you have a codebook with four codewords and a training set with 200 training vectors. Also suppose that, at the \(i\)-th iteration, 40 training vectors are associated with the first codeword, 60 training vectors are associated with the second codeword, 20 training vectors are associated with the third codeword, and 80 training vectors are associated with the fourth codeword. The probability that a training vector is associated with the first codeword
is \(\frac{40}{200}\). The probabilities that training vectors are associated with the second, third, and fourth codewords are \(\frac{60}{200}, \frac{20}{200}\), and \(\frac{80}{200}\), respectively. The GUI uses these probabilities to calculate the entropy according to the equation
\[
H=\sum_{i=1}^{N}-p_{i} \log _{2} p_{i}
\]
where \(N\) is the number of codewords. Based on these probabilities, the GUI calculates the entropy of the quantizer at the \(i\)-th iteration as
\[
\begin{aligned}
& H=-\left(\frac{40}{200} \log _{2} \frac{40}{200}+\frac{60}{200} \log _{2} \frac{60}{200}+\frac{20}{200} \log _{2} \frac{20}{200}+\frac{80}{200} \log _{2} \frac{80}{200}\right) \\
& H=1.8464
\end{aligned}
\]

VQDTool can export parameter values that correspond to the figures displayed in the GUI. Click the Export Outputs button, or press Ctrl+E, to export the Final Codebook, Mean Square Error, and Entropy values to the workspace, a text file, or a MAT-file.

\section*{Vector Quantizer Design}

In the Model section of the GUI, specify the destination of the block that will contain the parameters of your quantizer. For Destination, select Current model to create a block with your parameters in the model you most recently selected. Type gcs in the MATLAB Command Window to display the name of your current model. Select New model to create a block in a new model file.

From the Block type list, select Encoder to design a Vector Quantizer Encoder block. Select Decoder to design a Vector Quantizer Decoder block. Select Both to design a Vector Quantizer Encoder block and a Vector Quantizer Decoder block.

In the Encoder block name field, enter a name for the Vector Quantizer Encoder block. In the Decoder block name field, enter a name for the Vector Quantizer Decoder block. When you have a Vector Quantizer Encoder and/or Decoder block in your destination model with the same name, select the Overwrite target block check box to replace the block's parameters with the current parameters. When you do not select this check box, a new Vector Quantizer Encoder and/or Decoder block is created in your destination model.

Click Generate Model. VQDTool uses the parameters that correspond to the current plots to set the parameters of the Vector Quantizer Encoder and/or Decoder blocks.

\section*{Vector Quantizer Design}

Dialog
Box


\section*{Vector Quantizer Design}

\section*{Training Set}

Enter the samples of the signal you would like to quantize. This data set can be a MATLAB function or a variable defined in the MATLAB workspace. The typical length of this data vector is 1 e 5 .

\section*{Source of initial codebook}

Select Auto-generate to have the block choose the initial codebook values. Choose User defined to enter your own initial codebook values.

\section*{Number of levels}

Enter the number of codeword vectors, \(N\), in your codebook matrix, where \(N \geq 2\).

\section*{Initial codebook}

Enter your initial codebook values. From the Source of initial codebook list, select User defined in order to activate this parameter. The codebook must have the same number of rows as the training set. You must provide at least two codeword vectors.

\section*{Distortion measure}

When you select Squared error, the block finds the nearest codeword by calculating the squared error (unweighted). When you select Weighted squared error, the block finds the nearest codeword by calculating the weighted squared error.

\section*{Weighting factor}

Enter a vector or matrix. The block uses these values to compute the weighted squared error. When the weighting factor is a vector, its length must be equal to the number of rows in the training set. This weighting factor is used for each training vector. When the weighting factor is a matrix, it must be the same size as the training set matrix. The individual weighting factors cannot be negative. The weighting factor vector or matrix cannot contain all zeros.

\section*{Stopping criteria}

Choose Relative threshold to enter the maximum acceptable fractional drop in the squared quantization error. Choose Maximum iteration to specify the number of iterations at which to stop.

\section*{Vector Quantizer Design}

Choose Whichever comes first and the block stops the iteration process as soon as the relative threshold or maximum iteration value is attained.

\section*{Relative threshold}

This parameter is available when you choose Relative threshold or Whichever comes first for the Stopping criteria parameter. Enter the value that is the maximum acceptable fractional drop in the squared quantization error.

\section*{Maximum iteration}

This parameter is available when you choose Maximum iteration or Whichever comes first for the Stopping criteria parameter. Enter the maximum number of iterations you want the block to perform.

\section*{Tie-breaking rules}

When a training vector has the same distortion for two different codeword vectors, select Lower indexed codeword to associate the training vector with the lower indexed codeword. Select Higher indexed codeword to associate the training vector with the lower indexed codeword.

\section*{Codebook update method}

When you choose Mean, the new codeword vector is calculated by taking the average of all the training vector values that were associated with the original codeword vector. When you choose Centroid, the block calculates the new codeword vector by taking the weighted average of all the training vector values that were associated with the original codeword vector Note that if, for the Distortion measure parameter, you choose Squared error, the Codebook update method parameter is set to Mean.

\section*{Destination}

Choose Current model to create a Vector Quantizer block in the model you most recently selected. Type gcs in the MATLAB Command Window to display the name of your current model. Choose New model to create a block in a new model file.

\section*{Vector Quantizer Design}

\section*{Block type}

Select Encoder to design a Vector Quantizer Encoder block. Select Decoder to design a Vector Quantizer Decoder block. Select Both to design a Vector Quantizer Encoder block and a Vector Quantizer Decoder block.

\section*{Encoder block name}

Enter a name for the Vector Quantizer Encoder block.

\section*{Decoder block name}

Enter a name for the Vector Quantizer Decoder block.

\section*{Overwrite target block}

When you do not select this check box and a Vector Quantizer Encoder and/or Decoder block with the same block name exists in the destination model, a new Vector Quantizer Encoder and/or Decoder block is created in the destination model. When you select this check box and a Vector Quantizer Encoder and/or Decoder block with the same block name exists in the destination model, the parameters of these blocks are overwritten by new parameters.

\section*{Generate Model}

Click this button and VQDTool uses the parameters that correspond to the current plots to set the parameters of the Vector Quantizer Encoder and/or Decoder blocks.

\section*{Design and Plot}

Click this button to design a quantizer using the parameters on the left side of the GUI and to update the performance curve and entropy plots on the right side of the GUI.

You must click Design and Plot to apply any changes you make to the parameter values in the VQDTool GUI.

\section*{Export Outputs}

Click this button, or press Ctrl+E, to export the Final Codebook, Mean Squared Error, and Entropy values to the workspace, a text file, or a MAT-file.

\section*{Vector Quantizer Design}

\author{
References Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer Academic Publishers, 1992. \\ \section*{Supported Data Types \\ \\ - Double-precision floating point} \\ See Also \\ \begin{tabular}{ll} 
Quantizer & Simulink \\
Scalar Quantizer Decoder & Signal Processing Blockset \\
Scalar Quantizer Design & Signal Processing Blockset \\
Uniform Encoder & Signal Processing Blockset \\
Uniform Decoder & Signal Processing Blockset \\
Vector Quantizer Decoder & Signal Processing Blockset \\
Vector Quantizer Encoder & Signal Processing Blockset
\end{tabular}
}

\section*{Vector Quantizer Encoder}

\section*{Purpose}

\section*{Library}

\section*{Description}


For given input, find index of nearest codeword based on Euclidean or weighted Euclidean distance measure

Quantizers
dspquant2
The Vector Quantizer Encoder block compares each input column vector to the codeword vectors in the codebook matrix. Each column of this codebook matrix is a codeword. The block finds the codeword vector nearest to the input column vector and returns its zero-based index. This block supports real floating-point and fixed-point signals on all input ports.

The block finds the nearest codeword by calculating the distortion. The block uses two methods for calculating distortion: Euclidean squared error (unweighted) and weighted Euclidean squared error. Consider
the codebook, \(C B=\left[\begin{array}{llll}C W_{1} & C W_{2} & \ldots & C W_{N}\end{array}\right]\). This codebook has \(N\) codewords; each codeword has \(k\) elements. The \(i\)-th codeword is defined as a column vector, \(C W_{i}=\left[\begin{array}{llll}a_{1 i} & a_{2 i} & \ldots & a_{k i}\end{array}\right]\). The multichannel input has \(M\) columns and is defined as \(U=\left[\begin{array}{llll}U_{1} & U_{2} & \ldots & U_{M}\end{array}\right]\), where the \(p\)-th input column vector is \(U_{p}=\left[\begin{array}{llll}u_{1 p} & u_{2 p} & \ldots & u_{k p}\end{array}\right]^{\prime}\). The squared error (unweighted) is calculated using the equation
\[
D=\sum_{j=1}^{k}\left(a_{j i}-u_{j p}\right)^{2}
\]

The weighted squared error is calculated using the equation
\[
D=\sum_{j=1}^{k} w_{j}\left(a_{j i}-u_{j p}\right)^{2}
\]

\section*{Vector Quantizer Encoder}
where the weighting factor is defined as \(W=\left[\begin{array}{llll}w_{1} & w_{2} & \ldots & w_{k}\end{array}\right]\). The index of the codeword that is associated with the minimum distortion is assigned to the input column vector.

You can select how you want to enter the codebook values using the Source of codebook parameter. When you select Specify via dialog, you can type the codebook values into the block parameters dialog box. Select Input port and port C appears on the block. The block uses the input to port C as the Codebook parameter.

The Codebook parameter is an \(k\)-by- \(N\) matrix of values, where \(k \geq 1\) and \(N \geq 1\). Each input column vector is compared to this codebook. Each column of the codebook matrix is a codeword, and each codeword has an index value. The first codeword vector corresponds to an index value of 0 , the second codeword vector corresponds to an index value of 1 , and so on. The codeword vectors must have the same number of rows as the input, U .

For the Distortion measure parameter, select Squared error when you want the block to calculate the distortion by evaluating the Euclidean distance between the input column vector and each codeword in the codebook. Select Weighted squared error when you want to use a weighting factor to emphasize or deemphasize certain input values.

For the Source of weighting factor parameter, select Specify via dialog to enter a weighting factor vector in the dialog box. Choose Input port to specify the weighting factor using port W .

Use the Weighting factor parameter to emphasize or deemphasize certain input values when calculating the distortion measure. For example, consider the \(p\)-th input column vector, \(U_{p}\), as previously defined. When you want to neglect the effect of the first element of this vector, enter [ \(\left.\begin{array}{lllll}0 & 1 & 1 & \ldots & 1\end{array}\right]\) as the Weighting factor parameter. This weighting factor is used to calculate the weighted squared error using the equation

\section*{Vector Quantizer Encoder}
\[
D=\sum_{j=1}^{k} w_{j}\left(a_{j i}-u_{j p}\right)^{2}
\]

Because of the weighting factor used in this example, the weighted squared error is not affected by the first element of the input matrix. Therefore, the first element of the input column vector no longer impacts the choice of index value output by the Vector Quantizer Encoder block.

Use the Index output data type parameter to specify the data type of the index values output at port I. The data type of the index values can be int8, uint8, int16, uint16, int32, or uint32.

When an input vector is equidistant from two codewords, the block uses the Tie-breaking rule parameter to determine which index value the block chooses. When you want the input vector to be represented by the lower index valued codeword, select Choose the lower index. To represent the input column vector by the higher index valued codeword, select Choose the higher index.

Select the Output codeword check box to output at port \(Q(U)\) the codeword vectors that correspond to each index value. When the input is a matrix, the corresponding codeword vectors are horizontally concatenated into a matrix.

Select the Output quantization error check box to output at port D the quantization error that results when the block represents the input column vector by its nearest codeword. When the input is a matrix, the quantization error values are horizontally concatenated.

The Vector Quantizer Encoder block accepts real floating-point and fixed-point inputs. For more information on the data types accepted by each port, see "Data Type Support" on page 2-1441 or "Supported Data Types" on page 2-1448.

\section*{Data Type Support}

The input data values, codebook values, and weighting factor values are input to the block at ports U, C, and W, respectively. The data type of the input data values, codebook values, and weighting factor values can

\section*{Vector Quantizer Encoder}
be double, single, or Fixed-point. The input data, codebook values, and weighting factor must be the same data type.

The outputs of the block are the index values, output codewords, and quantization error. Use the Index output data type parameter to specify the data type of the index output from the block at port I. The data type of the index can be int8, uint8, int16, uint16, int32, or uint32. The data type of the output codewords and the quantization error can be double, single, or Fixed-point. The block assigns the data type of the output codewords and the quantization error based on the data type of the input data.

\section*{Fixed-Point Data Types}

The following diagram shows the data types used within the Vector Quantizer Encoder block for fixed-point signals.


You can set the product output, accumulator, and index output data types in the block dialog as discussed below.

\section*{Vector Quantizer Encoder}

Dialog Box

The Main pane of the Vector Quantizer Encoder block dialog appears as follows.

Function Block Parameters: Vector Quantizer Encoder
Vector Quantizer Encoder
For each input column vector, the block outputs a zero-based index value of the nearest codeword. You can choose to output the nearest codeword and corresponding quantization error for each input column vector. Each column of the Codebook parameter represents a codeword. If you choose to specify a weighting factor, it must be a vector having length equal to the number of rows of your input. The block applies the same codebook and weighting factor to each input column vector.

All the inputs to the block must be the same data type. The output index values can be signed or unsigned integers. All other outputs have the same data type as the inputs.

\begin{tabular}{|c|c|c|c|}
\hline OK & Cancel & Help & Apply \\
\hline
\end{tabular}

\section*{Vector Quantizer Encoder}

\section*{Source of codebook}

Choose Specify via dialog to type the codebook values into the block parameters dialog box. Select Input port to specify the codebook values using the block's input port, C.

\section*{Codebook}

Enter a \(k\)-by- \(N\) matrix of values, where \(1 \leq k\) and \(1 \leq N\), to which your input column vector or matrix is compared. This parameter is visible if, from the Source of codebook list, you select Specify via dialog.

\section*{Distortion measure}

Select Squared error when you want the block to calculate the distortion by evaluating the Euclidean distance between the input column vector and each codeword in the codebook. Select Weighted squared error when you want the block to calculate the distortion by evaluating a weighted Euclidean distance using a weighting factor to emphasize or deemphasize certain input values.

\section*{Source of weighting factor}

Select Specify via dialog to enter a value for the weighting factor in the dialog box. Choose Input port and specify the weighting factor using port W on the block. This parameter is visible if, for the Distortion measure parameter, you select Weighted squared error.

\section*{Weighting factor}

Enter a vector of values. This vector must have length equal to the number of rows of the input, U . This parameter is visible if, for the Source of weighting factor parameter, you select Specify via dialog.

\section*{Tie-breaking rule}

Set this parameter to determine the behavior of the block when an input column vector is equidistant from two codewords. When you want the input column vector to be represented by the lower index valued codeword, select Choose the lower index. To represent
the input column vector by the higher index valued codeword, select Choose the higher index.

\section*{Output codeword}

Select this check box to output the codeword vectors nearest to the input column vectors.

\section*{Output quantization error}

Select this check box to output the quantization error value that results when the block represents the input column vector by the nearest codeword.

\section*{Index output data type}

Select int8, uint8, int16, uint16, int32, or uint32 as the data type of the index output at port I.

The Fixed-point pane of the Vector Quantizer Encoder block dialog appears as follows.

\section*{Vector Quantizer Encoder}

Function Block Parameters: Vector Quantizer Encoder
- Vector Quantizer Encoder

For each input column vector, the block outputs a zero-based index value of the nearest codeword. You can choose to output the nearest codeword and corresponding quantization error for each input column vector. Each column of the Codebook parameter represents a codeword. If you choose to specify a weighting factor, it must be a vector having length equal to the number of rows of your input. The block applies the same codebook and weighting factor to each input column vector.

All the inputs to the block must be the same data type. The output index values can be signed or unsigned integers. All other outputs have the same data type as the inputs.

\section*{Main Fixed-point}

Settings on this pane only apply when block inputs are fixed-point signals.
-Fixed-point operational parameters
Rounding mode: Floor \(\quad \nabla\) Overlow mode: Wrap



\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode to be used when block inputs are fixed point.

\section*{Vector Quantizer Encoder}

\section*{Product output}


As depicted above, the output of the multiplier is placed into the product output data type and scaling. Use this parameter to specify how you would like to designate this product output word and fraction lengths.
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and zero bias.

\section*{Accumulator}


As depicted above, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as each element of the input is added to it. Use this parameter to specify how you would like to designate the accumulator word and fraction lengths.

\section*{Vector Quantizer Encoder}
- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and zero bias.

\section*{References}

Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer Academic Publishers, 1992.

Supported Data Types
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline U & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point (signed only) \\
• 8-, 16-, and 32-bit signed integers
\end{tabular}

\section*{Vector Quantizer Encoder}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline I & \begin{tabular}{l}
- 8 -, 16-, and 32 -bit signed integers \\
- 8 -, 16-, and 32 -bit unsigned integers
\end{tabular} \\
\hline Q(U) & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed only) \\
- 8 -, 16-, and 32 -bit signed integers
\end{tabular} \\
\hline D & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed only) \\
- 8 -, 16-, and 32 -bit signed integers
\end{tabular} \\
\hline
\end{tabular}

Quantizer
Scalar Quantizer Decoder

Scalar Quantizer Design

Uniform Encoder
Uniform Decoder
Vector Quantizer Decoder

Simulink
Signal Processing Blockset

Signal Processing Blockset

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

\section*{Vector Scope}


Display vector or matrix of time-domain, frequency-domain, or user-defined data

Signal Processing Sinks
dspsnks4

The Vector Scope block is a comprehensive display tool similar to a digital oscilloscope. The block can display time-domain, frequency-domain, or user-defined signals. You can use the Vector Scope block to plot consecutive time samples from a frame-based vector, or to plot vectors containing data such as filter coefficients or spectral magnitudes. To compute and plot the periodogram of a signal with a single block, use the Spectrum Scope block.

The input to the Vector Scope block can be any real-valued \(M\)-by- \(N\) matrix, column or row vector, or 1-D (unoriented) vector, where 1-D vectors are treated as column vectors. Regardless of the input frame status, the block treats each column of an \(M\)-by- \(N\) input as an independent channel of data with \(M\) consecutive samples.

The block plots each sample of each input channel sequentially across the horizontal axis of the plot.

\section*{Scope Properties Pane}

The Scope Properties pane enables you to plot time-domain, frequency-domain, or user-defined data, and adjust the horizontal display span of the plot. The scope displays frames of data, and updates the display for each new input frame.

The Input domain parameter specifies the domain of the input data. If you select Time, for \(M\)-by- \(N\) inputs containing time-domain data, the block treats each of the \(N\) input frames (columns) as a succession of \(M\) consecutive samples taken from a time series. That is, each data point in the input frame is assumed to correspond to a unique time value. Also, the Time display span (number of frames) parameter appears on the pane. Enter a scalar value greater than or equal to one that corresponds to the number of frames to be displayed across the width of the scope window.

\section*{Vector Scope}

If you select Frequency for the Input domain parameter, for \(M\)-by- \(N\) inputs containing frequency-domain data, the block treats each of the \(N\) input frames (columns) as a vector of spectral magnitude data corresponding to \(M\) consecutive ascending frequency indices. That is, when the input is a single column vector, \(u\), each value in the input frame, \(u(i)\), is assumed to correspond to a unique frequency value, \(f(i)\), where \(f(i+1)>f(i)\).

If you select User-defined for the Input domain parameter, the block does not assume that the input frame data is time-domain or frequency-domain data. You can plot the data in the appropriate manner. Also, the Horizontal display span (number of frames) parameter appears on the pane. Enter a scalar value greater than or equal to one that corresponds to the number of frames to be displayed across the width of the scope window.


\section*{Display Properties Pane}

The Display Properties pane enables you to control how the block displays your data.

\section*{Vector Scope}

The Show grid parameter toggles the background grid on and off.
If you select the Persistence check box, the window maintains successive displays. That is, the scope does not erase the display after each frame (or collection of frames), but overlays successive input frames in the scope display.

If you select the Frame number check box, the block displays the number of the current frame in the input sequence on the scope window, and the block increments the count as each new input is received. Counting starts at 1 with the first input frame, and continues until the simulation stops.

If you select the Channel legend check box, a legend indicating the line color, style, and marker of each channel's data is added. When the input signal is labeled, that label appears in the channel legend. When the input signal is not labeled, but comes from a Concatenate block or a Mux block with labeled inputs, those labels appear in the channel legend. Otherwise, each channel in the legend is labeled with the channel number (CH 1, CH 2, etc.). Click and drag the legend to reposition it in the scope window; double-click on the line label to edit the text. If you rerun the simulation, the labels revert to the defaults.

If you select the Compact display check box, the scope completely fills the figure window. The scope does not display menus and axis titles, but it does show the numerical axis labels within the axes. If you clear the Compact display check box, the scope displays the axis labels and titles in a gray border surrounding the scope axes, and the window's menus and toolbar become visible.

If you select the Open scope at start of simulation check box, the scope opens at the start of the simulation. If you clear this parameter, the scope does not open automatically during the simulation. You can use this feature when you have several scope blocks in a model, and you do not want to view all the associated scopes during the simulation.

If you want to view a scope window that is not open during simulation, click Open scope immediately on the Display Properties pane of the desired Scope block.

\section*{Vector Scope}

The Scope position parameter specifies a four-element vector of the form
[left bottom width height]
specifying the position of the scope window on the screen, where \((0,0)\) is the lower-left corner of the display. See the MATLAB figure function for more information.

\section*{Axis Properties Pane}

The parameters that are available on the Axis Properties pane depend on the setting of the Input domain parameter on the Scope Properties pane.

\section*{Time Domain Inputs}

When Time display limits is set to Auto, the block scales the horizontal axis of time-domain signals automatically. The range of the
time axis is \(\left[0, S * T_{f i}\right]\), where \(T_{f i}\) is the input frame period, and \(S\) is the Time display span (number of frames) parameter on the Scope

Properties pane. The spacing between time points is \(T_{f i} /(M-1)\), where \(M\) is the number of samples in each consecutive input frame.

When Time display limits is set to User-defined, the Minimum X-limit (s) and Maximum X-limit (s) parameters set the range of the horizontal axis.

Minimum Y-limit and Maximum Y-limit parameters set the range of the vertical axis. Setting these parameters is analogous to setting the ymin and ymax values of the MATLAB axis function.

The \(\mathbf{Y}\)-axis label is the text displayed to the left of the \(y\)-axis.

\section*{Vector Scope}

\section*{Frequency Domain Inputs}

The Frequency units parameter specifies whether the frequency axis values should be in units of Hertz or rad/sec. When the Frequency units parameter is set to Hertz, the spacing between frequency points
is \(1 /\left(M * T_{s}\right)\), where \(T_{s}\) is the sample time of the original time-domain signal. When the Frequency units parameter is set to rad/sec, the spacing between frequency points is \(2 \pi /\left(M * T_{s}\right)\).

The Frequency range parameter specifies the range of frequencies over which the magnitudes in the input should be plotted. The available options are [0..Fs/2], [-Fs/2..Fs/2], and [0..Fs], where Fs is the original time-domain signal's sample frequency. The Vector Scope block assumes that the input data spans the range \(\left[0, F_{s}\right.\) ), which is the same as the output from an FFT. To plot over the range [0..Fs/2] the scope truncates the input vector, leaving only the first half of the data, then plots these remaining samples over half the frequency range. To plot over the range [-Fs/2..Fs/2], the scope reorders the input vector elements such that the last half of the data becomes the first half, and vice versa; then it relabels the \(x\)-axis accordingly.

If you select the Inherit sample time from input check box for frequency domain inputs, the block scales the frequency axis by reconstructing the frequency data from the frame-period of the frequency-domain input. This is valid when the following conditions hold:
- Each frame of frequency-domain data shares the same length as the frame of time-domain data from which it was generated; for example, when the FFT is computed on the same number of points as are contained in the time-domain input.
- The sample period of the time-domain signal in the simulation is equal to the period with which the physical signal was originally sampled.

\section*{Vector Scope}
- Consecutive frames containing the time-domain signal do not overlap each other; that is, a particular signal sample does not appear in more than one sequential frame.

In cases where not all of these conditions hold, specify the appropriate value for the Sample time of original time series parameter.

When Frequency display limits is set to Auto, the block scales the horizontal axis of frequency-domain signals automatically. To do this, the Vector Scope block needs to know the sample period of the original time-domain sequence represented by the frequency-domain data. Specify this period by entering a value for the Sample time of original time series parameter.

When Frequency display limits is set to User-defined, the Minimum frequency and Maximum frequency parameters set the range of the horizontal axis.

The \(\mathbf{Y}\)-axis scaling parameter allows you to select Magnitude or dB scaling along the \(y\)-axis.

Minimum Y-limit and Maximum Y-limit parameters set the range of the vertical axis. Setting these parameters is analogous to setting the ymin and ymax values of the MATLAB axis function.

The \(\mathbf{Y}\)-axis label is the text displayed to the left of the \(y\)-axis.

\section*{User-Defined Inputs}

If you select the Inherit sample increment from input check box for user-defined input domains, the block scales the horizontal axis by computing the horizontal interval between samples in the input frame from the frame period of the input. For example, when the input frame period is 1 , and there are 64 samples per input frame, the interval between samples is computed to be \(1 / 64\). Computing the interval this way is usually only valid when the following conditions hold:
- The input is a nonoverlapping time series; the \(x\)-axis on the scope represents time.

\section*{Vector Scope}
- The input's sample period (1/64 in the above example) is equal to the period with which the physical signal was originally sampled.

In cases where not all of these conditions hold, use the \(\mathbf{X}\) display offset (samples) and Increment per sample in input parameters.

The \(\mathbf{X}\)-axis title is the text displayed below the \(x\)-axis.
When \(\mathbf{X}\) display limits is set to Auto, the block scales the horizontal axis of user-defined domain signals automatically. To do this, the Vector Scope block needs to know the spacing of the input data. Specify this spacing using the Increment per sample in input parameter, \(I_{s}\). This parameter represents the numerical interval between adjacent \(x\)-axis points corresponding to the input data. The range of the horizontal axis
is \(\left[0, M * I_{s} * S\right]\), where \(M\) is the number of samples in each consecutive input frame, and \(S\) is the Horizontal display span (number of frames) parameter that you specify in the Scope Properties pane.

When X display limits is set to User-defined, the Minimum X-limit (samples) and Maximum X-limit (samples) parameters set the range of the horizontal axis.

Minimum Y-limit and Maximum Y-limit parameters set the range of the vertical axis. Setting these parameters is analogous to setting the ymin and ymax values of the MATLAB axis function.

The \(\mathbf{Y}\)-axis label is the text displayed to the left of the \(y\)-axis.

\section*{Line Properties Pane}

Use the parameters on the Line Properties pane to help you distinguish between two or more independent channels of data on the scope.

The Line visibilities parameter specifies which channel's data is displayed on the scope, and which is hidden. The syntax specifies the visibilities in list form, where the term on or off as a list entry specifies the visibility of the corresponding channel's data. The list entries are separated by the pipe symbol, I.

\section*{Vector Scope}

For example, a five-channel signal would ordinarily generate five distinct plots on the scope. To disable plotting of the third and fifth lines, enter the following visibility specification in the Line visibilities parameter.
```

 on | on | off | on | off
 ch 1 ch 2 ch 3 ch 4 ch 5

```

Note that the first (leftmost) list item corresponds to the first signal channel (leftmost column of the input matrix).

The Line styles parameter specifies the line style with which each channel's data is displayed on the scope. The syntax specifies the channel line styles in list form, with each list entry specifying a style for the corresponding channel's data. The list entries are separated by the pipe symbol, |.

For example, a five-channel signal would ordinarily generate all five plots with a solid line style. To plot each line with a different style, enter
```

 - | -- | : | -. | -
 ch 1 ch 2 ch 3 ch 4 ch 5

```

These settings plot the signal channels with the following styles.
\begin{tabular}{|c|c|c|}
\hline Line Style & Command to Type in Line Style Parameter & Appearance \\
\hline Solid & - & \\
\hline Dashed & -- & \\
\hline Dotted & : & \\
\hline Dash-dot & -. & - \\
\hline No line & none & No line appears \\
\hline
\end{tabular}

\section*{Vector Scope}

Note that the first (leftmost) list item, ' - ' , corresponds to the first signal channel (leftmost column of the input matrix). See the LineStyle property of the MATLAB line function for more information about the style syntax.

The Line markers parameter specifies the marker style with which each channel's samples are represented on the scope. The syntax specifies the channels' marker styles in list form, with each list entry specifying a marker for the corresponding channel's data. The list entries are separated by the pipe symbol, |.

For example, a five-channel signal would ordinarily generate all five plots with no marker symbol (that is, the individual sample points are not marked on the scope). To instead plot each line with a different marker style, you could enter


These settings plot the signal channels with the following styles.
\begin{tabular}{|c|c|c|}
\hline Marker Style & Command to Type in Marker Style Parameter & Appearance \\
\hline Asterisk & * & * * * \\
\hline Point & . & \(\longrightarrow\) \\
\hline Cross & x & * \({ }^{*}\) \\
\hline
\end{tabular}

\section*{Vector Scope}
\begin{tabular}{l|l|l}
\hline & \begin{tabular}{l} 
Command \\
to Type in \\
Marker Style \\
Parameter
\end{tabular} & Appearance \\
\hline Marker Style & s & \\
\hline Square & d & \\
\hline Diamond & & \\
\hline
\end{tabular}

Note that the leftmost list item, ' *' , corresponds to the first signal channel or leftmost column of the input matrix. See the Marker property of the MATLAB line function for more information about the available markers.

To produce a stem plot for the data in a particular channel, type the word stem instead of one of the basic marker shapes.

The Line colors parameter specifies the color in which each channel's data is displayed on the scope. The syntax specifies the channel colors in list form, with each list entry specifying a color (in one of the MATLAB ColorSpec formats) for the corresponding channel's data. The list entries are separated by the pipe symbol, ।.

For example, a five-channel signal would ordinarily generate all five plots in the color black. To instead plot the lines with the color order below, enter


These settings plot the signal channels in the following colors (8-bit RGB equivalents shown in the center column).

\section*{Vector Scope}
\begin{tabular}{l|l|l}
\hline Color & RGB Equivalent & Appearance \\
\hline Black & \((0,0,0)\) & \\
\hline Blue & \((0,0,255)\) & \\
\hline Red & \((255,0,0)\) & \\
\hline Green & \((0,255,0)\) & \\
\hline \begin{tabular}{l} 
Dark \\
purple
\end{tabular} & \((192,0,192)\) & \\
\hline
\end{tabular}

Note that the leftmost list item, ' \(k\) ', corresponds to the first signal channel or leftmost column of the input matrix. See the MATLAB function ColorSpec for more information about the color syntax.

\section*{Vector Scope Window}

The title that appears in the title bar of the scope window is the same as the block title. In addition to the standard MATLAB figure window menus such as File, Window, and Help, the Vector Scope window contains View, Axes, and Channels menus.

The options in the View menu allow you to zoom in and out of the scope window:
- To zoom in on the scope window, you must first select View \(>\) Zoom

In or click the corresponding Zoom In toolbar button ( \(\oplus\) ). You can then zoom in by clicking in the center of your area of interest, or by clicking and dragging your cursor to draw a rectangular area of interest inside of the scope window.
- To zoom in on the \(x\)-axis of the scope window, you must first select View > Zoom X, or click the corresponding Zoom X-Axis toolbar
button \((\otimes)\) on the scope window. You can then zoom in on the \(x\)-axis with a single click inside the scope window or by clicking and dragging the cursor along the \(x\)-axis over your area of interest.
- To zoom in on the \(y\)-axis of the scope window, you must first select View > Zoom Y or click the corresponding Zoom Y-Axis toolbar button ( \(\delta D\) ). You can then zoom in on the \(y\)-axis with a single click inside the scope window or by clicking and dragging the cursor along the \(y\)-axis over your area of interest.
- To return to the original view of the scope window, you have the following options:
- Select Full View from the View menu .
- Click the Restore default view toolbar button ( \(\mathbb{X}\) ) on the Vector Scope window.
- Right-click inside the scope window, and select Reset to Original View.

Note To zoom out in smaller increments, you can right-click inside of the scope window and select Zoom Out. You can also zoom out by holding down the Shift key and clicking the left mouse button inside the scope window.

The parameters that you set using the Axes menu apply to all channels. Many of the parameters in this menu are also accessible through the block parameters dialog box. For descriptions of these parameters, see "Display Properties Pane" on page 2-1451. Below are descriptions of other parameters in the Axes menu:
- Refresh erases all data on the scope display, except for the most recent trace. This command is useful in conjunction with the Persistence setting.
- Autoscale resizes the \(y\)-axis to best fit the vertical range of the data.

\section*{Vector Scope}

Note The Minimum Y-limit and Maximum Y-limit parameters on the Axis properties pane of the block dialog are not updated to display the numerical limits selected by the autoscale feature. See "Zoom Capability for Spectrum Scope and Vector Scope Blocks" in the Signal Processing Blockset Release Notes for more information.
- Save Axes Settings allows you to save the current axes settings. When you select this option, the Minimum Y-limit and Maximum Y-limit parameters of the Axes Properties pane update with the current \(y\)-axes limits. The Time display limits (or Frequency display limits) parameter is set to User-defined, and the current \(x\)-axes limits are saved in the Minimum X-limit and Maximum X-limit (or Minimum Frequency and Maximum Frequency) parameters. To save these axes settings for your next MATLAB session, you need to resave your model.
- Save Scope Position updates the Scope position parameter on the Display Properties pane of the block dialog to reflect the scope window's current position and size. To make the scope window open at a particular location on the screen when the simulation runs, drag the window to the desired location, resize it, and select Save Scope Position from the Axes menu.

The properties listed in the Channels menu apply to a particular channel. All of the parameters in this menu are also accessible through the block parameters dialog box. For descriptions of these parameters, see "Line Properties Pane" on page 2-1456.

Many of these options can also be accessed by right-clicking with the mouse anywhere on the scope display. The menu that is displayed contains a combination of the options available in the View, Axes and Channels menus.

\section*{Vector Scope}

Note When you select Compact Display from the Axes menu, the scope window menus are no longer visible. Right-click in the Vector Scope window and click Compact Display in order to make the menus reappear.

\section*{Examples}

Dialog Box

See "Displaying Time-Domain Data" in the Signal Processing Blockset User's Guide.

\section*{Scope Properties Pane}


\section*{Input domain}

Select the domain of the input. Your choices are Time, Frequency, or User-defined. Tunable.

\section*{Vector Scope}

\section*{Time display span (number of frames)}

The number of consecutive frames to display (horizontally) on the scope at any one time. This parameter is visible when the Input domain parameter is set to Time.

\section*{Horizontal display span (number of frames)}

The number of consecutive frames to display (horizontally) on the scope at any one time. This parameter is visible when the Input domain parameter is set to User-defined.

\section*{Display Properties Pane}


\section*{Show grid}

Toggle the scope grid on and off. Tunable.

\section*{Persistence}

Select this check box to maintain successive displays. That is, the scope does not erase the display after each frame (or collection

\section*{Vector Scope}
of frames), but overlays successive input frames in the scope display. Tunable.

\section*{Frame number}

If you select this check box, the number of the current frame in the input sequence appears in the Vector Scope window. Tunable.

\section*{Channel legend}

Toggles the legend on and off. Tunable.

\section*{Compact display}

Resizes the scope to fill the window. Tunable.

\section*{Open scope at start of simulation}

Select this check box to open the scope at the start of the simulation. When this parameter is cleared, the scope does not open automatically during the simulation. Tunable.

\section*{Open scope immediately}

If the scope is not open during simulation, select this check box to open it. This parameter is visible only while the simulation is running.

\section*{Scope position}

A four-element vector of the form [left bottom width height] specifying the position of the scope window. \((0,0)\) is the lower-left corner of the display. Tunable.

\section*{Axis Properties Pane}

The parameters that are available on the Axis Properties pane depend on the setting of the Input domain parameter on the Scope Properties pane. When Time is selected for the Input domain parameter, the following parameters are available on the Axis Properties pane:

\section*{Vector Scope}

Sink Block Parameters: Vector Scope
Vector Scope
Display a vector or matrix of time-domain, frequency-domain, or user-specified data. Each column of a 2-D input matrix is plotted as a separate data channel. 1-D inputs are assumed to be a single data channel.

For frequency-domain operation, input should come from a source such as the Magnitude FFT block, or a block with equivalent data organization.
\begin{tabular}{|l|l|l|}
\hline Scope Properties & Display Properties & Axis Properties \\
Parameters & Line Properties \\
Time display limits: & Auto \\
Minimum Y-limit: & -10 \\
Maximum Y-limit: & 10 \\
Y-axis label: & Amplitude \\
\\
\hline
\end{tabular}
\(\square\) Cancel Help Apply

\section*{Time display limits}

Select Auto to have the limits of the \(x\)-axis set for you automatically, or User-defined to set the limits yourself in the Minimum X-limit (s) and Maximum X-limit (s) parameters.

\section*{Minimum X-limit (s)}

Specify the minimum value of the \(x\)-axis in seconds. This parameter is only visible if the Time display limits parameter is set to User-defined. Tunable.

\section*{Vector Scope}

\section*{Maximum X-limit (s)}

Specify the maximum value of the \(x\)-axis in seconds. This parameter is only visible if the Time display limits parameter is set to User-defined. Tunable.

\section*{Minimum Y-limit}

Specify the minimum value of the \(y\)-axis. Setting this parameter is analogous to setting the ymin value of the MATLAB axis function. Tunable.

\section*{Maximum Y-limit}

Specify the maximum value of the \(y\)-axis. Setting this parameter is analogous to setting the ymax value of the MATLAB axis function.Tunable.

\section*{Y-axis label}

Specify text to be displayed to the left of the \(y\)-axis. Tunable.
When Frequency is selected for the Input domain parameter, the following parameters are available on the Axis Properties pane:

\section*{Vector Scope}

Sink Block Parameters: Yector Scope
Vector Scope
Display a vector or matrix of time-domain, frequency-domain, or user-specified data. Each column of a 2-D input matrix is plotted as a separate data channel. 1-D inputs are assumed to be a single data channel.

For frequency-domain operation, input should come from a source such as the Magnitude FFT block, or a block with equivalent data organization.
\begin{tabular}{|c|c|c|c|}
\hline Scope Properties | Display Properties & Axis Properties & Line Properties & \\
\hline \multicolumn{4}{|l|}{Parameters} \\
\hline \multicolumn{3}{|l|}{Frequency units: Hertz} & \(\cdots\) \\
\hline Frequency range: [0...Fs/2] & & & \(\checkmark\) \\
\hline \multicolumn{4}{|l|}{\(\sqrt{\checkmark}\) Inherit sample time from input} \\
\hline Frequency display limits: Auto & & & \(\checkmark\) \\
\hline \(Y\)-axis scaling: dB & & & \(\checkmark\) \\
\hline \multicolumn{4}{|l|}{Minimum Y-limit: -10} \\
\hline \multicolumn{4}{|l|}{Maximum Y-limit: 10} \\
\hline Y-axis label: Amplitude & & & \\
\hline
\end{tabular}
\(\square\) Cancel Help Apply

\section*{Frequency units}

Choose the frequency units for the \(x\)-axis, Hertz or rad/sec. Tunable.

\section*{Vector Scope}

\section*{Frequency range}

Specify the frequency range over which to plot the data. Tunable.

\section*{Inherit sample time from input}

If you select this check box, the block computes the time-domain sample period from the frame period and frame size of the frequency-domain input. Use this parameter only when the length of the each frame of frequency-domain data is the same as the length of the frame of time-domain data from which it was generated. Tunable.

\section*{Sample time of original time series}

Enter the sample period, \(\mathrm{T}_{\mathrm{s}}\), of the original time-domain signal. This parameter is only visible when the Inherit sample time from input check box is not selected. Tunable.

\section*{Frequency display limits}

Select Auto to have the limits of the \(x\)-axis set for you automatically, or User-defined to set the limits yourself in the Minimum frequency and Maximum frequency parameters.

\section*{Minimum frequency}

Specify the minimum frequency value of the \(x\)-axis in Hertz or \(\mathrm{rad} / \mathrm{sec}\). This parameter is only visible if the Frequency display limits parameter is set to User-defined. Tunable.

\section*{Maximum frequency}

Specify the maximum frequency value of the \(x\)-axis in Hertz or \(\mathrm{rad} / \mathrm{sec}\). This parameter is only visible if the Frequency display limits parameter is set to User-defined. Tunable.

\section*{Y-axis scaling}

Choose either dB (decibel) or Magnitude scaling for the \(y\)-axis. Tunable.

\section*{Minimum Y-limit}

Specify the minimum value of the \(y\)-axis. Setting this parameter is analogous to setting the ymin value of the MATLAB axis function. Tunable.

\section*{Maximum Y-limit}

Specify the maximum value of the \(y\)-axis. Setting this parameter is analogous to setting the ymax value of the MATLAB axis function. Tunable.

\section*{Y-axis label}

Specify text to be displayed to the left of the \(y\)-axis. Tunable.
When User-defined is selected for the Input domain parameter, the following parameters are available on the Axis Properties pane:

\section*{Vector Scope}

Sink Block Parameters: Vector Scope
Vector Scope
Display a vector or matrix of time-domain, frequency-domain, or user-specified data. Each column of a 2-D input matrix is plotted as a separate data channel. 1-D inputs are assumed to be a single data channel.

For frequency-domain operation, input should come from a source such as the Magnitude FFT block, or a block with equivalent data organization.
\begin{tabular}{|l|l|l|}
\hline Scope Properties & Display Properties & Axis Properties \\
Parameters & Line Properties \\
V Inherit sample increment from input \\
X-axis title: & Time \\
X display limits & Auto \\
Minimum Y-limit: & -10 \\
Maximum Y-limit: & 10 \\
Y-axis label: Amplitude & \\
\hline
\end{tabular}
\(\square\) Cancel

\section*{Inherit sample increment from input}

When you select this check box, the block scales the horizontal axis by computing the horizontal interval between samples in the input frame from the frame period of the input. Use this parameter only when the input's sample period is equal to the period with which the physical signal was originally sampled. Tunable.

\section*{Vector Scope}

\section*{X display offset (samples)}

Specify an offset for the \(x\)-axis display in samples. This parameter is only visible when the Inherit sample increment from input check box is not selected. Tunable.

\section*{Increment per sample in input}

Enter the numerical interval between adjacent \(x\)-axis points corresponding to the user-defined input data. This parameter is only visible when the Inherit sample increment from input check box is not selected. Tunable.

\section*{X -axis title}

Enter the text to be displayed below the \(x\)-axis. Tunable.

\section*{X display limits}

Select Auto to have the limits of the \(x\)-axis set for you automatically, or User-defined to set the limits yourself in the Minimum X-limit (samples) and Maximum X-limit (samples) parameters.

\section*{Minimum X-limit (samples)}

Specify the minimum value of the \(x\)-axis in samples. This parameter is only visible if the \(\mathbf{X}\) display limits parameter is set to User-defined. Tunable.

Maximum X-limit (samples)
Specify the maximum value of the \(x\)-axis in samples. This parameter is only visible if the \(\mathbf{X}\) display limits parameter is set to User-defined. Tunable.

\section*{Minimum Y-limit}

Specify the minimum value of the \(y\)-axis. Setting this parameter is analogous to setting the ymin value of the MATLAB axis function. Tunable.

Maximum Y-limit
Specify the maximum value of the \(y\)-axis. Setting this parameter is analogous to setting the ymax value of the MATLAB axis function.Tunable.

\section*{Vector Scope}

\section*{Y-axis label}

Specify text to be displayed to the left of the \(y\)-axis. Tunable.

\section*{Line Properties Pane}


\section*{Line visibilities}

Enter on or off to specify the visibility of the various channels' scope traces. Separate your choices for each channel with by a pipe (I) symbol. Tunable.

\section*{Line styles}

Enter the line styles of the various channels' scope traces. Separate your choices for each channel with by a pipe (I) symbol. Tunable.

\section*{Vector Scope}

\section*{Line markers}

Enter the line markers of the various channels' scope traces. Separate your choices for each channel with by a pipe (I) symbol. Tunable.

\section*{Line colors}

Enter the colors of the various channels' scope traces using the ColorSpec formats. Separate your choices for each channel with by a pipe (I) symbol. Tunable.

\section*{Supported \\ Data \\ Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point (signed and unsigned) \\
& • Boolean \\
& • \(8-, 16-\)-, and 32 -bit signed integers \\
& \(\bullet 8-, 16-\)-, and 32 -bit unsigned integers \\
\hline
\end{tabular}

\author{
See Also \\ Matrix Viewer Signal Processing Blockset \\ Spectrum Scope Signal Processing Blockset
}

\section*{Purpose View vectors of data over time}

\section*{Library}

Signal Processing Sinks
dspsnks4

Description

Whaterfall
Scope

Waterfall

The Waterfall block displays multiple vectors of data at one time. These vectors represent the input data at consecutive sample times. The input to the block can be real or complex-valued data vectors of any data type including fixed-point data types. However, the input is converted to double-precision before the block processes the data. The Waterfall block displays only real-valued, double-precision vectors of data.

The data is displayed in a three-dimensional axis in the Waterfall window. By default, the \(x\)-axis represents amplitude, the \(y\)-axis represents samples, and the \(z\)-axis represents time. You can adjust the number of sample vectors that the block displays, move and resize the Waterfall window, and modify block parameter values during the simulation. The Waterfall window has toolbar buttons that enable you to zoom in on displayed data, suspend data capture, freeze the scope's display, save the scope position, and export data to the workspace. The toolbar buttons are labeled in the following figure, which shows the Waterfall window as it appears when you double-click a Waterfall block.

\section*{Waterfall}


\section*{Sections of This Reference Page}
- "Waterfall Parameters" on page 2-1477
- "Display Parameters" on page 2-1478
- "Axes Parameters" on page 2-1479
- "Data History Parameters" on page 2-1480
- "Triggering Parameters" on page 2-1481
- "Scope Trigger Function" on page 2-1484
- "Transform Parameters" on page 2-1487
- "Scope Transform Function" on page 2-1489
- "Examples" on page 2-1489

\section*{Waterfall Parameters}

You can control the display and behavior of the Waterfall window using the Parameters dialog box.

Note You can alter the Waterfall parameters while the simulation is running. However, when you make changes to values in text boxes, you must click Enter or click outside the text box before the block accepts your changes.

1 To open the Parameters dialog box, click the Scope parameters button.


\section*{Waterfall}

The Parameters dialog box appears.


2 Click on the different panes to enter parameter settings.

\section*{Display Parameters}

The following parameters control the Waterfall window's display.


\section*{Display traces}

Enter the number of vectors of data to be displayed in the Waterfall window.

\section*{Update interval}

Enter the number of vectors the block should store before it displays them to the window.

\section*{Colormap}

Choose a colormap for the displayed data.

\section*{Transparency}

Specify the transparency of the newest and oldest data vectors. Placing the slider in the left-most position tells the block to make the data vector transparent. Placing the slider in the right-most position tells the block to make the data vector opaque. The intermediate data vectors transition between the two chosen transparency values.

\section*{Axes Parameters}

The following parameters control the axes in the Waterfall window.


\section*{Y Min}

Enter the minimum value of the \(y\)-axis.

\section*{Y Max}

Enter the maximum value of the \(y\)-axis.

\section*{Waterfall}

\section*{Axis color}

Enter a background color for the axes. Specify the color using a character string. For example, to specify black, enter 'k'.

\section*{X Axis}

Enter the \(x\)-axis label.
Y Axis
Enter the \(y\)-axis label.
Z Axis
Enter the \(z\)-axis label.

\section*{Data History Parameters}

The following parameters control how many input data vectors the Waterfall block stores. They also control how the data is exported to the MATLAB workspace or SPTool.


\section*{History traces}

Enter the number of vectors (traces) that you want the block to store.

\section*{When the buffer is full}

Use this parameter to control the behavior of the block when the buffer is filled:
- Overwrite - The old data is replaced with the new data.
- Suspend - The block stops storing data in the buffer; however, the simulation continues to run.
- Extend - The block extends the buffer so that it can continue to store all the input data.

\section*{Data logging}

Use this parameter to control which data is exported from the block:
- Selected - The selected data vector is exported.
- All visible - All of the data vectors displayed in the Waterfall window are exported.
- All history - All of the data vectors stored in the block's history buffer are exported.

\section*{Export variable}

Enter the name of the variable that represents your data in the MATLAB workspace or SPTool. The default variable name is ExportData.

\section*{Export at end of simulation}

Select this check box to automatically export the data to the MATLAB workspace when the simulation stops.

\section*{Triggering Parameters}

The following parameters control when the Waterfall block starts and stops capturing data.

\section*{Waterfall}


\section*{Begin recording}

This parameter controls when the Waterfall block starts capturing data:
- Immediately - The Waterfall window captures the input data as soon as the simulation starts.
- After T seconds - The Time, T parameter appears in the dialog box. Enter the number of seconds the block should wait before it begins capturing data.
- After N inputs - The Count, \(\mathbf{N}\) parameter appears in the dialog box. Enter the number of inputs the block should receive before it begins capturing data.
- User-defined - The Function name parameter appears in the dialog box. Enter the name of a MATLAB function that defines when the block should begin capturing data. For more information about how you define this function, see "Scope Trigger Function" on page 2-1484.

\section*{Stop recording}

This parameter controls when the Waterfall block stops capturing data:
- Never - The block captures the input data as long as the simulation is running.
- After T seconds - The Time, T parameter appears in the dialog box. Enter the number of seconds the block should wait before it stops capturing data.
- After N inputs -The Count, \(\mathbf{N}\) parameter appears in the dialog box. Enter the number of inputs the block should receive before it stops capturing data.
- User-defined - The Function name parameter appears in the dialog box. Enter the name of a MATLAB function that defines when the block should stop capturing data. For more information about how you define this function, see "Scope Trigger Function" on page 2-1484.

\section*{Re-arm trigger}

This parameter controls when the Waterfall block begins waiting to capture data. It is available only when you select After T seconds, After N inputs, or User-defined for the Stop recording parameter:
- Never - The Waterfall Scope block starts and stops capturing data as defined by the Begin recording and Stop recording parameters.
- After T seconds - The Time, T parameter appears in the dialog box. Enter the number of seconds the block should wait before it begins waiting to capture data.
- After N inputs - The Count, \(\mathbf{N}\) parameter appears in the dialog box. Enter the number of inputs the block should receive before it begins waiting to capture data.
- User-defined - The Function name parameter appears in the dialog box. Enter the name of a MATLAB function that defines when the block should begin waiting to capture data. For more information about how you define this function, see "Scope Trigger Function" on page 2-1484.

\section*{Waterfall}

The triggering process is illustrated in the state diagram below.


\section*{Scope Trigger Function}

You can create custom scope trigger functions to control when the scope starts, stops, or begins waiting to capture data.


These functions must be valid MATLAB functions and be located either in the current folder or on the MATLAB path.

Each scope trigger function must have the following form
```

y = functionname(blk,t,u),

```
where functionname refers to the name you give your scope trigger function. The variable blk is the Simulink block handle. When the scope trigger function is called by the block, Simulink automatically populates this variable with the handle of the Waterfall block. The variable \(t\) is the current simulation time, represented by a real, double-precision, scalar value. The variable \(u\) is the vector input to the block. The output of the scope trigger function, \(y\), is interpreted as a logical signal. It is either true or false:
- Begin recording scope trigger function
- When the output of this scope trigger function is true, the Waterfall block starts capturing data.
- When the output is false, the block remains in its current state.
- Stop recording scope trigger function
- When the output of this scope trigger function is true, the block stops capturing data.

\section*{Waterfall}
- When the output is false, the block remains in its current state.
- Re-arm trigger scope trigger function
- When the output of this scope trigger function is true, the block waits for a begin recording event.
- When the output is false, the block remains in its current state.

Note The Waterfall block passes its input data directly to the scope trigger functions. These functions do not use the transformed data defined by the Transform parameters.

The following is an example of a scope trigger function. This function, called trigPower detects when the energy in u exceeds a certain threshold.
```

function y = trigPower(blk, t, u)
y = (u'*u > 2300);

```

The following is another example of a scope trigger function. This function, called count3, triggers the scope once three vectors with positive means are input to the block. Then, the function resets itself and begins searching for the next three input vectors with positive means. This scope trigger function is valid only when one Waterfall block is present in your model.
```

function y = count3(blk, t, u)
persistent state;
if isempty(state); state = 0; end
if mean(u)>0; state = state+1; end
y = (state>=3);
if y; state = 0; end

```

\section*{Transform Parameters}

The following parameters transform the input data to the Waterfall block. The result of the transform is displayed in the Waterfall window.


Note The block assumes that the input to the block corresponds to the Transform parameter you select. For example, when you choose Complex-> Angle, the block assumes that the input is complex. The block does not produce an error when the input is not complex. Therefore, you must verify the format of your input data to guarantee that a meaningful result is displayed in the Waterfall window.

\section*{Transform}

Choose a transform that you would like to apply to the input of the Waterfall block:
- None - The input is displayed as it is received by the block.
- Amplitude-> dB - The block converts the input amplitude into decibels.
- Complex-> Mag Lin - The block converts the complex input into linear magnitude.

\section*{Waterfall}
- Complex-> Mag dB - The block converts the complex input into magnitude in decibels.
- Complex-> Angle - The block converts the complex input into phase.
- FFT-> Mag Lin Fs/2 - The block takes the linear magnitude of the FFT input and plots it from 0 to the Nyquist frequency.
- FFT-> Mag dB Fs/2 - The block takes the magnitude of the FFT input, converts it to decibels, and plots it from 0 to the Nyquist frequency.
- FFT-> Angle Fs/2 - The block converts the FFT input into phase and plots it from 0 to the Nyquist frequency.
- Power-> dB - The block converts the input power into decibels.

\section*{Function}

This parameter is only available when you select User-defined fon for the Transform parameter. Enter a function that you would like to apply to the input of the Waterfall block. For more information about how you define this function, see "Scope Transform Function" on page 2-1489.

\section*{Expression}

This parameter is only available when you select User-defined expr for the Transform parameter. Enter an expression that you would like to apply to the input of the Waterfall block. The result of this expression must be real-valued. When you write the expression, be sure to include only one unknown variable. The block assumes this unknown variable represents the input to the block. When the block believes your expression is invalid, the following window appears.


When you click No, your expression is not applied to the input. When you click Yes and your expression is invalid, your simulation stops and Simulink displays an error.

\section*{Scope Transform Function}

You can create a scope transform function to control how the Waterfall block transforms your input data. This function must have a valid MATLAB function name and be located either in the current folder or on the MATLAB path.

Your scope transform function must have the following form
\(y=\) functionname(u),
where functionname refers to the name you give your function. The variable \(u\) is the real or complex vector input to the block. The output of the scope transform function, \(y\), must be a double-precision, real-valued vector. When it is not, the simulation stops and Simulink displays an error. Note that the output vector does not need to be the same size as the input vector.

The following examples illustrate some capabilities of the Waterfall block.
- "Exporting Data" on page 2-1490

\section*{Waterfall}
- "Capturing Data" on page 2-1491
- "Linking Scopes" on page 2-1491
- "Selecting Data" on page 2-1493
- "Zooming" on page 2-1495
- "Rotating the Display" on page 2-1495
- "Scaling the Axes" on page 2-1495
- "Saving Scope Settings" on page 2-1496

\section*{Exporting Data}

You can use the Waterfall block to export data to the MATLAB workspace or to SPTool:

1 Open and run the dspanc demo.
2 While the simulation is running, click the Export to Workspace button.

3 Type whos at the MATLAB command line.
The variable ExportData appears in your MATLAB workspace. ExportData is a 40-by- 6 matrix. This matrix represents the six data vectors that were present in the Waterfall window at the time you clicked the Export to Workspace button. Each column of this matrix contains 40 filter coefficients. The columns of data were captured at six consecutive instants in time.

You can control what data is exported using the Data logging parameter in Data history pane of the Parameters dialog box. For more information, see "Data History Parameters" on page 2-1480.

4 While the simulation is running, click the Export to SPTool button.
The SPTool GUI opens and the variable ExportData is displayed in the Signals list.

For more information about SPTool, see the Signal Processing Toolbox documentation.

\section*{Capturing Data}

You can use the Waterfall block to interact with your data while it is being captured:

1 Open and run the dspanc demo.
2 While the simulation is running, click the Suspend data capture button.

The Waterfall block no longer captures or displays the data coming from the Downsample block.

3 To continue capturing data, click the Resume data capture button.
4 To freeze the data display while continuing to capture data, click the Snapshot display button.

5 To view the Waterfall block that the data is coming from, click the Go to scope block button.

In the Simulink model window, the Waterfall block that corresponds to the active Waterfall window flashes. This feature is helpful when you have more than one Waterfall block in a model and you want to clarify which data is being displayed.

\section*{Linking Scopes}

You can link several Waterfall blocks together in order to capture the effect of a model event in all of the Waterfall windows in the model:

1 Open the dspanc demo.
2 Drag a second Waterfall block into the demo model.
3 Connect this block to the Output port of the LMS Filter block as shown in the figure below.

\section*{Waterfall}


4 Run the model and view the model behavior in both Waterfall windows.

5 In the dspanc/Waterfall window, click the Link scopes button.
6 In the same window, click the Suspend data capture button.
The data capture is suspended in both scope windows.
7 Click the Resume data capture button.
The data capture resumes in both scope windows.
8 In the dspanc/Waterfall window, click the Snapshot display button.

In both scope windows, the data display freezes while the block continues to capture data.

9 To continue displaying the captured data, click the Resume display button.

\section*{Selecting Data}

The following figure shows the Waterfall window displaying the output of the dspanc demo:


1 To select a particular set of data, click the Select button.
2 Click on the Time Bar at the bottom right of the axes to select a vector of data.

The Waterfall block highlights the selected trace.

\section*{Waterfall}


While the simulation is running, in the bottom right corner, the Waterfall window displays the relative index of the selected trace. For example, in the previous figure, the selected vector is two sample times away from the most current data vector. When the simulation is stopped, the Waterfall window displays both the relative index and the simulation time associated with the selected trace.

3 To deselect the data vector, click it again.
4 Click-and-drag along the Time Bar.
Your selection follows the movement of the pointer.

You can use this feature to choose a particular vector to export to the MATLAB workspace or SPTool. For more information, see "Data History Parameters" on page 2-1480.

\section*{Zooming}

You can use the Waterfall window to zoom in on data:
1 Click the Zoom camera button.
2 In the Waterfall window, click and hold down the left mouse button.
3 Move the mouse up and down and side-to-side to move closer and farther away from the axes.

4 To resize the axes to fit the Waterfall window, click the Fit to view button.

\section*{Rotating the Display}

You can rotate the data displayed in the Waterfall window:
1 Click on the Orbit camera button.
2 In the Waterfall window, click and hold down the left mouse button.
3 Move the mouse in a circular motion to rotate the axes.
4 To return to the position of the original axes, click the Restore scope position and view button.

\section*{Scaling the Axes}

You can use the Waterfall window to rescale the \(y\)-axis values:
1 Open and run the dspanc demo.
2 Click the Rescale amplitude button.
The \(y\)-axis changes so that its minimum value is zero. The maximum value is scaled to fit the data displayed.

\section*{Waterfall}

Alternatively, you can scale the \(y\)-axis using the \(\mathbf{Y}\) Min and \(\mathbf{Y}\) Max parameters in the Axes pane of the Parameters dialog box. This is helpful when you want to undo the effects of rescaling the amplitude. For more information, see "Axes Parameters" on page 2-1479.

\section*{Saving Scope Settings}

The Waterfall block can save the screen position and viewpoint of the Waterfall window:

\section*{1 Click the Save scope position and view button.}

2 Close the Waterfall window.
3 Reopen the Waterfall window.
It reopens at the same place on your screen. The viewpoint of the axes also remains the same.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& • Single-precision floating point \\
& • Fixed point (signed and unsigned) \\
& \(\bullet 8-, 16-\), and 32 -bit signed integers \\
& \(\bullet 8-, 16-\), and 32 -bit unsigned integers \\
\hline
\end{tabular}

The Waterfall block accepts any of these data types as input. However, the input is converted to double-precision before the block processes the data. The Waterfall block displays only real-valued, double-precision vectors of data.

\section*{See Also}

Scope
Time Scope

Simulink
Signal Processing Blockset
\begin{tabular}{ll} 
Vector Scope & Signal Processing Blockset \\
Spectrum Scope & Signal Processing Blockset \\
Matrix Viewer & Signal Processing Blockset \\
Signal To Workspace & Signal Processing Blockset \\
Triggered To & Signal Processing Blockset \\
Workspace &
\end{tabular}

\section*{Wavelet Analysis (Obsolete)}

\section*{Purpose}

\section*{Library}

\section*{Description}


Decompose signal into components of logarithmically decreasing frequency intervals and sample rates (requires the Wavelet Toolbox product)
dspobslib

Note The Wavelet Analysis block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the DWT block.

The Wavelet Analysis block uses the Wavelet Toolbox wfilters function to construct a dyadic analysis filter bank that decomposes a broadband signal into a collection of successively more bandlimited components. An \(n\)-level filter bank structure is shown below, where \(n\) is specified by the Number of levels parameter.

Wavelet Andysis Fiter Bank, nLevels


HP: highpass filter with \(f_{\mathrm{c}}\) za \(1 / 2\) Nyquist LP: low poss filter with \(f_{\mathrm{c}}=1 / 2\) Nyquist \(\downarrow\) 2: dow isample by 2
\(\mathrm{T}_{\infty}=\left(2^{k}\right) \mathrm{I}_{\mathrm{s}}\), for output \(y_{k}, 1 \leq k \leq n\) \(T_{\infty}=\left(2^{n}\right) T_{s}\) for output \(y_{n+1}\)

At each level, the low-frequency output of the previous level is decomposed into adjacent high- and low-frequency subbands by a highpass (HP) and lowpass (LP) filter pair. Each of the two output subbands is half the bandwidth of the input to that level. The

\section*{Wavelet Analysis (Obsolete)}
bandlimited output of each filter is maximally decimated by a factor of 2 to preserve the bit rate of the original signal.

\section*{Filter Coefficients}

The filter coefficients for the highpass and lowpass filters are computed by the Wavelet Toolbox function wfilters, based on the wavelet specified in the Wavelet name parameter. The table below lists the available options.
\begin{tabular}{l|l}
\hline Wavelet Name & \begin{tabular}{l} 
Sample Wavelet Function \\
Syntax
\end{tabular} \\
\hline Haar & wfilters ('haar') \\
\hline Daubechies & wfilters('db4') \\
\hline Symlets & wfilters('sym3') \\
\hline Coiflets & wfilters('coif1') \\
\hline Biorthogonal & wfilters('bior3.1') \\
\hline Reverse Biorthogonal & wfilters('rbio3.1') \\
\hline Discrete Meyer & wfilters('dmey') \\
\hline
\end{tabular}

The Daubechies, Symlets, and Coiflets options enable a secondary Wavelet order parameter that allows you to specify the wavelet order. For example, if you specify a Daubechies wavelet with Wavelet order equal to 6, the Wavelet Analysis block calls the wfilters function with input argument 'db6'.

The Biorthogonal and Reverse Biorthogonal options enable a secondary Filter order [synthesis / analysis] parameter that allows you to independently specify the wavelet order for the analysis and synthesis filter stages. For example, if you specify a Biorthogonal wavelet with Filter order [synthesis / analysis] equal to [2 / 6], the Wavelet Analysis block calls the wfilters function with input argument 'bior2.6'.

\section*{Wavelet Analysis (Obsolete)}

See the Wavelet Toolbox documentation for more information about the wfilters function. If you want to explicitly specify the FIR coefficients for the analysis filter bank, use the Dyadic Analysis Filter Bank block.

\section*{Tree Structure}

The wavelet tree structure has \(n+1\) outputs, where \(n\) is the number of levels. The sample rate and bandwidth of the top output are half the input sample rate and bandwidth. The sample rate and bandwidth of each additional output (except the last) are half that of the output from the previous level. In general, for an input with sample period \(\mathrm{T}_{\mathrm{si}}=\mathrm{T}_{\mathrm{s}}\), and bandwidth BW, output \(y_{k}\) has sample period \(T_{s o, k}\) and bandwidth \(\mathrm{BW}_{\mathrm{k}}\).
\[
T_{s o, k}= \begin{cases}\left(2^{k}\right) T_{s} & (1 \leq k \leq n) \\ \left(2^{n}\right) T_{s} & (k=n+1)\end{cases}
\]
\[
B W_{k}= \begin{cases}\frac{B W}{2^{k}} & (1 \leq k \leq n) \\ \frac{B W}{2^{n}} & (k=n+1)\end{cases}
\]

Note that in frame-based mode, the change in the sample period of output \(y_{k}\) is reflected by its frame size \(M_{o, k}\), rather than by its frame rate.
\[
M_{o, k}= \begin{cases}\frac{M_{i}}{2^{k}} & (1 \leq k \leq n) \\ \frac{M_{i}}{2^{n}} & (k=n+1)\end{cases}
\]

The bottom two outputs ( \(y_{n}\) and \(y_{n+1}\) ) share the same sample period, bandwidth, and frame size because they originate at the same tree level.

\section*{Wavelet Analysis (Obsolete)}

\section*{Sample-Based Operation}

An \(M\)-by- \(N\) sample-based matrix input is treated as \(M * N\) independent channels, and the block filters each channel independently over time. The output at each port is the same size as the input, one output channel for each input channel. As described earlier, each output port has a different sample period.

The figure below shows the input and output sample periods for a 64 -channel sample-based input to a three-level filter bank. The input has a period of 1 , so the fastest output has a period of 2 .


\section*{Frame-Based Operation}

An \(M_{i}\)-by- \(N\) frame-based matrix input is treated as \(N\) independent channels, and the block filters each channel independently over time. The input frame size \(M_{i}\) must be a multiple of \(2^{\mathrm{n}}\), and \(n\) is the number of filter bank levels. For example, a frame size of 8 would be appropriate for a three-level tree \(\left(2^{3}=8\right)\). The number of columns in each output is the same as the number of columns in the input.
Each output port has the same frame period as the input. The reduction in the output sample rates results from the smaller output frame sizes, as shown in the example below for a four-channel input to a three-level filter bank.

\section*{Wavelet Analysis (Obsolete)}


\section*{Zero Latency}

The Wavelet Analysis block has no tasking latency for frame-based operation, which is always single-rate. The block therefore analyzes the first input sample (received at \(t=0\) ) to produce the first output sample at each port.

\section*{Nonzero Latency}

For sample-based operation, the Wavelet Analysis block is multirate and has \(2^{\mathrm{n}-1}\) samples of latency in both Simulink tasking modes. As a result, the block repeats a zero initial condition in each channel for the first \(2^{\mathrm{n}-1}\) output samples, before propagating the first analyzed input sample (computed from the input received at \(t=0\) ).

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

\section*{Wavelet Analysis (Obsolete)}

\section*{Dialog Box}
\begin{tabular}{l} 
Block Parameters: Wavelet Analysis \\
\begin{tabular}{|l|l|}
\hline Wavelet Analysis (mask) \\
Multilevel discrete 1-D wavelet decomposition using a specific wavelet. \\
The Wavelet Toolbox must be installed to use this block. \\
\begin{tabular}{|l|l|l|}
\hline Parameters \\
Wavelet name: & Haar \\
Number of levels: \\
\hline 2 & Cancel & Help \\
\hline 2 & \\
\hline
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

The parameters displayed in the dialog box vary for different wavelet types. Only some of the parameters listed below are visible in the dialog box at any one time.

\section*{Wavelet name}

The wavelet used in the analysis.

\section*{Wavelet order}

The order for the Daubechies, Symlets, and Coiflets wavelets. This parameter is available only when one of these wavelets is selected in the Wavelet name menu.

\section*{Filter order [synthesis / analysis]}

The filter orders for the synthesis and analysis stages of the Biorthogonal and Reverse Biorthogonal wavelets. For example, [2 / 6] selects a second-order synthesis stage and a sixth-order analysis stage. The Filter order parameter is available only when one of the above wavelets is selected in the Wavelet name menu.

\section*{Number of levels}

The number of filter bank levels. An \(n\)-level structure has \(n+1\) outputs.

\section*{Wavelet Analysis (Obsolete)}
\begin{tabular}{ll} 
References & \begin{tabular}{l} 
Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, \\
Filter Banks, Wavelets. West Sussex, England: John Wiley \& Sons, \\
1994.
\end{tabular} \\
& \begin{tabular}{l} 
Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA: \\
Wellesley-Cambridge Press, 1996.
\end{tabular} \\
& \begin{tabular}{l} 
Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood \\
Cliffs, NJ: Prentice Hall, 1993.
\end{tabular} \\
\begin{tabular}{l} 
Supporfed \\
Data \\
Types
\end{tabular} & - Double-precision floating point
\end{tabular}\(\quad\)\begin{tabular}{l} 
Dee Also \\
Silter Bank \\
\\
\\
\begin{tabular}{l} 
Wavelet Synthesis \\
(Obsolete) \\
wfilters
\end{tabular}
\end{tabular}

\section*{Wavelet Synthesis (Obsolete)}

\section*{Purpose}

\section*{Library}

Description


Reconstruct signal from its multirate bandlimited components (requires the Wavelet Toolbox product)
dspobslib

Note The Wavelet Synthesis block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the IDWT block.

The Wavelet Synthesis block uses the Wavelet Toolbox wfilters function to reconstruct a signal that was decomposed by the Wavelet Analysis (Obsolete) block. The reconstruction or synthesis process is the inverse of the analysis process, and restores the original signal by upsampling, filtering, and summing the bandlimited inputs in stages corresponding to the analysis process. An \(n\)-level synthesis filter bank structure is shown below, where \(n\) is specified by the Number of levels parameter.

Wavelet Symihesis Fiter Bank, nLevels


At each level, the two bandlimited inputs (one low-frequency, one high-frequency, both with the same sample rate) are upsampled by

\section*{Wavelet Synthesis (Obsolete)}
a factor of 2 to match the sample rate of the input to the next stage. They are then filtered by a highpass (HP) and lowpass (LP) filter pair with coefficients calculated to cancel (in the subsequent summation) the aliasing introduced in the corresponding analysis filter stage. The output from each (upsample-filter-sum) level has twice the bandwidth and twice the sample rate of the input to that level.

For perfect reconstruction, the Wavelet Synthesis and Wavelet Analysis blocks must have the same parameter settings.

\section*{Filter Coefficients}

The filter coefficients for the highpass and lowpass filters are computed by the Wavelet Toolbox function wfilters, based on the wavelet specified in the Wavelet name parameter. The table below lists the available options.
\begin{tabular}{l|l}
\hline Wavelet Name & \begin{tabular}{l} 
Sample Wavelet Function \\
Syntax
\end{tabular} \\
\hline Haar & wfilters ('haar') \\
\hline Daubechies & wfilters ('db4') \\
\hline Symlets & wfilters ('sym3') \\
\hline Coiflets & wfilters ('coif1') \\
\hline Biorthogonal & wfilters('bior3.1') \\
\hline Reverse Biorthogonal & wfilters('rbio3.1') \\
\hline Discrete Meyer & wfilters('dmey') \\
\hline
\end{tabular}

The Daubechies, Symlets, and Coiflets options enable a secondary Wavelet order parameter that allows you to specify the wavelet order. For example, if you specify a Daubechies wavelet with Wavelet order equal to 6, the Wavelet Synthesis block calls the wfilters function with input argument 'db6'.
The Biorthogonal and Reverse Biorthogonal options enable a secondary Filter order [synthesis / analysis] parameter that allows
you to independently specify the wavelet order for the analysis and synthesis filter stages. For example, if you specify a Biorthogonal wavelet with Filter order [synthesis / analysis] equal to [2 / 6], the Wavelet Synthesis block calls the wfilters function with input argument 'bior2.6'.
See the Wavelet Toolbox documentation for more information about the wfilters function. If you want to explicitly specify the FIR coefficients for the synthesis filter bank, use the Dyadic Synthesis Filter Bank block.

\section*{Tree Structure}

The wavelet tree structure has \(n+1\) inputs, where \(n\) is the number of levels. The sample rate and bandwidth of the output are twice the sample rate and bandwidth of the top input. The sample rate and bandwidth of each additional input (except the last) are half that of the input to the previous level.
\[
\begin{array}{ll}
T_{s i, k+1}=2 T_{s i, k} & 1 \leq k<n \\
B W_{k+1}=\frac{B W_{k}}{2} & 1 \leq k<n
\end{array}
\]

The bottom two inputs ( \(u_{n}\) and \(u_{n+1}\) ) should have the same sample rate and bandwidth since they are processed by the same level.
\[
\begin{aligned}
& T_{s i, n+1}=T_{s i, n} \\
& B W_{n+1}=B W_{n}
\end{aligned}
\]

Note that in frame-based mode, the sample period of input \(u_{k}\) is reflected by its frame size \(M_{i, k}\), rather than by its frame rate.

\section*{Wavelet Synthesis (Obsolete)}
\[
\begin{array}{ll}
M_{i, k+1} & =\frac{M_{i, k}}{2} \\
M_{i, n+1} & =M_{i, n}
\end{array}
\]

\section*{Sample-Based Operation}

An \(M\)-by- \(N\) sample-based matrix input is treated as \(M^{*} N\) independent channels, and the block filters each channel independently over time. The output is the same size as the input at each port, one output channel for each input channel. As described earlier, each input port has a different sample period.

The figure below shows the input and output sample periods for the four 64 -channel sample-based inputs to a three-level filter bank. The fastest input has a period of 2 , so the output period is 1 .


\section*{Frame-Based Operation}

An \(M_{i}\)-by- \(N\) frame-based matrix input is treated as \(N\) independent channels, and the block filters each channel independently over time. The number of columns in the output is the same as the number of columns in the input.

All inputs must have the same frame period, which is also the output frame period. The different input sample rates should be represented by the input frame sizes: If the input to the top port has frame size \(M_{\mathrm{i}}\), the input to the second-from-top port should have frame size \(M_{i} / 2\), the input to the third-from-top port should have frame size \(M_{i} / 4\), and so on. The input to the bottom port should have the same frame size
as the second-from-bottom port. The increase in the sample rate of the output is also represented by its frame size, which is twice the largest input frame size.

The relationship between sample periods, frame periods, and frame sizes is shown below for a four-channel frame-based input to a 3-level filter bank.


\section*{Zero Latency}

The Wavelet Synthesis block has no tasking latency for frame-based operation, which is always single-rate. The block therefore uses the first input samples (received at \(t=0\) ) to synthesize the first output sample.

\section*{Nonzero Latency}

For sample-based operation, the Wavelet Synthesis block is multirate and has the following tasking latencies:
- \(2^{\mathrm{n}}\)-2 samples in Simulink's single-tasking mode
- \(2^{\mathrm{n}}\) samples in Simulink's multitasking mode

In the above cases, the block repeats a zero initial condition in each channel for the first \(D\) output samples, where \(D\) is the latency shown above. For example, in single-tasking mode the block generates \(2^{\mathrm{n}}-2\) zero-valued output samples in each channel before propagating the first synthesized output sample (computed from the inputs received at \(t=0\) ).

\section*{Wavelet Synthesis (Obsolete)}

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

\section*{Dialog Box}


The parameters displayed in the dialog box vary for different wavelet types. Only some of the parameters listed below are visible in the dialog box at any one time.

\section*{Wavelet name}

The wavelet used in the synthesis.

\section*{Wavelet order}

The order for the Daubechies, Symlets, and Coiflets wavelets. This parameter is available only when one of these wavelets is selected in the Wavelet name menu.

\section*{Filter order [synthesis / analysis]}

The filter orders for the synthesis and analysis stages of the Biorthogonal and Reverse Biorthogonal wavelets. For example, [2 / 6] selects a second-order synthesis stage and a sixth-order analysis stage. The Filter order parameter is available only when one of the above wavelets is selected in the Wavelet name menu.

\section*{Wavelet Synthesis (Obsolete)}

\section*{Number of levels}

The number of filter bank levels. An \(n\)-level structure has \(n+1\) outputs.
\begin{tabular}{ll} 
References & Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, \\
& Filter Banks, Wavelets. West Sussex, England: John Wiley \& Sons, \\
& 1994. \\
& \begin{tabular}{l} 
Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA: \\
\\
\\
\\
\\
\\
\\
Wellesley-Cambridge Press, 1996. \\
Vliffs, NJ: Prentice Hall, 1993.
\end{tabular} \\
\begin{tabular}{ll} 
Cupported \\
Data
\end{tabular} & - Double-precision floating point \\
Types
\end{tabular}
See Also \begin{tabular}{ll} 
Dyadic Synthesis & Signal Processing Blockset \\
Filter Bank
\end{tabular}\(\quad\)\begin{tabular}{l} 
Wavelet Analysis \\
(Obsolete) \\
wfilters
\end{tabular}\(\quad\) Signal Processing Blockset \(\quad\) Wavelet Toolbox \(\quad\).

\section*{Window Function}

Purpose
Library

\section*{Description}


Compute and/or apply window to input signal
Signal Operations
dspsigops
The Window Function block computes a window and/or applies a window to an input signal. The input signal can be a frame-based matrix, or a sample-based N-D array. The Window Function block supports real and complex floating-point and fixed-point inputs.

\section*{Operation Modes}

The Window Function block has three modes of operation that you can select via the Operation parameter. In each mode, the block first creates a window vector \(w\) by sampling the window specified in the Window type parameter at \(M\) discrete points. The operation modes are:
- Apply window to input

In this mode, the block computes an \(M\)-by- 1 window vector \(w\) and applies it to the input. The output \(y\) always has the same dimension as the input. When the input is frame based, the output is frame based; otherwise, the output is sample based.

When the input is an \(M\)-by- \(N\) matrix \(u\), the window is multiplied element-wise with each of the \(N\) channels in the input matrix \(u\). This is equivalent to the following MATLAB code:
```

y = repmat(w,1,N) .* u % Equivalent MATLAB code

```

When the input is a sample-based N-D array, the window is always applied to the first dimension:
\[
y(i, j, \ldots, k)=w(i) * u(i, j, \ldots, k) \quad i=1, \ldots, M, j=1, \ldots, N, \ldots, k=1, \ldots, P
\]

A length-M 1-D vector input is treated as an \(M\)-by-1 matrix.
- Generate window

\section*{Window Function}

In this mode, the block generates a sample-based 1-D window vector \(w\) with length \(M\) specified by the Window length parameter. The In port is disabled for this mode.
- Generate and apply window

In this mode, the block generates an \(M\)-by- 1 window vector \(w\) and applies it to the input. The block produces two outputs:
- At the Out port, the block produces the result of the multiplication \(y\), which has the same dimension as the input. When the input is frame based, the output \(y\) is frame based; otherwise, the output \(y\) is sample based.
- At the Win port, the block produces the \(M\)-by- 1 window vector \(w\). The output vector \(w\) is always sample based.

When the input is an \(M\)-by- \(N\) matrix \(u\), the window is multiplied element-wise with each of the \(N\) channels in the input matrix \(u\). This is equivalent to the following MATLAB code:
```

y = repmat(w,1,N) .* u % Equivalent MATLAB code

```

When the input is a sample-based N-D array, the window is always applied to the first dimension:
\[
y(i, j, \ldots, k)=w(i)^{*} u(i, j, \ldots, k) \quad i=1, \ldots, M, j=1, \ldots, N, \ldots, k=1, \ldots, P
\]

A length-M 1-D vector input is treated as an \(M\)-by-1 matrix.

\section*{Window Type}

The following table lists the available window types. For complete information about the window functions, consult the "Signal Processing Toolbox" documentation.

\section*{Window Function}
\begin{tabular}{|c|c|}
\hline Window Type & Description \\
\hline Bartlett & Computes a Bartlett window.
w = bartlett (M) \\
\hline Blackman & Computes a Blackman window.
w = blackman (M) \\
\hline Boxcar & Computes a rectangular window.
w = rectwin(M) \\
\hline Chebyshev & Computes a Chebyshev window with stopband ripple R.
w = chebwin(M,R) \\
\hline Hamming & Computes a Hamming window.
w = hamming(M) \\
\hline Hann & Computes a Hann window (also known as a Hanning window).
\[
w=\operatorname{hann}(M)
\] \\
\hline Hanning & Obsolete. This window type is included only for compatibility with older models. Use the Hann Window type instead of Hanning whenever possible. \\
\hline Kaiser & Computes a Kaiser window with the Kaiser parameter beta.
w = kaiser (M,beta) \\
\hline
\end{tabular}

\section*{Window Function}
\begin{tabular}{l|l}
\hline Window Type & Description \\
\hline Taylor & \begin{tabular}{l} 
Computes a Taylor window. \\
\(w=\operatorname{taylorwin}(M)\)
\end{tabular} \\
\hline Triang & \begin{tabular}{l} 
Computes a triangular window. \\
\(w=\) triang \((M)\)
\end{tabular} \\
\hline User Defined & \begin{tabular}{l} 
Computes the user-defined window function specified by the entry \\
in the Window function name parameter, usrwin. \\
\(w=\) usrwin \((M) \%\) Window takes no extra parameters \\
\(w=\) usrwin \(\left(M, x_{1}, \ldots, x_{n}\right) \%\) Window takes extra \\
parameters \(\left\{x_{1} \ldots x_{n}\right\}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Window Sampling}

For the generalized-cosine windows (Blackman, Hamming, Hann, and Hanning), the Sampling parameter determines whether the window samples are computed in a periodic or a symmetric manner. For example, when Sampling is set to Symmetric, a Hamming window of length \(M\) is computed as
```

w = hamming(M) % Symmetric (aperiodic) window

```

When Sampling is set to Periodic, the same window is computed as
```

w = hamming(M+1) % Periodic (asymmetric) window
w = w(1:M)

```

\section*{Window Function}

\section*{Fixed-Point Data Types}

The following diagram shows the data types used within the Window Function block for fixed-point signals for each of the three operating modes.

\section*{Window Function}

\section*{Apply window to input}


The input data type comes from the driving block. You can set the window, product output, and output data types in the block disiog. In this mode, the window rector is not output from the block.

\section*{Generate window}


In this mode, the bbck acts as a source. The window vector is output in the window data type you specify in the bbck dialog.

\section*{Generate and apply window}


The input data type comes from the driving block. You can set the window, product output, and output data types in the block disiog. In this mode, the window rector is output from the block.

You can set the window, product output, and output data types in the block dialog box. For more information see the "Dialog Box" on page 2-1519 section.

\section*{Window Function}

\section*{Examples The following model uses the Window Function block to generate and apply a Hamming window to a sample-based 3 -dimensional input array. \\ In this example, set the Operation mode of the Window Function block to Generate and apply window, so the block provides two outputs: the window vector \(w\) at the Win port, and the result of the multiplication \(y\) at the Out port.}

Open the model by typing doc_windowfunction_ref at the MATLAB command line, and run it.

- The length of the first dimension of the input array is 10 , so the Window Function block generates and outputs a Hamming window vector of length 10 . To see the window vector generated by the Window Function block, type w at the MATLAB command line.
- To see the result of the multiplication, type y at the MATLAB command line.

\section*{Window Function}

Dialog Box

The Main pane of the Window Function block dialog appears as follows.


\section*{Operation}

Specify the block's operation, as discussed in "Operation Modes" on page \(2-1512\). The port configuration of the block is updated to match the setting of this parameter.

\section*{Window type}

Specify the window type to apply, as listed in "Window Type" on page 2-1513. Tunable in simulation only.

\section*{Window Function}

\section*{Sampling}

Specify the window sampling for generalized-cosine windows. This parameter is only visible when you select Blackman, Hamming, Hann, or Hanning for the Window type parameter. Tunable in simulation only.

\section*{Sample Mode}

Specify the sample mode for the block, Continuous or Discrete, when it is in Generate Window mode. In the Apply window to output and Generate and apply window modes, the block inherits the sample time from its driving block. Therefore, this parameter is only visible when you select Generate window for the Operation parameter.

\section*{Sample time}

Specify the sample time for the block when it is in Generate window and Discrete modes. In Apply window to output and Generate and apply window modes, the block inherits the sample time from its driving block. This parameter is only visible when you select Discrete for the Sample Mode parameter.

\section*{Window length}

Specify the length of the window to apply. This parameter is only visible when you select Generate window for the Operation parameter. Otherwise, the window vector length is computed to match the length of the first dimension of the input.

\section*{Stopband attenuation in dB}

Specify the level of stopband attenuation, \(R_{s}\), in decibels. This parameter is only visible when you select Chebyshev for the Window type parameter. Tunable in simulation only.

\section*{Beta}

Specify the Kaiser window \(\beta\) parameter. Increasing \(\beta\) widens the mainlobe and decreases the amplitude of the window sidelobes in the window's frequency magnitude response. This parameter is only visible when you select Kaiser for the Window type parameter. Tunable in simulation only.

\section*{Window Function}

\section*{Number of sidelobes}

Specify the number of sidelobes as a scalar integer value greater than zero. This parameter is only visible when you select Taylor for the Window type parameter.

\section*{Maximum sidelobe level relative to mainlobe (dB)}

Specify, in decibels, the maximum sidelobe level relative to the mainlobe. This parameter must be a scalar less than or equal to zero. The default value of -30 produces sidelobes with peaks 30 dB down from the mainlobe peak. This parameter is only visible when you select Taylor for the Window type parameter.

\section*{Window function name}

Specify the name of the user-defined window function to be calculated by the block. This parameter is only visible when you select User defined for the Window type parameter.

Specify additional arguments to the hamming function Select to enable the Cell array of additional arguments parameter, when the user-defined window requires parameters other than the window length. This parameter is only visible when you select User defined for the Window type parameter.

\section*{Cell array of additional arguments}

Specify the extra parameters required by the user-defined window function, besides the window length. This parameter is only available when you select the Specify additional arguments to the hamming function parameter. The entry must be a cell array.

The Data types pane of the Window Function block dialog is discussed in the following sections:
"Parameters for Generate Window Only Mode" on page 2-1521
"Parameters for Apply Window Modes" on page 2-1524

\section*{Parameters for Generate Window Only Mode}

The Data types pane of the Window Function block dialog appears as follows when the Operation parameter is set to Generate window.

\section*{Window Function}


\section*{Window data type}

Specify the window data type in one of the following ways:
- Choose double or single from the list.
- Choose Fixed-point to specify the window data type and scaling in the Signed, Word length, Set fraction length in output to, and Fraction length parameters.
- Choose User-defined to specify the window data type and scaling in the User-defined data type, Set fraction length in output to, and Fraction length parameters.
- Choose Inherit via back propagation to set the window data type and scaling to match the following block.

\section*{Signed}

Select to output a signed fixed-point signal. Otherwise, the signal is unsigned.

\section*{Word length}

Specify the word length, in bits, of the fixed-point window data type. This parameter is only visible when you select Fixed-point for the Window data type parameter.

\section*{User-defined data type}

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the Simulink Fixed Point functions sfix, ufix, sint, uint, sfrac, and ufrac. This parameter is only visible when you select User-defined for the Window data type parameter.

\section*{Set fraction length in output to}

Specify the scaling of the fixed-point window data type by either of the following two methods:
- Choose Best precision to have the window data type scaling automatically set such that the output signal has the best possible precision.
- Choose User-defined to specify the window data type scaling in the Fraction length parameter.

This parameter is only visible when you select Fixed-point or User-defined for the Window data type parameter, and when the specified window data type is a fixed-point data type.

\section*{Fraction length}

Specify the fraction length, in bits, of the fixed-point window data type. This parameter is only visible when you select Fixed-point or User-defined for the Window data type parameter and User-defined for the Set fraction length in output to parameter.

\section*{Window Function}

\section*{Parameters for Apply Window Modes}

The Fixed-point pane of the Window Function block dialog appears as follows when the Operation parameter is set to either Apply window to input or Generate and apply window.


\section*{Rounding mode}

Select the rounding mode for fixed-point operations.
The window vector \(w\) does not obey this parameter; it always rounds to Nearest.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.
The window vector \(w\) does not obey this parameter; it is always saturated.

\section*{Window}

Choose how you specify the word length and fraction length of the window vector \(w\).

When you select Same word length as input, the word length of the window vector elements is the same as the word length of the input. The fraction length is automatically set to the best precision possible.

When you select Specify word length, you can enter the word length of the window vector elements in bits. The fraction length is automatically set to the best precision possible.

When you select Binary point scaling, you can enter the word length and the fraction length of the window vector elements in bits.

When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the window vector elements. This block requires power-of-two slope and a bias of zero.

The window vector does not obey the Rounding mode and Overflow mode parameters; it is always saturated and rounded to Nearest.

\section*{Product output}

Use this parameter to specify how you want to designate the product output word and fraction lengths. See "Fixed-Point Data Types" on page 2-1410 for illustrations depicting the use of the product output data type in this block:

\section*{Window Function}
- When you select Inherit via internal rule, the product output word length and fraction length are calculated automatically. For information about how the product output word and fraction lengths are calculated when an internal rule is used, see "Inherit via Internal Rule".
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

\section*{Output}

Choose how you specify the word length and fraction length of the output of the block:
- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

\section*{Lock scaling against changes by the autoscaling tool}

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling feature of the Fixed-Point Tool. See the fxptdlg reference page for more information.

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Input & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed only) \\
- 8 -, 16-, and 32 -bit signed integers
\end{tabular} \\
\hline Output & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed only) \\
- 8 -, 16-, and 32 -bit signed integers
\end{tabular} \\
\hline Win & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- 8 -, 16 -, and 32 -bit integers
\end{tabular} \\
\hline
\end{tabular}

See Also
FFT
bartlett
blackman
rectwin
chebwin
hamming
hann
kaiser
taylorwin
triang

Signal Processing Blockset
Signal Processing Toolbox

\section*{Yule-Walker AR Estimator}
\begin{tabular}{|c|c|}
\hline Purpose & Compute estimate of autoregressive (AR) model parameters using Yule-Walker method \\
\hline Library & Estimation / Parametric Estimation dspparest3 \\
\hline  & The Yule-Walker AR Estimator block uses the Yule-Walker AR method, also called the autocorrelation method, to fit an autoregressive (AR) model to the windowed input data by minimizing the forward prediction error in the least squares sense. This formulation leads to the Yule-Walker equations, which are solved by the Levinson-Durbin \\
\hline  & The Yule-Walker AR Estimator block can output the AR model coefficients as polynomial coefficients, reflection coefficients, or both. Each channel of the input is a sample-based vector (row, column, or 1-D) or frame-based vector (column only) representing a frame of consecutive time samples from a signal that is assumed to be the output of an AR system driven by white noise. The block computes the normalized estimate of the AR system parameters, \(A(z)\), independently for each successive input frame. \\
\hline & \[
H(z)=\frac{\sqrt{G}}{A(z)}=\frac{\sqrt{G}}{1+a(2) z^{-1}+\ldots+a(p+1) z^{-p}}
\] \\
\hline & When you select Inherit estimation order from input dimensions, the order \(p\) of the all-pole model is one less than the length of each input channel. Otherwise, the order is the value specified by the Estimation order parameter. To guarantee a valid output, you must set the Estimation order parameter to be a scalar less than or equal to half the input channel length. The Yule-Walker AR Estimator and Burg AR Estimator blocks return similar results for large frame sizes. \\
\hline & When Output(s) is set to A, port A is enabled. For each channel, port A outputs a column of length \(p+1\) that contains the normalized estimate of the AR model coefficients in descending powers of \(z\) \\
\hline
\end{tabular}

\section*{Yule-Walker AR Estimator}
[1 a(2) ... a(p+1)]
When Output(s) is set to K, port K is enabled. For each channel, port K outputs a length \(-p\) column whose elements are the AR model reflection coefficients. When Output(s) is set to A and K, both port A and K are enabled, and each port outputs the respective AR model coefficients for each channel.

The square of the model gain, \(G\), is provided at port G. \(G\) is a scalar for each channel.

See the Burg AR Estimator block reference page for a comparison of the Burg AR Estimator, Covariance AR Estimator, Modified Covariance AR Estimator, and Yule-Walker AR Estimator blocks.

\section*{Dialog Box}


\section*{Output(s)}

The type of AR model coefficients output by the block. The block can output polynomial coefficients (A), reflection coefficients (K), or both (A and K).

\section*{Yule-Walker AR Estimator}

Inherit estimation order from input dimensions
When selected, sets the estimation order \(p\) to one less than the length of each input channel.

\section*{Estimation order}

The order of the AR model, \(p\). This parameter is enabled when you do not select Inherit estimation order from input dimensions.

\section*{References}

Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1988.
Marple, S. L., Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall, 1987.

Supported Data Types
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & \begin{tabular}{l} 
• Double-precision floating point \\
• Single-precision floating point
\end{tabular} \\
\hline A & \begin{tabular}{l} 
• Double-precision floating point \\
• Single-precision floating point
\end{tabular} \\
\hline K & \begin{tabular}{l} 
• Double-precision floating point \\
\\
• Single-precision floating point
\end{tabular} \\
\hline G & \begin{tabular}{l} 
• Double-precision floating point \\
\\
\end{tabular} \begin{tabular}{l} 
• Single-precision floating point
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}
\begin{tabular}{ll} 
Burg AR Estimator & Signal Processing Blockset \\
Covariance AR & Signal Processing Blockset \\
Estimator & \\
\begin{tabular}{l} 
Modified Covariance \\
AR Estimator
\end{tabular} & Signal Processing Blockset \\
\end{tabular}

\section*{Yule-Walker AR Estimator}

\author{
Yule-Walker Method Signal Processing Blockset \\ aryule \\ Signal Processing Toolbox
}

\section*{Yule-Walker IIR Filter Design (Obsolete)}
\begin{tabular}{ll} 
Purpose & Design and apply IIR filter \\
Library & dspobslib
\end{tabular}

\section*{Description}


Note The Yule-Walker IIR Filter Design block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Digital Filter block.

The Yule-Walker IIR Filter Design block designs a recursive (ARMA) digital filter with arbitrary multiband magnitude response, and applies it to a discrete-time input using the Direct-Form II Transpose Filter block. The filter design, which uses the Signal Processing Toolbox yulewalk function, performs a least-squares fit to the specified frequency response.

An \(M\)-by- \(N\) sample-based matrix input is treated as \(M^{*} N\) independent channels, and an \(M\)-by- \(N\) frame-based matrix input is treated as \(N\) independent channels. In both cases, the block filters each channel independently over time, and the output has the same size and frame status as the input.

The Band-edge frequency vector parameter is a vector of frequency points in the range 0 to 1 , where 1 corresponds to half the sample frequency. The first element of this vector must be 0 and the last element 1, and intermediate points must appear in ascending order. The Magnitudes at these frequencies parameter is a vector containing the desired magnitude response at the points specified in the Band-edge frequency vector.

Note that, unlike the Remez FIR Filter Design block, each frequency-magnitude pair specifies the junction of two adjacent frequency bands, so there are no "don't care" regions.

\section*{Yule-Walker IIR Filter Design (Obsolete)}


When specifying the Band-edge frequency vector and Magnitudes at these frequencies vectors, avoid excessively sharp transitions from passband to stopband. You may need to experiment with the slope of the transition region to get the best filter design.
For more details on the Yule-Walker filter design algorithm, see the description of the yulewalk function in the Signal Processing Toolbox documentation.

\section*{Yule-Walker IIR Filter Design (Obsolete)}

\section*{Dialog \\ Box}


\section*{Filter order}

The order of the filter.

\section*{Band-edge frequency vector}

A vector of frequency points. The value 1 corresponds to half the sample frequency. The first element of this vector must be 0 and the last element 1. Tunable.

\section*{Magnitudes at these frequencies}

A vector of frequency response magnitudes corresponding to the points in the Band-edge frequency vector. This vector must be the same length as the Band-edge frequency vector. Tunable.

References Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

\title{
Yule-Walker Method
}
Purpose \begin{tabular}{l} 
Power spectral density estimate using Yule-Walker method \\
Library \\
Estimation / Power Spectrum Estimation \\
dspspect3
\end{tabular}
The Yule-Walker Method block estimates the power spectral density
(PSD) of the input using the Yule-Walker AR method. This method,
also called the autocorrelation method, fits an autoregressive (AR)
model to the windowed input data. It does so by minimizing the forward
prediction error in the least squares sense. This formulation leads
to the Yule-Walker equations, which the Levinson-Durbin recursion
solves. Block outputs are always nonsingular.
The input is a sample-based vector (row, column, or 1-D) or frame-based
vector (column only). This input represents a frame of consecutive time
samples from a single-channel signal. The block outputs a column
vector containing the estimate of the power spectral density of the
signal at N \({ }_{\text {fft }}\) equally spaced frequency points. The frequency points are
in the range [0,Fs , where F \(\mathrm{F}_{\mathrm{s}}\) is the sampling frequency of the signal.
When you select Inherit estimation order from input dimensions,
the order of the all-pole model is one less that the input frame size.
Otherwise, the Estimation order parameter value specifies the order.
To guarantee a valid output, the Estimation order parameter must be
less than or equal to half the input vector length. The block computes
the spectrum from the FFT of the estimated AR model parameters.

\section*{Yule-Walker Method}
- The input to the block is the original signal, with no samples added or deleted (by insertion of zeros, for example).
- The sample period of the time-domain signal in the simulation equals the sample period of the original time series.

If these conditions do not hold, clear the Inherit sample time from input check box. You can then specify a sample time using the Sample time of original time series parameter.
See the Burg Method block reference for a comparison of the Burg Method, Covariance Method, Modified Covariance Method, and Yule-Walker AR Estimator blocks. The Yule-Walker AR Estimator and Burg Method blocks return similar results for large buffer lengths.
\begin{tabular}{|c|c|c|c|}
\hline Fi/ Function Block Parameters: Yule-Walker Method & & & X \\
\hline \multicolumn{4}{|l|}{YYule-Walker Method (mask) (link)-} \\
\hline \begin{tabular}{l}
Parameters \(\qquad\)
Inherit estimation order from input dimensions \\
Estimation order: \\
6
\(\square\) Inherit FFT length from estimation order \\
FFT length: \\
256
Inherit sample time from input
\end{tabular} & & & \\
\hline (3) OK Cancel & Help & Apply & \\
\hline
\end{tabular}

\section*{Yule-Walker Method}

\section*{Inherit estimation order from input dimensions}

When you select this option, it sets the estimation order to one less than the length of the input vector.

\section*{Estimation order}

Specify the order of the AR model. This parameter is only visible when you clear the Inherit estimation order from input dimensions check box.

\section*{Inherit FFT length from estimation order}

When you select the Inherit FFT length from estimation order check box, the FFT length is one greater than the estimation order. To specify the number of points on which to perform the FFT, clear the Inherit FFT length from estimation order check box. You can then specify a power-of-two FFT length using the FFT length parameter.

\section*{FFT length}

Enter the number of data points on which to perform the FFT, \(N_{f f t}\). When \(N_{f f t}\) is larger than the input frame size, the block zero-pads each frame as needed. When \(N_{f f t}\) is smaller than the input frame size, the block wraps each frame as needed. This parameter becomes visible only when you clear the Inherit FFT length from input dimensions check box.

\section*{Inherit sample time from input}

When you select the Inherit sample time from input check box, the block computes the frequency data from the sample period of the input signal. For the block to produce valid output, the following conditions must hold:
- The input to the block is the original signal, with no samples added or deleted (by insertion of zeros, for example).
- The sample period of the time-domain signal in the simulation equals the sample period of the original time series.

If these conditions do not hold, clear the Inherit sample time from input check box. You can then specify a sample time using the Sample time of original time series parameter.

\section*{Yule-Walker Method}

\section*{Sample time of original time series}

Specify the sample time of the original time-domain signal. This parameter becomes visible only when you clear the Inherit sample time from input check box.

\section*{References}

Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1988.

Marple, S. L. Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall, 1987.

Orfanidis, S. J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1995.

\section*{Supported Data Types}
\begin{tabular}{l|l}
\hline Port & Supported Data Types \\
\hline Input & • Double-precision floating point \\
& • Single-precision floating point
\end{tabular}

The output data type is the same as the input data type.

\section*{See Also}
\begin{tabular}{ll} 
Burg Method & Signal Processing Blockset \\
Covariance Method & Signal Processing Blockset \\
Levinson-Durbin & Signal Processing Blockset \\
Autocorrelation LPC & Signal Processing Blockset \\
Short-Time FFT & Signal Processing Blockset \\
Yule-Walker AR & Signal Processing Blockset \\
Estimator & \\
spectrum.yulear & Signal Processing Toolbox
\end{tabular}

See "Power Spectrum Estimation" for related information.

\section*{Zero Crossing}

\section*{Purpose}

Count number of times signal crosses zero in single time step

\section*{Library}

Description


Zero Crossing

Examples The following example illustrates the behavior of the Zero Crossing
1 Create the following Simulink model.


2 Use the Signal From Workspace block to create a frame-based signal. Set the parameters as follows:
- Signal = [-3:3]
- Sample time \(=1 / 7\)
- Samples per frame \(=7\)
- Form output after final data value by = Cyclic repetition

The block outputs a single frame of the frame-based signal at the first time step, and identical frames at each additional time step.

3 Use the Zero Crossing block to detect the number of zero crossing in each time step. Use the default parameters.

4 Use the Display block to view the number of zero crossings.
5 To run the model for one time step, set the configuration parameters.
Open the Configuration Parameters dialog box by selecting
Configuration Parameters from the Simulation menu. In the Solver pane, set the parameters as follows:
- Stop time \(=0\)

\section*{Zero Crossing}
- Type = Fixed-step
- Solver \(=\) Discrete (no continuous states)

6 Run the model.
Because the signal passes through zero once during the first time step, the Zero Crossing block finds one zero crossing as shown in the figure below.


7 To run the model for two time steps, change the simulation Stop time to 1 .

8 Run the model.
The Zero Crossing block remembers that the last value of the last frame was 3 . Therefore, the signal passes through zero twice during the second time step. It passes through zero while going from 3 to -3 , and it passes through zero again while going from -3 to 3 . The Zero Crossing block finds two zero crossings in the second time step as shown in the figure below.

\section*{Zero Crossing}


Dialog Box


Supported Data Types
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Input & \begin{tabular}{l}
- Double-precision floating-point \\
- Single-precision floating-point \\
- Fixed point (signed and unsigned) \\
- 8-, 16-, and 32 -bit signed integers \\
- 8 -, 16 -, and 32 -bit unsigned integers
\end{tabular} \\
\hline Cnt & - 32-bit unsigned integers \\
\hline
\end{tabular}

\section*{Zero Crossing}

See Also Hit Crossing Simulink

\section*{Zero Crossing}

Function Reference

Purpose Identify whether blocks in model are current, deprecated, or obsolete
Syntax \begin{tabular}{l} 
dsp_links \\
dsp_links('modelname' \()\)
\end{tabular}

Description

\section*{Definitions}

Examples
dsp_links returns a structure with three elements that identify whether the Signal Processing Blockset blocks in the current model are current, deprecated, or obsolete. Each element represents one of the three block categories and contains a cell array of strings. Each string is the name of a library block in the current model.
dsp_links('modelname') returns the three-element structure for the specified model.

\section*{Obsolete Blocks}

Obsolete blocks are blocks that the blockset no longer supports. In some cases, these blocks no longer function properly.

\section*{Deprecated Blocks}

Deprecated blocks are blocks that the blockset still supports but are likely to become obsolete in a future release. Refer to the block reference page for suggested replacements.

\section*{Current Blocks}

Current blocks are blocks that the blockset supports and that represent the latest block functionality.

Display block support information for the specified model, and then return a list of current blocks:
```

dsp_links('dspcochlear')
ans.current

```

See Also liblinks
\begin{tabular}{ll} 
Purpose & Open top-level Signal Processing Blockset library \\
Syntax & dsplib \\
Description & \begin{tabular}{l} 
dsplib opens the top-level Signal Processing Blockset block library \\
model.
\end{tabular} \\
Examples & View and gain access to the Signal Processing Blockset blocks: \\
& dsplib
\end{tabular}

\section*{Alternatives To view and gain access to the Signal Processing Blockset blocks using the Simulink library browser:}
- Type simulink at the MATLAB command line, and then expand the Signal Processing Blockset node in the library browser.
- Click the Simulink icon
©. from the MATLAB desktop or from a model.

Purpose Configure Simulink environment for signal processing systems

\section*{Syntax dspstartup}

Description
dspstartup configures Simulink environment parameters with settings appropriate for a typical signal processing project. You can use the dspstartup function in the following ways:
- At the MATLAB command line. Doing so configures the Simulink environment in your current session for signal processing projects.
- By adding a call to the dspstartup function from your startup.m file. When you do so, MATLAB configures your Simulink environment for typical signal processing projects each time you launch MATLAB.

When the function successfully configures your Simulink environment, MATLAB displays the following message in the command window.

Changed default Simulink settings for signal processing systems (dspstartup.m).

The dspstartup.m file executes the following commands. See "Model and Block Parameters" in the Simulink documentation.
```

set_param(0, ...
'SingleTaskRateTransMsg','error', ...
'multiTaskRateTransMsg', 'error', ...
'Solver', 'fixedstepdiscrete', ...
'SolverMode', 'SingleTasking', ...
'StartTime', '0.0', ...
'StopTime', 'inf', ...
'FixedStep', 'auto', ...
'SaveTime', 'off', ...
'SaveOutput', 'off', ...
'AlgebraicLoopMsg', 'error', ...
'SignalLogging', 'off');

```
```

Examples Add a call to the dspstartup function from your startup.m file:
1 To find out if there is a startup.m file on your MATLAB path, run
the following code at the MATLAB command line:
which startup.m
2 If MATLAB returns 'startup.m' not found., see "Startup Options" in the MATLAB documentation to learn more about the startup.m file.
If MATLAB returns a path to your startup.m file, open that file for editing.

```
```

edit startup.m

```
edit startup.m
3 Add a call to the dspstartup function. Your startup.m file now resembles the following code sample:
```

```
%STARTUP Startup file
```

%STARTUP Startup file
% This file is executed when MATLAB starts up, if it exists
% This file is executed when MATLAB starts up, if it exists
% anywhere on the path. In this case, the startup.m file
% anywhere on the path. In this case, the startup.m file
% runs the dspstartup.m file to configure the Simulink
% runs the dspstartup.m file to configure the Simulink
% environment with settings appropriate for typical
% environment with settings appropriate for typical
% signal processing projects.
% signal processing projects.
dspstartup;
dspstartup;
See Also startup
How To

- "Configuring the Simulink Environment for Signal Processing Models"

```

\section*{liblinks}

Purpose Check model for blocks from specific Signal Processing Blockset libraries
```

Syntax
liblinks(lib)
liblinks(lib,sys)
liblinks(lib,sys,c)

```

Description

\section*{Examples}

See Also
liblinks(lib) returns a cell array of strings that lists the blocks in the current model that are linked to the specified libraries. The input lib provides a cell array of strings with the library names. Use the library name visible in the title bar when you open a library model.
liblinks(lib,sys) acts on the named model sys.
liblinks(lib, sys, c) changes the foreground color of the returned blocks to the color c. Possible values of c are 'blue', 'green', 'red', 'cyan', 'magenta', 'yellow', or 'black'.

Check for blocks from the Signal Processing Sources library in the specified model:
rlsdemo
liblinks('dspsrcs4',gcs)
dsp_links
Purpose Number of samples of delay introduced by buffering and unbuffering operations
Syntax

d = rebuffer_delay(f,n,v)

d = rebuffer_delay(f,n,v,'mode')
Description \(d=\) rebuffer_delay ( \(f, n, v\) ) returns the delay, in samples, introduced by the Buffer or Unbuffer block in multitasking operations.
d = rebuffer_delay(f,n,v,'mode') returns the delay, in samples, introduced by the Buffer or Unbuffer block in the specified tasking mode.

\section*{Inputs \\ f}
Frame size of the input to the Buffer or Unbuffer block.
n
Size of the output buffer. Specify one of the following:
- The value of the Output buffer size parameter, if you are computing the delay introduced by a Buffer block.
- 1, if you are computing the delay introduced by an Unbuffer block.
\(v\)
Amount of buffer overlap. Specify one of the following:
- The value of the Buffer overlap parameter, if you are computing the delay introduced by a Buffer block.
- 0 , if you are computing the delay introduced by an Unbuffer block.

The tasking mode of the model. Specify one of the following options:
- 'singletasking'
- 'multitasking'

Default: 'multitasking'

\section*{Definitions}

Examples Compute the delay introduced by a Buffer block in a multitasking model:
1 Open a model containing a Buffer block. For this example, open the doc_buffer_tut4 model by typing doc_buffer_tut4 at the MATLAB command line.

2 Double-click the Buffer block to open the block mask. Verify that you have the following settings:
- Output buffer size \(=3\)
- Buffer overlap = 1
- Initial conditions \(=0\)

Based on these settings, input \(\mathrm{n}=3\) and input \(\mathrm{v}=1\).
3 To determine the frame size of the input signal to the Buffer block, open the Signal From Workspace block mask. Verify that you have the following settings:
- Signal = dsp_examples_A
- Sample time \(=1\)
- Samples per frame \(=1\)

Because Samples per frame \(=1\), input \(f=1\).
4 After you verify the values of all the inputs to the rebuffer_delay function, determine the delay that the Buffer block introduces in this multitasking model. To do so, type the following at the MATLAB command line:
```

d = rebuffer_delay(1,3,1)
d =

```
    4

Compute the delay introduced by an Unbuffer block in a multitasking model:

1 Open a model containing an Unbuffer block. For this example, open the doc_unbuffer_ref1 model by typing doc_unbuffer_ref1 at the MATLAB command line.

2 Determine the frame size of the input to the Buffer block, open the Signal From Workspace block mask by double-clicking the block in your model. Verify that you have the following settings:
- Signal = dsp_examples_A
- Sample time \(=1\)

\section*{rebuffer_delay}
- Samples per frame \(=3\)

Because Samples per frame \(=3\), input \(f=3\).
3 Use the rebuffer_delay function to determine the amount of delay that the Unbuffer block introduces in this multitasking model. To compute the delay introduced by the Unbuffer block, use \(f=3\), \(n\) \(=1\) and \(v=0\).
d = rebuffer_delay \((3,1,0)\)
\(d=\)
3

See Also Buffer | Unbuffer
How To . "Buffering Delay and Initial Conditions"

This glossary defines terms related to fixed-point data types and numbers. These terms may appear in some or all of the documents that describe products from The MathWorks \({ }^{\text {TM }}\) that have fixed-point support.

\section*{arithmetic shift}

Shift of the bits of a binary word for which the sign bit is recycled for each bit shift to the right. A zero is incorporated into the least significant bit of the word for each bit shift to the left. In the absence of overflows, each arithmetic shift to the right is equivalent to a division by 2 , and each arithmetic shift to the left is equivalent to a multiplication by 2.

See also binary point, binary word, bit, logical shift, most significant bit

\section*{bias}

Part of the numerical representation used to interpret a fixed-point number. Along with the slope, the bias forms the scaling of the number. Fixed-point numbers can be represented as
\[
\text { real-world value }=(\text { slope } \times \text { stored integer })+\text { bias }
\]
where the slope can be expressed as
\[
\text { slope }=\text { fractional slope } \times 2^{\text {exponent }}
\]

See also fixed-point representation, fractional slope, integer, scaling, slope, [Slope Bias]

\section*{binary number}

Value represented in a system of numbers that has two as its base and that uses 1's and 0's (bits) for its notation.

See also bit

\section*{binary point}

Symbol in the shape of a period that separates the integer and fractional parts of a binary number. Bits to the left of the binary point are integer bits and/or sign bits, and bits to the right of the binary point are fractional bits.

See also binary number, bit, fraction, integer, radix point

\section*{binary point-only scaling}

Scaling of a binary number that results from shifting the binary point of the number right or left, and which therefore can only occur by powers of two.

See also binary number, binary point, scaling

\section*{binary word}

Fixed-length sequence of bits (1's and 0's). In digital hardware, numbers are stored in binary words. The way in which hardware components or software functions interpret this sequence of 1's and 0's is described by a data type.

See also bit, data type, word

\section*{bit}

Smallest unit of information in computer software or hardware. A bit can have the value 0 or 1 .

\section*{ceiling (round toward)}

Rounding mode that rounds to the closest representable number in the direction of positive infinity. This is equivalent to the Fixed-Point Toolbox ceil mode.

See also convergent rounding, floor (round toward), nearest (round toward), rounding, truncation, zero (round toward)

\section*{contiguous binary point}

Binary point that occurs within the word length of a data type. For example, if a data type has four bits, its contiguous binary point must be understood to occur at one of the following five positions:
. 0000
0.000
00.00
000.0
0000.

See also data type, noncontiguous binary point, word length

\section*{convergent rounding}

Rounding mode that rounds to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 0 .

See also ceiling (round toward), floor (round toward), nearest (round toward), rounding, truncation, zero (round toward)

\section*{data type}

Set of characteristics that define a group of values. A fixed-point data type is defined by its word length, its fraction length, and whether it is signed or unsigned. A floating-point data type is defined by its word length and whether it is signed or unsigned.

See also fixed-point representation, floating-point representation, fraction length, signedness, word length

\section*{data type override}

Parameter in the Fixed-Point Tool that allows you to set the output data type and scaling of fixed-point blocks on a system or subsystem level.

See also data type, scaling

\section*{exponent}

Part of the numerical representation used to express a floating-point or fixed-point number.
1. Floating-point numbers are typically represented as
\[
\text { real-world value }=\text { mantiss } \times 2^{\text {exponent }}
\]
2. Fixed-point numbers can be represented as
\[
\text { real-world value }=(\text { slope } \times \text { stored integer })+\text { bias }
\]
where the slope can be expressed as
\[
\text { slope }=\text { fractional slope } \times 2^{\text {exponent }}
\]

The exponent of a fixed-point number is equal to the negative of the fraction length:
\[
\text { exponent }=-1 \times \text { fraction length }
\]

See also bias, fixed-point representation, floating-point representation, fraction length, fractional slope, integer, mantissa, slope

\section*{fixed-point representation}

Method for representing numerical values and data types that have a set range and precision.
1. Fixed-point numbers can be represented as
\[
\text { real-world value }=(\text { slope } \times \text { stored integer })+\text { bias }
\]
where the slope can be expressed as
\[
\text { slope }=\text { fractional slope } \times 2^{\text {exponent }}
\]

The slope and the bias together represent the scaling of the fixed-point number.
2. Fixed-point data types can be defined by their word length, their fraction length, and whether they are signed or unsigned.

See also bias, data type, exponent, fraction length, fractional slope, integer, precision, range, scaling, slope, word length

\section*{floating-point representation}

Method for representing numerical values and data types that can have changing range and precision.
1. Floating-point numbers can be represented as
\[
\text { real-world value }=\text { mantissa } \times 2^{\text {exponent }}
\]
2. Floating-point data types are defined by their word length.

See also data type, exponent, mantissa, precision, range, word length

\section*{floor (round toward)}

Rounding mode that rounds to the closest representable number in the direction of negative infinity.

See also ceiling (round toward), convergent rounding, nearest (round toward), rounding, truncation, zero (round toward)

\section*{fraction}

Part of a fixed-point number represented by the bits to the right of the binary point. The fraction represents numbers that are less than one.

See also binary point, bit, fixed-point representation

\section*{fraction length}

Number of bits to the right of the binary point in a fixed-point representation of a number.

See also binary point, bit, fixed-point representation, fraction

\section*{fractional slope}

Part of the numerical representation used to express a fixed-point number. Fixed-point numbers can be represented as
\[
\text { real-world value }=(\text { slope } \times \text { stored integer })+\text { bias }
\]
where the slope can be expressed as
\[
\text { slope }=\text { fractional slope } \times 2^{\text {exponent }}
\]

The term slope adjustment is sometimes used as a synonym for fractional slope.

See also bias, exponent, fixed-point representation, integer, slope

\section*{guard bits}

Extra bits in either a hardware register or software simulation that are added to the high end of a binary word to ensure that no information is lost in case of overflow.

See also binary word, bit, overflow

\section*{integer}
1. Part of a fixed-point number represented by the bits to the left of the binary point. The integer represents numbers that are greater than or equal to one.
2. Also called the "stored integer." The raw binary number, in which the binary point is assumed to be at the far right of the word. The integer is part of the numerical representation used to express a fixed-point number. Fixed-point numbers can be represented as
\[
\text { real-world value }=2^{- \text {fraction length }} \times \text { stored integer }
\]
or
\[
\text { real-world value }=(\text { slope } \times \text { stored integer })+\text { bias }
\]
where the slope can be expressed as
\[
\text { slope }=\text { fractional slope } \times 2^{\text {exponent }}
\]

See also bias, fixed-point representation, fractional slope, integer, real-world value, slope

\section*{integer length}

Number of bits to the left of the binary point in a fixed-point representation of a number.

See also binary point, bit, fixed-point representation, fraction length, integer

\section*{least significant bit (LSB)}

Bit in a binary word that can represent the smallest value. The LSB is the rightmost bit in a big-endian-ordered binary word. The weight of the LSB is related to the fraction length according to
\[
\text { weight of } L S B=2^{-f r a c t i o n ~ l e n g t h ~}
\]

See also big-endian, binary word, bit, most significant bit

\section*{logical shift}

Shift of the bits of a binary word, for which a zero is incorporated into the most significant bit for each bit shift to the right and into the least significant bit for each bit shift to the left.

See also arithmetic shift, binary point, binary word, bit, most significant bit

\section*{mantissa}

Part of the numerical representation used to express a floating-point number. Floating-point numbers are typically represented as
\[
\text { real-world value }=\text { mantissa } \times 2^{\text {exponent }}
\]

See also exponent, floating-point representation

\section*{most significant bit (MSB)}

Bit in a binary word that can represent the largest value. The MSB is the leftmost bit in a big-endian-ordered binary word.

See also binary word, bit, least significant bit

\section*{nearest (round toward)}

Rounding mode that rounds to the closest representable number, with the exact midpoint rounded to the closest representable number in the direction of positive infinity. This is equivalent to the Fixed-Point Toolbox nearest mode.

See also ceiling (round toward), convergent rounding, floor (round toward), rounding, truncation, zero (round toward)

\section*{noncontiguous binary point}

Binary point that is understood to fall outside the word length of a data type. For example, the binary point for the following 4 -bit word is understood to occur two bits to the right of the word length,
\[
0000
\]
\(\qquad\)
thereby giving the bits of the word the following potential values:
\[
2^{5} 2^{4} 2^{3} 2^{2}
\]

See also binary point, data type, word length

\section*{one's complement representation}

Representation of signed fixed-point numbers. Negating a binary number in one's complement requires a bitwise complement. That is, all 0 's are flipped to 1's and all 1's are flipped to 0's. In one's complement notation there are two ways to represent zero. A binary word of all 0's represents "positive" zero, while a binary word of all 1's represents "negative" zero.

See also binary number, binary word, sign/magnitude representation, signed fixed-point, two's complement representation

\section*{overflow}

Situation that occurs when the magnitude of a calculation result is too large for the range of the data type being used. In many cases you can choose to either saturate or wrap overflows.

See also saturation, wrapping

\section*{padding}

Extending the least significant bit of a binary word with one or more zeros.

See also least significant bit

\section*{precision}
1. Measure of the smallest numerical interval that a fixed-point data type and scaling can represent, determined by the value of the number's least significant bit. The precision is given by the slope, or the number of fractional bits. The term resolution is sometimes used as a synonym for this definition.
2. Measure of the difference between a real-world numerical value and the value of its quantized representation. This is sometimes called quantization error or quantization noise.

See also data type, fraction, least significant bit, quantization, quantization error, range, slope

\section*{Q format}

Representation used by Texas Instruments to encode signed two's complement fixed-point data types. This fixed-point notation takes the form

Qm.n
where
- \(Q\) indicates that the number is in Q format.
- \(m\) is the number of bits used to designate the two's complement integer part of the number.
- \(n\) is the number of bits used to designate the two's complement fractional part of the number, or the number of bits to the right of the binary point.

In Q format notation, the most significant bit is assumed to be the sign bit.

See also binary point, bit, data type, fixed-point representation, fraction, integer, two's complement

\section*{quantization}

Representation of a value by a data type that has too few bits to represent it exactly.

See also bit, data type, quantization error

\section*{quantization error}

Error introduced when a value is represented by a data type that has too few bits to represent it exactly, or when a value is converted from one data type to a shorter data type. Quantization error is also called quantization noise.

See also bit, data type, quantization

\section*{radix point}

Symbol in the shape of a period that separates the integer and fractional parts of a number in any base system. Bits to the left of the radix point are integer and/or sign bits, and bits to the right of the radix point are fraction bits.

See also binary point, bit, fraction, integer, sign bit

\section*{range}

Span of numbers that a certain data type can represent.
See also data type, precision

\section*{real-world value}

Stored integer value with fixed-point scaling applied. Fixed-point numbers can be represented as
\[
\text { real-world value }=2^{- \text {fraction length }} \times \text { stored integer }
\]
or
\[
\text { real-world value }=(\text { slope } \times \text { stored integer })+\text { bias }
\]
where the slope can be expressed as
\[
\text { slope }=\text { fractional slope } \times 2^{\text {exponent }}
\]

See also integer

\section*{resolution}

See precision

\section*{rounding}

Limiting the number of bits required to express a number. One or more least significant bits are dropped, resulting in a loss of precision. Rounding is necessary when a value cannot be expressed exactly by the number of bits designated to represent it.

See also bit, ceiling (round toward), convergent rounding, floor (round toward), least significant bit, nearest (round toward), precision, truncation, zero (round toward)

\section*{saturation}

Method of handling numeric overflow that represents positive overflows as the largest positive number in the range of the data type being used, and negative overflows as the largest negative number in the range.

See also overflow, wrapping

\section*{scaled double}

A double data type that retains fixed-point scaling information. For example, in Simulink and Fixed-Point Toolbox software you can use data type override to convert your fixed-point data types to scaled doubles. You can then simulate to determine the ideal floating-point behavior of your system. After you gather that information you can turn data type override off to return to fixed-point data types, and your quantities still have their original scaling information because it was held in the scaled double data types.

\section*{scaling}
1. Format used for a fixed-point number of a given word length and signedness. The slope and bias together form the scaling of a fixed-point number.
2. Changing the slope and/or bias of a fixed-point number without changing the stored integer.

See also bias, fixed-point representation, integer, slope

\section*{shift}

Movement of the bits of a binary word either toward the most significant bit ("to the left") or toward the least significant bit ("to the right"). Shifts to the right can be either logical, where the spaces emptied at the front of the word with each shift are filled in with zeros, or arithmetic, where the word is sign extended as it is shifted to the right.

See also arithmetic shift, logical shift, sign extension

\section*{sign bit}

Bit (or bits) in a signed binary number that indicates whether the number is positive or negative.

See also binary number, bit

\section*{sign extension}

Addition of bits that have the value of the most significant bit to the high end of a two's complement number. Sign extension does not change the value of the binary number.

See also binary number, guard bits, most significant bit, two's complement representation, word

\section*{sign/magnitude representation}

Representation of signed fixed-point or floating-point numbers. In sign/magnitude representation, one bit of a binary word is always the dedicated sign bit, while the remaining bits of the word encode the magnitude of the number. Negation using sign/magnitude representation consists of flipping the sign bit from 0 (positive) to 1 (negative), or from 1 to 0 .

See also binary word, bit, fixed-point representation, floating-point representation, one's complement representation, sign bit, signed fixed-point, signedness, two's complement representation

\section*{signed fixed-point}

Fixed-point number or data type that can represent both positive and negative numbers.

See also data type, fixed-point representation, signedness, unsigned fixed-point

\section*{signedness}

The signedness of a number or data type can be signed or unsigned. Signed numbers and data types can represent both positive and negative values, whereas unsigned numbers and data types can only represent values that are greater than or equal to zero.

See also data type, sign bit, sign/magnitude representation, signed fixed-point, unsigned fixed-point

\section*{slope}

Part of the numerical representation used to express a fixed-point number. Along with the bias, the slope forms the scaling of a fixed-point number. Fixed-point numbers can be represented as
\[
\text { real-world value }=(\text { slope } \times \text { stored integer })+\text { bias }
\]
where the slope can be expressed as
\[
\text { slope }=\text { fractional slope } \times 2^{\text {exponent }}
\]

See also bias, fixed-point representation, fractional slope, integer, scaling, [Slope Bias]

\section*{slope adjustment}

See fractional slope
[Slope Bias]
Representation used to define the scaling of a fixed-point number.
See also bias, scaling, slope

\section*{stored integer}

See integer

\section*{trivial scaling}

Scaling that results in the real-world value of a number being simply equal to its stored integer value:
real-world value = stored integer

In [Slope Bias] representation, fixed-point numbers can be represented as
\[
\text { real-world value }=(\text { slope } \times \text { stored integer })+\text { bias }
\]

In the trivial case, slope \(=1\) and bias \(=0\).
In terms of binary point-only scaling, the binary point is to the right of the least significant bit for trivial scaling, meaning that the fraction length is zero:
\[
\text { real-world value }=\text { stored integer } \times 2^{- \text {fraction length }}=\text { stored integer } \times 2^{0}
\]

Scaling is always trivial for pure integers, such as int8, and also for the true floating-point types single and double.

See also bias, binary point, binary point-only scaling, fixed-point representation, fraction length, integer, least significant bit, scaling, slope, [Slope Bias]

\section*{truncation}

Rounding mode that drops one or more least significant bits from a number.

See also ceiling (round toward), convergent rounding, floor (round toward), nearest (round toward), rounding, zero (round toward)

\section*{two's complement representation}

Common representation of signed fixed-point numbers. Negation using signed two's complement representation consists of a translation into one's complement followed by the binary addition of a one.

See also binary word, one's complement representation, sign/magnitude representation, signed fixed-point

\section*{unsigned fixed-point}

Fixed-point number or data type that can only represent numbers greater than or equal to zero.

See also data type, fixed-point representation, signed fixed-point, signedness

\section*{word}

Fixed-length sequence of binary digits (1's and 0's). In digital hardware, numbers are stored in words. The way hardware components or software functions interpret this sequence of 1's and 0's is described by a data type.

See also binary word, data type

\section*{word length}

Number of bits in a binary word or data type.
See also binary word, bit, data type

\section*{wrapping}

Method of handling overflow. Wrapping uses modulo arithmetic to cast a number that falls outside of the representable range the data type being used back into the representable range.

See also data type, overflow, range, saturation

\section*{zero (round toward)}

Rounding mode that rounds to the closest representable number in the direction of zero. This is equivalent to the Fixed-Point Toolbox fix mode.

See also ceiling (round toward), convergent rounding, floor (round toward), nearest (round toward), rounding, truncation

\section*{A}
acquiring data
blocks for 1-16
adaptive filter designs
FIR 2-766
Kalman 2-710
LMS 2-766
RLS 2-1105
addition
cumulative 2-274
Analog Filter Design block 2-2
analytic signal 2-7
Analytic Signal block 2-7
Arbitrary Response Filter block 2-9
Array-Vector Add block 2-11
Array-Vector Divide block 2-20
Array-Vector Multiply block 2-27
Array-Vector Subtract block 2-36 audio

From Audio Device block 2-586
From Wave Device block 2-604
From Wave File block 2-611
To Audio Device block 2-1267
To Wave Device block 2-1279
To Wave File block 2-1288
autocorrelation
and Levinson-Durbin recursion 2-750
of a real vector 2-45
sequence 2-1535
Autocorrelation block 2-45
Autocorrelation LPC block 2-55
autocorrelation method 2-1528
autoregressive models, using
Burg AR Estimator block 2-122
Burg Method block 2-127
Covariance AR Estimator block 2-250
Covariance Method block 2-253
Modified Covariance AR Estimator
block 2-932
Modified Covariance Method block 2-935

Yule-Walker AR Estimator block 2-1528
Yule-Walker Method block 2-1535

\section*{B}

Backward Substitution block 2-59
Bandpass Filter block 2-68
bandpass filter designs
using Analog Filter Design block 2-2
Bandstop Filter block 2-70
bandstop filter designs
using Analog Filter Design block 2-2
Bartlett windows 2-1514
binary clock signals 2-939
bins
histogram 2-628
Biquad Filter block 2-72
bit-reversed order 2-489
Blackman windows 2-1514
Block LMS Filter block 2-104
Buffer block 2-112
buffering
blocks for 1-12
Buffer block 2-112
Delay Line block 2-321
first input, first output (FIFO) register 2-1062
last input, first output (LIFO) register 2-1223
Queue block 2-1062
Stack block 2-1223
Burg AR Estimator block 2-122
Burg Method block 2-127
power spectrum estimation 2-127
Butterworth filter designs using Analog Filter Design block 2-2

\section*{C}
changing
size of frames 2-112
Chebyshev type I filter designs using Analog Filter Design block 2-2
Chebyshev type II filter designs using Analog Filter Design block 2-2
Chebyshev windows 2-1514
Check Signal Attributes block 2-134
Chirp block 2-143
Cholesky Factorization block 2-168
Cholesky Inverse block 2-172
Cholesky Solver block 2-175
CIC Compensator block 2-178
CIC Decimation block 2-180
CIC Filter block 2-189
CIC Interpolation block 2-190 clocks
binary 2-939
multiphase 2-939
complex analytic signal 2-7
Complex Cepstrum block 2-199
Complex Exponential block 2-201
complex exponentials 2-201
computing
frequency distributions 2-628
histograms 2-628
Constant block 2-202
Constant Diagonal Matrix block 2-203
Constant Ramp block 2-207
constants
matrix 2-203
ramp 2-207
control signals, for
Triggered Shift Register block 2-1294
Triggered Signal From Workspace block 2-1298
Triggered Signal To Workspace block 2-1302 controller canonical forms 2-3
Convert 1-D to 2-D block 2-214
Convert 2-D to 1-D block 2-217
convolution
of two real vectors 2-219
Convolution block 2-219
correlation
of two real vectors 2-229
Correlation block 2-229
correlation matrices 2-711
Counter block 2-238
Covariance AR Estimator block 2-250
Covariance Method block 2-253
spectral analysis 2-253
Create Diagonal Matrix block 2-257
Cumulative Product block 2-259
Cumulative Sum block 2-274

\section*{D}

Data Type Conversion block 2-288
dB
converting to 2-289
dB Conversion block 2-289
dB Gain block 2-292
dBm
converting to 2-289
DC component of an analytic signal 2-7
DCT block 2-295
DCTs
computing 2-295
decimation
process of 2-513
using FIR Decimation block 2-513
using FIR Rate Conversion block 2-550
delay
fractional 2-1366
Delay block 2-306
Delay Line block 2-321
Detrend block 2-327
diagonal matrix constants 2-203
difference
between elements in a vector 2-329
Difference block 2-329

Differentiator Filter block 2-337
Digital Filter block 2-339
Digital Filter Design block 2-400
discrete cosine transforms 2-295
Discrete Impulse block 2-421
discrete wavelet transform 2-442
Display block 2-427
display span
Vector Scope Block 2-1450
displaying
blocks for 1-15
frame-based data 2-1450
matrices as images \(2-860\)
Downsample block 2-428
downsampling
Downsample block 2-428
FIR Decimation block 2-513
FIR Rate Conversion block 2-550
DSP Constant block 2-437
DWT block 2-442
Dyadic Analysis Filter Bank block 2-444
Dyadic Synthesis Filter Bank block 2-455

\section*{E}

Edge Detector block 2-466
elements of a vector
selecting 2-1398
elliptic filter designs
using Analog Filter Design block 2-2
estimation
blocks for 1-2
Burg AR Estimator block 2-122
Burg Method block 2-127
Covariance AR Estimator block 2-250
Covariance Method block 2-253
Modified Covariance AR Estimator block 2-932
Modified Covariance Method block 2-935
nonparametric with Magnitude FFT block 2-827
nonparametric with Short-Time FFT block 2-1159
Yule-Walker AR Estimator block 2-1528
Yule-Walker Method block 2-1535
Event-Count Comparator block 2-469
events, triggering for
N-Sample Enable block 2-947
N-Sample Switch block 2-951
Sample and Hold block 2-1120
Stack block 2-1224
Triggered Shift Register block 2-1294
Triggered Signal From Workspace block 2-1298
Triggered Signal To Workspace block 2-1302
exponentials
complex 2-201
exporting
blocks for 1-15
using Triggered Signal To Workspace block 2-1302
Extract Diagonal block 2-472
Extract Triangular Matrix block 2-474

\section*{F}

Fast Block LMS Filter block 2-478
fast Fourier transform (FFT) 2-486
FDATool
in Signal Processing Blockset 2-400
FFT block 2-486
FFTs
computing 2-486
overlap-add filtering 2-990
overlap-save filtering 2-994
filter designs
Digital Filter block 2-339
Digital Filter Design block 2-400
Levinson-Durbin block 2-751
using Analog Filter Design block 2-2
Filter Realization Wizard 2-502
filter realizations
using Filter Realization Wizard 2-502
filters
blocks for 1-4
overlap-add method 2-990
overlap-save method 2-994
FIR
interpolation 2-691
FIR Decimation block 2-513
FIR filter designs
using Levinson-Durbin block 2-751
with prescribed autocorrelation sequence 2-751
FIR Interpolation block 2-531
FIR Rate Conversion block 2-550
first-input, first-output (FIFO) registers 2-1062
Flip block 2-567
forms
controller canonical 2-3
state-space 2-3
Forward Substitution block 2-570
Frame Conversion 2-580
Frame Status Conversion block 2-583
frames
changing size of 2-112
unbuffering to scalars 2-1336
frequency distributions 2-628
computing 2-628
From Audio Device block 2-586
From Multimedia File block 2-593
From Wave Device block 2-604
From Wave File block 2-611

\section*{G}
G. 711 Codec block 2-617
gain
applying in dB 2-292

\section*{H}

Halfband Filter block 2-622
Hamming windows 2-1514
Hann windows 2-1514
Highpass Filter block 2-624
highpass filter designs
using Analog Filter Design block 2-2
Hilbert Filter block 2-626
Hilbert transformer filter designs 2-7
Histogram block 2-628
histograms
computing 2-628

\section*{I}

IDCT block 2-642
IDCTs 2-642
computing 2-642
identity matrices \(2-654\)
Identity Matrix block 2-654
IDWT block 2-659
IFFT block 2-661
IFFTs
computing 2-661
images
displaying matrices as 2-860
importing
blocks for 1-16
scalars 2-611
signals from the workspace 2-1164
Triggered Signal From Workspace block 2-1298
vectors 2-611
indexing
blocks for 1-12
Inherit Complexity block 2-678
Integer Delay block 2-681
interpolating
FIR Interpolation block 2-531
FIR Rate Conversion block 2-550
procedure 2-531
Interpolation block 2-691
inverse discrete cosine transforms 2-642
inverse fast Fourier transform (FFT) 2-661
Inverse Short-Time FFT block 2-704
Inverse Sinc Filter block 2-708

\section*{K}

Kaiser windows 2-1514
Kalman Adaptive Filter block 2-710
Kalman Filter block 2-715

\section*{L}
last-input, first-output (LIFO) registers 2-1223
LDL Factorization block 2-725
LDL Inverse block 2-734
LDL Solver block 2-737
least mean-square algorithm 2-766
Least Squares Polynomial Fit block 2-746
Levinson-Durbin block 2-749
linear algebra
blocks for 1-7
linear prediction
using Autocorrelation LPC block 2-55
LMS Adaptive Filter block 2-761
LMS algorithm
Block LMS Filter block 2-104
Fast Block LMS Filter block 2-478
LMS Filter block 2-766
LMS Filter block 2-766
Lowpass Filter block 2-783
lowpass filter designs
using Analog Filter Design block 2-2
LPC to LSP/LSF Conversion block 2-785
LPC to/from Cepstral Coefficients block 2-802
LPC to/from RC block 2-807
LPC/RC to Autocorrelation block 2-812
LSF/LSP to LPC Conversion block 2-800

LU Factorization block 2-815
LU Inverse block 2-823
LU Solver block 2-825

\section*{M}

Magnitude FFT block 2-827
magnitude response of filters 2-2
magnitudes
converting to dB 2-289
matrices
constant diagonal 2-203
create diagonal 2-257
displaying as images 2-860
extracting diagonal of \(2-472\)
extracting triangle from 2-474
identity 2-203
Identity Matrix block 2-654
multiplying 2-841
multiplying within 2-842
normalizing 2-832
overwriting elements of 2-998
permuting 2-1040
selecting elements from 2-1247
summing 2-852
Toeplitz 2-1263
transposing 2-1291
Matrix 1-Norm block 2-832
Matrix Concatenate block 2-838
Matrix Exponential block 2-839
Matrix Multiply block 2-841
matrix operations
blocks for 1-7
Matrix Product block 2-842
Matrix Square block 2-850
Matrix Sum block 2-852
Matrix Viewer block 2-860
Maximum block 2-867
Mean block 2-887
Median block 2-903

Minimum block 2-912
minimum mean-square estimate (MMSE) 2-710
Modified Covariance AR Estimator block 2-932
Modified Covariance Method block 2-935
modifying signal attributes
blocks for 1-13
Multiphase Clock block 2-939
multiplication
cumulative 2-259
multiplying
by dB gain 2-292
Multiport Selector block 2-943

\section*{N}

N-Sample Enable block 2-947
N-Sample Switch block 2-951
n-step forward linear predictors 2 -55
NCO block 2-956
Normalization block 2-974
Numerically Controlled Oscillator block 2-956
Nyquist Filter block 2-982

\section*{0}

Octave Filter block 2-984
Offset block 2-986
ones
outputting 2-947
Overlap-Add FFT Filter block 2-990
overlap-add method 2-990
Overlap-Save FFT Filter block 2-994
overlap-save method 2-994
Overwrite Values block 2-998

\section*{P}

Pad block 2-1016
Parametric Equalizer block 2-1023
Peak Finder block 2-1025
Peak-Notch Filter block 2-1032

Periodogram block 2-1034
periodograms 2-827
Permute Matrix block 2-1040
phase angles
unwrapping 2-1349
phase unwrap 2-1349
Polynomial Evaluation block 2-1045
Polynomial Stability Test block 2-1047
polyphase filter structures
FIR Decimation 2-513
FIR Interpolation block 2-531
power spectrum estimation, using
Burg method 2-127
short-time, fast Fourier transform (ST-FFT) 2-1159
Yule-Walker AR method 2-1535
prediction
linear 2-55
predictor algorithm 2-710
Pseudoinverse block 2-1049
Pulse Shaping Filter block 2-1052

\section*{Q}

QR Factorization block 2-1054
QR Solver block 2-1059
quantization
blocks for 1-11
Quantizer block 2-1061
Queue block 2-1062

\section*{R}
ramp signal 2-207
random signals 2-1073
Random Source block 2-1073
random-walk Kalman filter 2-711
Real Cepstrum block 2-1083
rebuffering
with the Buffer block 2-112

Reciprocal Condition block 2-1085
rectangular windows 2-1514
recursive least-squares (RLS) algorithm 2-1105
registers
first-input, first-output (FIFO) 2-1062
last-input, first-output (LIFO) 2-1223
Remez exchange algorithm 2-7
Repeat block 2-1093
resampling
by inserting zeros 2-1358
Downsample block 2-428
FIR Decimation block 2-513
FIR Interpolation block 2-531
FIR Rate Conversion block 2-550
procedure 2-550
Repeat block 2-1093
RLS Adaptive Filter block 2-1100
RLS Filter block 2-1105
RMS block 2-1112
root-mean-square (RMS)
computing 2-1112

\section*{S}

Sample and Hold block 2-1120
sample rates
changing 2-428
Scalar Quantizer block 2-1123
Scalar Quantizer Decoder block 2-1133
Scalar Quantizer Design block 2-1139
Scalar Quantizer Encoder block 2-1148
scalars
converting to vectors 2-321
creating from vectors \(2-1336\)
exporting 2-1302
importing 2-611
importing from the workspace 2-1164
selecting
elements of a vector 2-1398
Selector block 2-1158

Shift Register block initial state of 2-324
Short-Time FFT block 2-1159
short-time, fast Fourier transform (ST-FFT) method 2-1159
Signal From Workspace block 2-1164 compared to Simulink To Workspace block 2-1164
signal operations
blocks for 1-14
Signal To Workspace block 2-1170
signals
control 2-1294
random 2-1073
Triggered Signal From Workspace block 2-1298
Sine Wave block 2-1178
Singular Value Decomposition block 2-1190
Sort block 2-1193
sound
From Audio Device block 2-586
From Wave Device block 2-604
From Wave File block 2-611
To Audio Device block 2-1267
To Wave Device block 2-1279
To Wave File block 2-1288
spectral analysis 2-127
Burg method 2-127
covariance method 2-253
magnitude FFT method 2-827
modified covariance method 2-935
short-time FFT method 2-1159
Yule-Walker method 2-1535
See also power spectrum estimation
Spectrum Scope block 2-1200
ST-FFT method 2-1159
Stack block 2-1223
stack events 2-1224
standard deviation
computing 2-1234

Standard Deviation block 2-1234
state-space forms 2-3
statistical operations
blocks for 1-17
statistics
RMS 2-1112
standard deviation 2-1234
variance 2-1403
Submatrix block 2-1247
SVD Solver block 2-1257
swept cosine 2-151
swept-frequency cosine \(2-143\)
switching
between two inputs 2-951

\section*{T}

Taylor windows 2-1515
Time Scope block 2-1260
To Audio Device block 2-1267
To Multimedia File block 2-1274
To Wave Device block 2-1279
To Wave File block 2-1288
Toeplitz block 2-1263
transforms
blocks for 1-17
discrete cosine 2-295
discrete wavelet 2-442
Fourier 2-486
inverse Fourier 2-661
Transpose block 2-1291
transposing
matrices 2-1291
trends
removing 2-327
triangular windows 2-1515
Triggered Delay Line block 2-1294
Triggered Shift Register block
initial state of 2-1295
Triggered Signal From Workspace block 2-1298

Triggered To Workspace block 2-1302
triggering, for
N-Sample Enable block 2-947
N-Sample Switch block 2-951
Sample and Hold block 2-1120
Triggered Shift Register block 2-1294
Triggered Signal From Workspace
block 2-1298
Triggered Signal To Workspace block 2-1302
Two-Channel Analysis Subband Filter block 2-1305
Two-Channel Synthesis Subband Filter block 2-1320

\section*{U}

Unbuffer block 2-1336
initial state of 2-1337
unbuffering
with the Buffer block 2-112
Uniform Decoder block 2-1340
Uniform Encoder block 2-1344
Unwrap block 2-1349
unwrapping radian phase angles 2-1349
Upsample block 2-1358
upsampling
by inserting zeros \(2-1358\)
FIR Interpolation block 2-531
FIR Rate Conversion block 2-550
Repeat block 2-1093

\section*{v}

Variable Fractional Delay block 2-1366
initial conditions for 2-1367
Variable Integer Delay block 2-1387
initial conditions for 2-1389
Variable Selector block 2-1398
variance 2-1403
tracking 2-1403

Variance block 2-1403
Vector Quantizer Decoder block 2-1421
Vector Quantizer Design 2-1428
Vector Quantizer Encoder block 2-1439
Vector Scope block 2-1450
vectors
converting to scalars 2-1336
creating from scalars 2-1294
exporting 2-1302
importing 2-611
importing from the workspace 2-1164

\section*{w}

Waterfall block 2-1475
Window Function block 2-1512
windows
applying 2-1512
Bartlett 2-1514
Blackman 2-1514
Chebyshev 2-1514
Hamming 2-1514
Hann 2-1514

Kaiser 2-1514
rectangular 2-1514
Taylor 2-1515
triangular 2-1515

\section*{\(Y\)}

Yule-Walker AR Estimator block 2-1528
Yule-Walker Method block 2-1535

\section*{Z}

Zero Crossing block 2-1539
zero-padding
Pad block 2-1016
zeros
Discrete Impulse block 2-421
inserting 2-531
N-Sample Enable block 2-947
Signal From Workspace block 2-1164
Triggered Signal From Workspace block 2-1299```


[^0]:    References Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1988.

    Orfanidis, S. J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1995.

    Orfanidis, S. J. Optimum Signal Processing: An Introduction. 2nd ed. New York, NY: Macmillan, 1985.

